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Abstract

The human brain atlas of the serotonin (5-HT) system does not conform with commonly used 

parcellations of neocortex, since the spatial distribution of homogeneous 5-HT receptors and 

transporter is not aligned with such brain regions. This discrepancy indicates that a neocortical 

parcellation specific to the 5-HT system is needed. We first outline issues with an existing 

parcellation of the 5-HT system, and present an alternative parcellation derived from brain MR- 

and high-resolution PET images of five different 5-HT targets from 210 healthy controls. We then 

explore how well this new 5-HT parcellation can explain mRNA levels of all 5-HT genes. The 

parcellation derived here represents a characterization of the 5-HT system which is more stable 

and explains the underlying 5-HT molecular imaging data better than other atlases, and may hence 

be more sensitive to capture region-specific changes modulated by 5-HT.
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1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) plays a central role in the regulation and function of 

the human brain. The modulatory effects of 5-HT are broad and extensive and are implicated 

in highly diverse aspects of brain physiology and pathology, such as the regulation of sleep 

and major depression. For an in-depth review of the brain functions and disorders related to 

the 5-HT system see [1]. This rich versatility is reflected in the diversity of receptors 

composing the 5-HT system; with 7 families of receptors (5-HT1 to 5HT7) consisting of 14 

subtypes and a transporter (5-HTT), the 5-HT system is one of the most complex receptor 

systems linked to a single neurotransmitter. Whereas the distribution of a subset of the 5-HT 

receptors and the 5-HT transporter in the human brain has been well characterized through 

autoradiography [2], and more recently in vivo [3, 4], the regions describing the spatial 

distribution of receptor density across receptor types have been largely unexplored.

From the early work on its cytoarchitectonic structure [5], the brain is known to be organized 

in coherent, specialized regions. In vivo molecular neuroimaging of the 5-HT system with 

Positron Emission Tomography (PET) is most often assessed on the basis of atlases derived 

from the anatomical structure of the brain [6, 7, 8, 9]. In the absence of further knowledge 

about the spatial structure of the 5-HT system, these anatomical atlases constitute a 

reasonable assumption about the spatial organization of this system. However, there is no 

evidence that the distribution of 5-HT targets (receptors and transporter) accurately follows 

the regions presented in these atlases. On the contrary, the regional variation in 5-HT targets 

found in a high resolution in vivo 5-HT atlas [3] suggests that the 5-HT system may have its 

own underlying spatial organization consisting of regions of homogeneous receptor density. 

Indeed, a structural atlas derived from the cortical gyri and sulci of the human brain, such as 

the Desikan-Killiany (DK) atlas [6], may be inadequate to explain the organization of the 5-

HT system as its regions contain a spatially inhomogeneous concentration of the 5-HT 

targets [3].

A parcellation of the 5-HT system based on PET neuroimaging data from 108 healthy 

individuals has recently been presented in James et al. (2018) [10]. Although this 

parcellation likely captures the main regions involved in the 5-HT system, we are concerned 

that the proposed parcellation shows patterns similar to partial volume effects (PVE) 

observed in surface-based analysis of PET data [11]. Furthermore, the clustering strategy 

proposed in [10] may lead to unstable parcellations due to the chosen clustering approach. 

Finally, the dataset used to derive the clustering presented in [10] also included PET data for 

Monoamine Oxidase A (MAO-A), an enzyme which degrades all amine neurotransmitters 

and is not specific to the 5-HT system.

We propose an alternative approach which uses a watershed-type algorithm to perform the 

clustering which regularizes the parcellations by using spatial information. Furthermore, our 

dataset is acquired on a high resolution PET scanner, additionally consists of the 5-HT1B and 

the 5-HT4 receptors, and avoids the inclusion of data non-specific to the 5-HT system. 

Finally, we investigate the associations between our parcellations and genetic data from the 

Allen Human Brain Atlas (AHBA) [12] for the genes encoding for the 5-HT receptors and 

transporter, for completeness, and also for MAO-A.
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2. Methods

2.1. Dataset

We used data from [3] which includes 232 individual PET and structural MRI scans from 

210 healthy subjects from the Cimbi database, which in a quality-controlled, and structured 

way stores the largest collections of high-resolution 5-HT neuroimaging data available [13]. 

