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Abstract

Eukaryotic transcription factor IIH (TFIIH) is a 500 kDa-multiprotein complex that harbors two 

SF2-family DNA-dependent ATPase/helicase subunits and the kinase activity of Cyclin-dependent 

kinase 7. TFIIH serves as a general transcription factor for transcription initiation by eukaryotic 

RNA polymerase II and plays an important role in nucleotide excision DNA repair. Aiming to 

understand the molecular mechanisms of its function and regulation in two key cellular pathways, 

the high-resolution structure of TFIIH has been pursued for decades. Recent breakthroughs, 

largely enabled by methodological advances in cryo-electron microscopy, have finally revealed the 

structure of TFIIH and its interactions in the context of the Pol II-pre-initiation complex, and 

provide a first glimpse of a TFIIH-containing assembly in DNA repair. Here, we review and 

discuss these recent structural insights and their functional implications.

Functions of TFIIH in transcription and DNA repair

Transcription initiation by eukaryotic RNA polymerase II (Pol II) requires the assembly of a 

transcription preinitiation complex (Pol II-PIC) on promoter DNA, a process that has been 

structurally characterized in detail using X-ray crystallography and cryo-electron 

microscopy (cryo-EM) [1,2]. The Pol II-PIC is formed by general transcription factors that 

recognize the transcription start site, recruit the multi-subunit Pol II complex, facilitate 

opening of the transcription bubble, and are involved in post-translational modification of 

Pol II [3,4]. Eukaryotic transcription factor IIH (TFIIH) is one of these general transcription 

factors for Pol II. Aided by TFIIE [5–7,8•], it joins the Pol II-PIC after recruitment of Pol II 

to the promoter (Figure 1a), and contributes to Pol II transcription initiation and promoter 

escape by facilitating transcription bubble opening and by phosphorylating the C-terminal 

heptapetide repeat domain of the Pol II subunit RPB1, respectively (reviewed in Ref. [9]).
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TFIIH is a ten-subunit protein complex whose two largest subunits, XPB and XPD, harbor 

ATP-dependent double-stranded DNA translocase and DNA helicase activities, respectively 

(reviewed in Ref. [9]). XPB and XPD are part of the TFIIH core complex, which includes 

five additional subunits (p62, p52, p44, p34, and p8) that form an intricate scaffold and 

recruit the two ATPases. Additionally, TFIIH harbors a kinase activity in its CDK-activating 

kinase (CAK) subcomplex, comprising Cyclin-dependent kinase 7 (CDK7), Cyclin H and 

MAT1. Transcription initiation relies on the DNA translocase activity of XPB [10,11], which 

has been shown to engage the downstream DNA in both human and yeast PIC cryo-EM 

structures [12•,13,14••,15] (Figure 1a), and on the presence of the CAK subcomplex [16]. In 

agreement with recent yeast Pol II-PIC structures showing spontaneous promoter melting 

[17], subsequent studies revealed that in yeast, some promoters melt more easily than others, 

which enables XPB-independent promoter opening [18]. Similar observations were made in 

biochemical studies of the human system, leading to the proposal that in some instances, 

XPB may act in a checkpoint-like manner to allow promoter melting only after successful 

assembly of the Pol II-PIC [19]. Nevertheless, the human Pol II-PIC, including TFIIE and 

TFIIH, was successfully reconstituted and characterized structurally with a closed promoter 

that did not open spontaneously during assembly [12•], suggesting that XPB DNA translo-

case activity may be required for opening of some promoters.

In addition to its transcriptional role, the TFIIH core complex is essential in nucleotide 

excision repair (NER) [16]. NER can repair diverse UV-induced and chemically-induced 

DNA lesions that typically lead to distortions of the DNA backbone, such as 6–4 

photoproducts or cyclobutane pyrimidine dimers. Initial DNA damage detection involves 

either specialized lesion sensors, such as XPC or DDB2-containing complexes in a 

subpathway termed global genome NER, or the stalled Pol II in transcription-coupled NER 

(reviewed in Ref. [20]). Once DNA damage has been detected, TFIIH is recruited to the 

DNA lesion. TFIIH engaged in NER employs the activities of both XPD and XPB to open 

duplex DNA to verify the presence of damaged DNA and enable its access to the 

downstream repair machinery [21–23]. Because the CAK subcomplex inhibits the activity of 

XPD [24–26], NER requires the release of the CAK subcomplex from the core [16,24], 

facilitated by the repair factor XPA ([24] and see below).