Imaging data for the receptors 5-HT1A ([11C]CUMI-101, n=8), 5-HT1B ([11C]AZ10419369, 

n=36), 5-HT2A ([11C]Cimbi-36, n=29) and 5-HT4, ([11C]SB207145, n=59) and the 

transporter 5-HTT ([11C]DASB, n=100) were included. For more details, e.g. regarding 

subject inclusion criteria, please see [13].

2.2. Preprocessing

The data was processed as in [3]. Briefly, the T1-weighted structural MRI were processed 

with FreeSurfer [14] v5.3 (FS, http://surfer.nmr.mgh.harvard.edu ). The dynamic PET data 

was realigned and coregistered to the structural MRI using boundary-based registration [15] 

with a weighted-sum image, and was then resampled onto the standard fsaverage surfaces 

(left and right hemisphere) and smoothed with a 10mm full-width half maximum (FWHM) 

Gaussian kernel. Kinetic modeling of the time-activity curves (TAC) was performed 

individually at every vertex using the MRTM2 model [16] to obtain nondisplaceable binding 

potential (BPND) values. Finally, the BPND maps were demeaned and scaled to unit variance 

individually for each subject and hemisphere. In our comparison to previous clustering 

work, the data was preprocessed as above, but the surface smoothing was performed with a 

8mm FWHM Gaussian kernel to match the approach used by James et al. [10]. Furthermore, 

volume smoothing of the the dynamic PET data prior to sampling on the surface was 

performed with 0, 2, and 4mm FWHM Gaussian filters to test the effect of increasing PVEs. 

Regional BPND values used to construct correlation matrices were obtained by resampling 

the dynamic PET data to the surface, without smoothing, averaging the TACs within each 

region, and modeling the data region-wise with MRTM2.

2.3. Previous clustering methodology

To evaluate the clustering strategy of James et al. [10], we repeated their analysis with our 

data. For each 5-HT target, the BPND data was first averaged across subjects and then 

standardized by subtracting the spatial mean across vertices and dividing by the standard 

deviation, resulting in a single spatial map per 5-HT target (the four receptors and the 

transporter). The maps are then concatenated across targets and both hemispheres were 

combined by concatenating the data spatially. Clustering was performed using K-means 

initialized with K-means++ and using 50 restarts. We used the K-means implementation 

from the Scikit-learn 0.19.1 library [17].

The silhouette coefficient (SC) curves were quantified using the same approach as James et 

al. [10]. We created 100 subsets of the data. Each subset was created by randomly selecting 

5 subjects for each 5-HT target and by processing them as above by taking the spatial 

average across subjects per target, standardizing the data, and concatenating the resulting 

maps across targets. For each subset, K-means clustering was performed as above for 

clusters number K from 2 to 20 as done in [10]. The SC curves were computed for each 
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subset and each corresponding parcellation. The mean SC curve was finally used to assess 

the optimal number of clusters, K. The stability of the clustering procedure, assessed using 

adjusted mutual information (AMI). We computed the mean AMI across every pair of the 

100 parcellations (where no volume smoothing was applied) created for every K.

2.4. Our clustering approach

In a first part, we created a mean feature map for each of the 5-HT targets using a bootstrap 

procedure with 10,000 resampling. For each target, bootstrap samples were created by 

sampling with replacement the number of available scans per target from the normalized 

BPND maps of individual subjects and averaging them. The mean across all bootstrap 

samples was taken as the bootstrap estimate of the population mean map. The bootstrap 

procedure was informative on the variability of the mean feature maps and allowed us to 

compared the variance between 5-HT targets with different numbers of subjects (e.g. 5-

HT1A with n = 8 and 5-HT2A with n = 36), see supplementary figure 1. The feature maps 

were then concatenated across 5-HT targets. This process was performed independently for 

each hemisphere. We clustered the concatenated feature maps using the image foresting 

transform (IFT) watershed algorithm [18, 19] using the squared Euclidean distance to 

determine the cost between pairs of vertices. Initial cluster centers were obtained by 

clustering the features maps, concatenated spatially across both hemispheres, with K-means 

initialized with K-means++ and using 50 restarts. To avoid potential local optimum, the 

clustering steps (i.e. K-means and IFT watershed) were repeated 5 times, and the solution 

with the highest explained variance was kept. Parcellations with number of clusters K from 2 

to 20 were thus created.

To identify an optimal number of clusters K, we computed the explained variance (EV) and 

SC for each parcellation. However, as it became apparent that both EV and SC were 

monotonically increasing or decreasing with K, respectively, we created a combined score 

from the two metrics to obtain a trade-off between them. This strategy is similar to the 

approach previously introduced by [20, 21] and has the advantage of providing a solution 

which both fits the data well (by maximizing EV) and defines well-separated clusters (by 

maximizing SC). The combined score was defined as

score(K) = NEV(K) ⋅ NSC(K) (1)

where NEV and NSC are normalized functions of EV and SC for every cluster K. As both 

EV and SC may span a different interval of their [0, 1] domain, the metrics were both 

normalized as follow so that they contribute equally to the score

NEV(K) = EV(K)/(1 − min(EV)) (2)

NMS(K) = SC(K)/max(SC) (3)

The optimal number of clusters K according to our score is then obtained by max(score(K)). 

For additional evaluation, we have also estimated the Bayesian information criterion (BIC) 

[22] for all the parcellations.
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The stability of our parcellation was also assessed using AMI. The full clustering process 

described above was repeated 10 times, where for each iteration the input PET data was 

resampled using stratified random sampling with replacement. We then computed the mean 

AMI across every pairing of the 10 resulting parcellations.

Correlation plots were created by extracting regional BPND values for each individual PET 

scan for each regions of the parcellation with K = 10, and computing the associated 

correlation matrix. The rows and columns of the matrices were reorganized to highlight 

correlated groups of regions using hierarchical clustering with average linkage implemented 

in SciPy 1.3.

2.5. Evaluation of the spatial correspondence between the 5-HT system and its 
underlying genetic information

We used mRNA data available from the AHBA to 1) evaluate the spatial association between 

5-HT target density and mRNA levels and 2) investigate how well our parcellations could 

explain the spatial distribution of all 5-HT genes. Previous work by [23] provides the 

correspondence between each of the mRNA samples of the AHBA and the regions of the 

DK atlas. Here we derived a mapping from the AHBA samples to specific vertices on the 

fsaverage surface (hence applicable to any parcellation on this surface) and extracted 

regional average mRNA values for all available 5-HT genes: HTR1A, HTR1B, HT1D, 

HTR1E, HTR1F, HTR2A, HTR2B, HTR2C, HTR3A, HTR3B, HTR3C, HTR3D, HTR3E, 

HTR4, HTR5A, HTR6, HTR7, and SCLC6A4. Additionally, we included the gene MAOA 

due to the role of MAO-A in the degradation of the amine molecules, including 5-HT, and its 

inclusion in the parcellation presented by James and colleagues [10]. In-depth information 

on the AHBA can be found at http://help.brain-map.org/display/humanbrain/Documentation.

The spatial location of all tissue samples collected in the AHBA is provided in MNI152 

volume space. To obtain a correspondence from the MNI152 space to the fsaverage surface 

on which our parcellations reside, we first processed the T1-weighted image of the MNI152 

brain (ICBM 2009c Nonlinear Asymmetric, [24]) with FS. Then, each vertex of the MNI152 

surfaces was mapped to fsaverage by projecting a binary mask of each vertex (where 

everything is zero except that given vertex) onto fsaverage and finding the corresponding 

vertex with the highest value on the surface. Finally, every sample was matched to the 

closest vertex on the MNI152 white matter surface and mapped to the corresponding vertex 

on fsaverage. The match between a given probe and the MNI152 surface was restricted to 

vertices of the surface having the same label according to the DK atlas as assigned by [23]. 