Defining the structure of human TFIIH

While structures of human and budding yeast TFIIH in the context of the Pol II-PIC were 

limited to medium resolution[12•,14••,15], the structure of human apo-TFIIH (Figure 1b), in 

the absence of substrate or components of the Pol II-PIC, enabled modeling of the seven 

core complex subunits and a part of MAT1, first at 4.4 Å and more recently at 3.7 Å 

resolution [27••,28•]. These structures revealed the intricate network of protein–protein 

interactions required for the assembly of the TFIIH core complex, among them interactions 

of p62 with several other subunits of the core complex, including XPD (Figure 1d), as well 

as the functionally important interaction between the N-terminal domain (NTD) of XPB and 

the so-called clutch domain of p52. Together with p8, the p52 clutch and the XPB NTD may 

form a cradle-like structure that pre-arranges the RecA-like domains of XPB for nucleotide-

binding and hydrolysis, thereby increasing its activity [10,27••]. This idea is supported by 

the observation that mutations in these domains not only lead to TFIIH assembly defects 
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[29], but also affect the ATPase activity of XPB [22], even though none of the mutated 

residues are in the immediate vicinity of the XPB active site [27••].

The detailed models of the XPB and XPD ATPases have enabled the mapping of human 

mutations that result in DNA repair defects (Figure 1c) and cause the human congenital 

diseases Xeroderma pigmentosum (XP) and XP combined with Cockayne syndrome [30], 

which are generally characterized by premature ageing or cancer predisposition [31]. These 

mutations map to the well conserved regions near the XPD active site and DNA-binding 

regions (Figure 1c) [27••,28•] where they impair DNA binding and translocation or 

nucleotide hydrolysis, thereby impairing NER. These observations are in excellent 

agreement with previous ideas derived from the analysis of structures of homologous 

enzymes from bacteria and archaea [32–35]. In contrast, in trichothio-dystrophy, a human 

disease with phenotypes ranging from brittle hair to mental retardation and premature death 

[30,31], mutations result in mild transcriptional defects in addition to impaired DNA repair 

[36] and are generally found in more peripheral regions of the ATPase subunits (Figure 1c), 

or in p8, the smallest subunit of TFIIH. These mutations impair TFIIH assembly and are 

associated with reduced stability and lower cellular levels of the full complex [36–39].

The cryo-EM structure of human apo-TFIIH is in excellent overall agreement with the cryo-

EM structure of yeast TFIIH in the context of the Pol II-PIC [14••], indicating that, in spite 

of minor structural differences and well-defined conformational changes linked to presence 

of TFIIH within the Pol II-PIC (see below), the overall architecture and functional 

mechanisms of TFIIH are likely to be conserved from yeast to humans. The current most 

complete model of a human Pol II-PIC [40•] was computationally derived by re-

interpretation of previously published cryo-EM maps [12•,14••,28•], revealing previously 

uncharacterized details about the TFIIH-Pol II-PIC interface, as well as conformational 

differences of the contact-forming PH-domain of p62 between the human and yeast systems 

[40•]. The overall topology of the TFIIH domains in this reinterpreted structure [40•] agrees 

with the models derived from the most recent higher-resolution cryo-EM maps of TFIIH 

[27••,41••]. However, the accuracy of the sequence register assignment in newly modeled 

regions of PIC-bound human TFIIH in this computational study [40•] may be limited by the 

use of lower resolution cryo-EM maps (previously published in [12•,14••,28•]).

Structure of the TFIIH-XPA-DNA complex

The structure of the TFIIH core complex — without any subunits of the CAK subcomplex 

— bound to a forked DNA substrate and to the NER factor XPA [41••] shows major 

conformational rearrangements between XPD and the remainder of the complex (Figure 

2a,b). These conformational transitions may be important to activate XPD for DNA binding 

and translocation. The double-stranded portion of the DNA substrate is bound by XPB and 

locked in place by XPA (Figure 2a), which binds to multiple sites on the TFIIH core 

complex. Single-stranded DNA extends towards XPD, contacting the DNA-binding motifs 

of the RecA-like domains of XPD and then stretching across the XPD pore [41••], as 

predicted previously based on modeling according to DNA-bound helicase structures [33–

35], and as observed in the DNA-bound bacterial XPD homolog DinG [42]. Interestingly, 

the 5’-end of the DNA strand engaging XPD binds at a site that has been proposed to serve 
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as a nucleotide binding and DNA lesion verification site based on biochemical experiments 

(Figure 3) [23].