If a sample was located more than 10mm away in space from any vertex of the surface with 

the appropriate label, then the probe was discarded; a total of 98 out of 1697 samples were 

thus ignored. For any given parcellation on fsaverage, the sample-to-cluster assignment is 

then performed by identifying the label of the corresponding vertex. In the AHBA, each 

sample contains at lest two probes for each gene. To obtain a single summary value of the 

mRNA level for a given gene per sample, expression values from multiple probes were 

average for each gene and each sample. These summary values were then normalized 

individually for each subject using a scaled robust sigmoid normalization proposed by [25, 

26].
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The regional mRNA levels for the parcellation with K = 10 were obtained using a bootstrap 

procedure with 1,000 resampling, where each bootstrap sample was created by randomly 

sampling all summary values with replacement, and computing the mean in each region. The 

mean regional mRNA levels were used to create spatial maps and the bootstrap samples 

were also used to compute the mean EV of the mRNA values for the parcellation. This 

procedure was applied independently to all 5-HT genes.

3. Results

3.1. Previous clustering methodology

To analyse the stability of the parcellation introduced by James and colleagues [10], we 

repeated the same clustering procedure on 100 datasets created using stratified randomly 

sampling with replacement of the input subjects. Figure 1A presents two of these 

parcellations, with K = 10. Numerous mismatches between the two parcellations can be 

observed, principally along the contour of the clusters. We have used AMI as a proxy for the 

stability of the parcellations. Figure 1B presents the mean pairwise AMI for all the 100 

parcellations obtained for K from 2 to 20. This figure indicates that the stability is largely 

constant at a value of approximately 0.6 across all parcellations created with their method.

We investigated the impact of PVE by artificially increasing these effects using volume 

smoothing of the dynamic PET data. Population average BPND maps for 5-HT2A with no 

smoothing and 2 and 4 mm FWHM volume smoothing are outlined in Figure 1C. These 

maps highlight patterns which are accentuated when increasing PVE. The bootstrapped SC 

curves for the clustering obtained by applying K-means to the PET data with different levels 

of volume smoothing are shown in Figure 1D. With no smoothing, the curve is 

monotonically decreasing for K ≤ 3, whereas for data smoothed in the volume with 2 and 

4mm FWHM the curves followed the same pattern, but there are peaks at K equals 5 and 10, 

increasing with larger smoothing kernels.

3.2. Our clustering approach

Figure 2 presents the EV, SC and scores associated with the parcellations obtained with K 

clusters. EV and SC were monotonically increasing or decreasing, respectively. Figure 2A 

indicates that, starting with K = 6, our parcellations perform better than both the DK atlas 

and the parcellation of James and colleague in explaining the mean features maps. However, 

it the EV of the parcellations created by using the approach of James et al. 2018 on our data 

was slightly, but consistently higher that the values obtained with our method. Overall, A 

maximum score for our method is observed at K = 10, making this value an optimal choice 

for the number of clusters. This value is also supported by the BIC curve presented in 

Supplementary Figure 2. Figure 3 presents the parcellation obtained for K = 10 and the 

associated regional 5-HT profile obtained from the mean normalized BPND maps used as 

input for the clustering. All subsequent post hoc analysis were performed with this 

parcellation.

Regarding the stability of our clustering, the mean pairwise AMI is 0.8. In Figure 4 we 

present the BPND correlation matrices for the parcellation with K = 10. These correlations 
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matrices highlight the groups of regions for which BPND values are similarly correlated 

across individuals.

3.3 Application to mRNA data

The bootstrapped EV for all 5-HT genes obtained with the parcelation with K = 10 are 

presented in Figure 5. The EV for all genes was less than 0.3, with the exception of the 

genes HTR1A, HTR1F, and HTR2C. Bootstrapped regional mRNA values obtained using 

our parcellation for the genes HTR1F and HTR2C and mapped to their corresponding 

clusters are presented in Figure 6.

4. Discussion

Techniques such as autoradiography do not allow for a full description of the spatial 

correspondence between targets of the 5-HT system, but serve well as a calibration between 

the PET-signal and the target density. The availability of PET radioligands for some of the 5-

HT targets enables the spatial characterization of the density of these targets in high spatial 

details. By using a clustering approach to identify regions with homogeneous densities for 

each of the available targets, we have, as well as a previous study [10], attempted to identify 

the overall spatial organization characterizing the 5-HT system.