Insights into TFIIH regulation

Biochemical studies have shown that the enzymatic activity of XPD is not required in 

transcription initiation [43], and that the presence of the CAK subcomplex — which is 

important in transcription initiation — inhibits XPD [24–26]. Conversely, both XPD and 

XPB are positively regulated by interactions with p44 and p52, the protein subunits that 

recruit the ATPases into the complex [22,29,36,44], hinting at a complex regulatory 

interplay between TFIIH subunits. This hypothesis is further reinforced by the latest 

structures of apo-TFIIH, which revealed that functionally important regions of XPD, 

including its DNA-binding cavity, the active site cleft, and the mobile ARCH domain, are 

contacted by other TFIIH components (Figure 1b,d), suggesting that these contacts play a 

role in XPD regulation [27••,28•]. Specifically, the interactions of MAT1 with XPD and 

XPB may inhibit global conformational changes associated with TFIIH activation in the 

context of DNA repair (Figure 2a,b) [41••], as well as reduce the flexibility of the ARCH 

domain of XPD [27••]. Motions of the XPD ARCH domain have been shown to correlate 

with the ATPase cycle of the bacterial XPD homolog DinG [42], and ARCH domain 

flexibility is required to allow access of substrate DNA to a pore-like structure in XPD [45]. 

Indeed, the structure of DNA-bound TFIIH in the absence of MAT1 [41••] showed that a 

eukaryotic-specific insertion in the XPD ARCH domain is disordered (Figure 3a), while the 

same insertion is ordered and occupies the entrance to the XPD DNA-translocating pore in 

the presence of MAT1 (Figure 3b) [27••,28•]. These observation provide a possible 

explanation for how the presence of the CAK subcomplex may directly inhibit XPD [27••,

41••].

Further regulatory interactions of XPB and p62, which contact DNA-binding sites in XPD 

[27••], were initially proposed based on comparisons with substrate-bound structures of 

related helicases (Figure 1d) [42,46]. Additionally, a short segment of p62 occludes the 

entrance to the ATP-binding cavity of XPD in apo-TFIIH (Figure 1d) [27••]. Given that 

these structural elements are not visualized in the activated, DNA-bound and XPA- bound 

form of TFIIH [41••], they most likely cooperate with MAT1 in inhibiting XPD and are 

released from XPD to de-repress the enzyme during NER. Indeed, recent biochemical 

analysis implicated p62 in XPD regulation and DNA damage sensing [47•], in agreement 

with a role for p62 that goes beyond structural stabilization of TFIIH.

These structural and biochemical findings suggest that free TFIIH has a partially auto-

inhibited conformation that transitions to an activated form through a series of 

conformational changes upon CAK release and binding to DNA and/or XPA. Tight 

regulation of XPD is likely to be important to allow TFIIH to faithfully perform its dual 

function and do so at the right time. Such a regulation would ensure that during DNA repair, 

XPD activity is coordinated with the concerted assembly of the remaining DNA repair 

proteins at the repair bubble for accurate repair.
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Conformational transitions of TFIIH upon Pol II-PIC binding

Comparisons of the structure of free TFIIH [27••,28•] with the structures of the human and 

yeast Pol II-PICs [12•,14••,15] have revealed the conformational rearrangement undergone 

by TFIIH upon incorporation into the Pol II-PIC (Figure 4a). A module consisting of XPB, 

p8, and the C-terminal half of p52 moves towards the DNA within the PIC [27••,28•], 

increasing the distance between the open ends of the horseshoe-shaped TFIIH core complex 

and breaking the interactions between the RecA-like folds of XPD and XPB that exist in the 

apo-complex (Figure 4a). This conformational change must dislodge or rearrange the long 

helix of MAT1 that stretches from the XPD ARCH domain to the XPB DRD-like domain in 

the free TFIIH structure [27••,28•] (only very weak density is observed in the PIC-bound 

TFIIH [12•,14••]). These conformational rearrangements of TFIIH are likely coordinated 

with the formation of additional interactions between TFIIH and other general transcription 

factors, and may be important for the regulation of XPB activity. These ideas are consistent 

with biochemical data [6] and with the observation of direct TFIIE-XPB interactions [14••] 

(Figure 4b).

In addition to this well-defined structural transition in the TFIIH core complex upon Pol II-

PIC entry, the presence of the Mediator complex in the Pol II-PIC may induce repositioning 

of the flexibly tethered CDK7-Cyclin H module of the TFIIH CAK subcomplex. Mediator is 

a large co-activator complex that serves to integrate the signals from transcriptional 

activators or repressors and regulates various aspects of transcription initiation by Pol II 

[48]. In the absence of Mediator, weak density, possibly corresponding to the highly flexible 

CDK7-Cyclin H module of the CAK subcomplex [28•], is observed near XPD in human and 

yeast Pol II-PICs [12•,40•,49]. In the structure of the yeast Pol II-PIC bound to the Mediator 

complex, the CDK7-Cyclin H portion of the CAK becomes repositioned onto the surface of 

the Mediator middle module (Figure 4b), bringing it into proximity of its Pol II CTD 

substrate [14••,50]. The latter location is probably representative of the positioning of the 

CAK during transcription initiation in vivo, when Mediator is present. CDK7-Cyclin H in 

this position may contribute to the strong enhancement of Pol II CTD phosphorylation in the 

presence of Mediator [51,52].

Conclusions

Transcription initiation is a crucial process in the control of gene expression, and its 

deregulation is linked to human disease, including cancers. The recent high-resolution 

structures of human TFIIH [27••,28•,41••], together with those of the human and yeast Pol 

II-PICs [12•,14••,17], human TFIID [53,54], and fission yeast Mediator [55], represent a 

breakthrough in the structural and mechanistic understanding of the Pol II transcription 

initiation machinery. Future studies will be needed to address possible conformational 

changes of PIC-bound TFIIH during nucleotide binding and hydrolysis, and to elucidate 

how TFIIH is affected by Pol II-PIC remodeling during transition of Pol II to transcription 

elongation [8•]. In its DNA repair role, TFIIH acts as the centerpiece organizing the 

assembly of the NER bubble. This is a multi-step process, mechanistic understanding of 

which will greatly benefit from structure determination of the intermediates along the way.
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Figure 1. 
Structure and function of TFIIH. (a) Structure of the human Pol II-PIC with TFIIH, 

assembled from the models of free TFIIH [27••] (PDB ID 6NMI) and the core-PIC [12•] 

(PDB ID 5IY9) according to the cryo-EM maps of TFIIH-bound Pol II-PICs [12•,14••] 

(EMD-8133, EMD-3846). (b) Cryo-EM map of free TFIIH [27••] (EMD-0452), with 

subunits colored and labeled. The approximate position of the flexible CAK subcomplex is 

indicated in the right panel. (c) Mapping of human disease mutations onto XPD (blue: TTD; 

purple: XP; orange: XP-CS; PDB ID 6NMI). Note the prevalence of XP and XP-CS 

mutations near the enzymatic core (indicated by superposed DNA and nucleotide [42]; see 

(d) for details) and the clustering of TTD mutations near interaction sites with other TFIIH 

subunits. (d) Overview (left) and close-up view (right) of the interactions between XPD and 

p62 in human TFIIH [27••] (EMD-0452) with XPD substrates (DNA and ADP) superposed 

based on the structure of DinG [42] (PDB ID 6FWS). p62 partially overlaps with the DNA 

and occludes the access to the ATP-binding pocket.
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Figure 2. 
Conformational changes in TFIIH upon binding to XPA and DNA. (a) Left: Overview of the 

structure of the TFIIH-XPA-DNA complex [41••] (PDB ID 6RO4). Even though partial 

density is present in the cryo-EM map, p62 was not modeled in this structure. Right: The 

structure of apo-TFIIH for comparison [27••] (PDB ID 6NMI; structures superposed on 

XPB). The conformational difference of the p44-XPD module between the structures is 

evident. (b) Visualization of the conformational change of XPD between apo-TFIIH (XPD 

dark green, MAT1 orange) and the TFIIH-XPA-DNA (XPD light green; structures 

superposed on XPB). MAT1 may not be able to reach far enough to contact both XPB and 

XPD in the DNA-bound complex and is known to be no longer present in the DNA-bound 

complex.
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Figure 3. 
Insights into XPD inhibition. (a) In DNA-bound XPD (from the TFIIH-XPA-DNA NER 

complex structure; PDB ID 6RO4) [41••], DNA reaches across the pore between the ARCH 

and FeS domains and approaches residues R196 and Y192, which are implicated in DNA 

lesion verification [23]. Neighboring residues Y158, F161, and F193 are known to be 

important for helicase activity [43]. Residue R112 is affected by a TTD mutation in human 

patients [30]. (b) In apo-TFIIH [27••] (PDB ID 6NMI), the pore between the XPD ARCH 

and FeS domains is occupied by an insertion within the ARCH domain.
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Figure 4. 
Conformational changes of TFIIH upon incorporation into the Pol II-PIC. (a) Left: Structure 

of TFIIH in the free form of the complex [27••] (PDB 6NMI), shown in the same orientation 

as the map in Figure 1b. Right: Model of DNA-bound TFIIH within the Pol II-PIC generated 

by docking the structure of free TFIIH [27••] into the cryo-EM maps of PIC-bound TFIIH 

[12•,14••] (EMD-8133, EMD-3846). (b) Cryo-EM map of the Mediator-bound yeast Pol II-

PIC [14••] (EMD-3850), in which the CDK7-Cyclin H module of TFIIH is located near 

Mediator (orange, indicated).
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