Overall, our parcellations can explain the underlying molecular imaging data better than 

previous parcellations. This is not entirely surprising as those parcellations were derived 

from different underlying data. Figure 2A indicates that with K = 10, our parcellation can 

explain between 10 to 20% more variation in the data compared to the DK atlas and the 

parcellation from James and colleagues, suggesting that it reflects the underlying spatial 

organization of the 5-HT system more accurately. However, it also indicates that the 

parcellation obtained with K-mean can explain approximately 4% more variation in the data. 

Nonetheless, our parcellation exhibits a higher stability, as captured with a higher AMI (0.8 

vs. 0.6), compared to the parcellation obtained with K-means, and represents a better trade-

off between model fit and stability.

The correlation matrices presented in Figure 4 reveal that the density of the receptors 5-

HT1A, 5-HT1B, and 5-HT2A is highly correlated across most brain regions, although less for 

5-HT4 and 5-HTT, suggesting an almost brain wide involvement of 5-HT for all 5-HT 

targets studied here. Cluster 7, corresponding to parahippocampal gyrus, appears to have a 

weaker association to all other brain regions for all 5-HT targets and is likely capturing non-

biological signal such as PVE.

The 5-HT profiles outlined in Figure 3 provide information regarding the specific 

involvement of the 5-HT targets across cortex. These association can potentially be useful 

for guiding a priori hypotheses of pharmacological interventions. It is interesting to note that 

all 5-HT targets appears to have approximately average levels within the clusters 1, 8, 9, and 

10 (i.e. the mean normalized BPND being close to 0 for all targets) suggesting that 5-HT 

may possibly have a more general role in these regions, rather than primarily targeting a 

specific subset of receptors. This is again supported by the widespread correlation between 

most regions exhibited in Figure 4.
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4.1. Previous clustering methodology

In the first part, we evaluated the clustering approach proposed by James et al. [10] on our 

data. PVE is a known and important challenge intrinsic to the processing of PET data. Initial 

work on the surface-based processing of PET data has outlined stripe-like patterns following 

the cortical sulci due to PVE [11], and these patterns were present in the clustering obtained 

by James and colleagues. Here we show that when we artificially increase PVE by spatial 

smoothing, these patterns are accentuated, further supporting that PVE induces artifacts in a 

parcellation (Figure 1C). Even with our high-resolution PET data, PVE may still be an issue, 

however, we used a larger surface smoothing kernel (10mm instead of 8mm) to mitigate 

these effects. Although our high-resolution PET data still contains smaller PVE effects, we 

opted not to use PVC to avoid introducing a systematic bias due to violation of the PVC 

assumptions, e.g. constant point spread function throughout the field of view of the scanner 

and homogeneous tracer distribution within all regions of interest [27, 28]. This is consistent 

with the 5-HT atlas previously published based on the same data [3].

One of the main challenges in clustering and subsequent selection of the optimal number of 

clusters is that of stability. James and colleagues have used the K-means algorithm directly 

to cluster their data. As exemplified in Figure 1A and B if the input consists of slightly 

different data this will results in different clustering, hence that specific solution cannot be 

considered stable. This is also reflected by an AMI that is 25% lower compared to our data.

It is important to note that choosing the optimal number of clusters remains a heuristical 

choice, whatever the metric being used, and that multiple factors may have to be considered 

when selecting a parcellation to be used with an external dataset, e.g. image resolution. On 

this particular issue, James and colleagues have identified an optimal number of clusters K = 

5. Our results with volume-smoothed data indicate that PVE creates a bias which increases 

the SC values, and especially for clustering with K = 5 and 10 (Figure 1A and B), suggesting 

that K = 5 may be an optimum only in the presence of PVE.

4.2. Application to mRNA data

We have investigated how well our parcellation could explain the mRNA data of all 5-HT 

genes. It is important to keep in mind that the spatial resolution of the mRNA data is an 

order of magnitude lower than that of PET data as only a few hundred samples are collected 

throughout the whole of neocortex per subject. Also, samples were collected from only 6 

subjects, and from both hemispheres for only two of those. Although the spatial distribution 

of all 5-HT targets to some extent has been previously described [1], others yet remain to be 

studied in vivo due to the lack of specific radioligands which means that their precise spatial 

distribution within the human brain remains unknown. The 5-HT1AR/HTR1A has 

consistently been shown to have a strong spatial correlation between the density of the 

receptor and the underlying mRNA levels [4, 3]. Our parcellation achieved EV comparable 

or higher to that of HTR1A only for the HTR1F and HTR2C genes. Interestingly, previous 

results also suggest a good spatial correspondence between receptor density and mRNA 

levels in the neocortex of rodents and monkeys for 5-HT1FR/HTR1F and 5-HT2CR/HTR2C 

[29, 30, 31]. As such, the regional mRNA levels presented in Figure 6 for the genes HTR1F 

and HTR2C form a putative representation of the spatial density for the corresponding 
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receptors. Finally, we note that our parcellation could not explain the spatial distribution of 

MAO-A levels within neocortex, which further questions the validity of using MAO-A to 

describe the 5-HT system.

4.3. Limitations

Although we evaluated the association between our parcellations and genetic information, 

we were not able to establish a clear biological validation of our results. Our new 5-HT 

parcellation introduces a set of regions which can explain the 5-HT molecular imaging data 

better compared to the DK atlas and the parcellation from James and colleagues. 

Furthermore, it contains substantially less regions than the DK atlas, which results in a less 

stringent correction for multiple comparisons when using this parcellation in a subsequent 

statistical analysis. This suggest that our new parcellation may be better suited to detect 

biological changes related to 5-HT modulation. However, we were not able to obtain a 

dataset where this could be examplified.

The small sample size (n = 8) for the 5-HT1A receptor may potentially bias the clustering if 

some of the subjects deviate largely from the population mean. However, the variation of the 

mean normalized BPND estimates for this receptor (see Supplementary Figure 1) is 

comparable to that of other receptors (e.g. 5-HT2A), hence, we have no evidence for this in 

our data.

5. Conclusion

We provide a new parcellation describing the spatial organization of the 5-HT system within 

neocortex. This parcellation provides a more accurate description of 5-HT molecular 

imaging data compared to previous atlases. We have assessed how well this parcellation can 

capture the spatial organization of the genetic information for all 5-HT genes. This work 

furthers our understanding of the structure of the 5-HT system and the new parcellation 

forms a tool which may potentially be more sensitive to regional changes modulated by 5-

HT compare to other atlases. The parcellation is available at https://xtra.nru.dk/FS5ht-atlas/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(A) Parcellations obtained with K-means on two datasets created using stratified random 

sampling with replacement (no volume smoothing), (B) adjusted mutual information (AMI) 

across all pairs of 100 parcellations obtained for every K, (C) the effect of volume 

smoothing on the BPND, (D) silhouette coefficient (SC) curve for the clustering obtained 

from data volume smoothed at 0 mm, 2 mm and 4 mm FWHM. Data in A and C are 

displayed on a lateral view of the fsaverage surface (left hemisphere, inflated). In B and D, 

solid lines are mean values and shaded areas are the corresponding 95% confidence interval.
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Figure 2: 
(A) Explained variance (EV), (B) Silhouette coefficient (SC), and (C) score combining 

normalized EV and SC for parcellations created with our clustering approach (IFT-

watershed). As comparison, we have also included in (A) the EV for the parcellations 

created when using the approach suggested by James et al. 2018 (K-means) on our data, the 

parcellation reported by James et al. 2018, and the DK atlas.
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Figure 3: 
Parcellation obtained with K = 10 and the associated regional 5-HT profile for each region. 

The parcellation is presented on the inflated fsaverage surface medial (lower) and lateral 

(upper) for both hemisphere (left and right).
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Figure 4: 
BPND correlation matrices for each 5-HT target. Matrices were reorganized using 

hierarchical clustering and the associated dendograms presented above their corresponding 

matrix.
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Figure 5: 
Bootstrapped explained variance (EV) for the parcellation with K = 10 across all 5-HT 

genes. Error bars correspond to the 95% confidence intervals.
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Figure 6: 
Bootstrapped regional mRNA levels for the genes HTR1F and HTR2C obtained from the 

parcellation with K = 10. Values are presented on the inflated fsaverage surface medial 

(lower) and lateral (upper) for both hemisphere (left and right).
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