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Abstract

Intensity inhomogeneity often occurs in real-world images, which presents a considerable 

challenge in image segmentation. The most widely used image segmentation algorithms are 

region-based and typically rely on the homogeneity of the image intensities in the regions of 

interest, which often fail to provide accurate segmentation results due to the intensity 

inhomogeneity. This paper proposes a novel region-based method for image segmentation, which 

is able to deal with intensity inhomogeneities in the segmentation. First, based on the model of 

images with intensity inhomogeneities, we derive a local intensity clustering property of the image 

intensities, and define a local clustering criterion function for the image intensities in a 

neighborhood of each point. This local clustering criterion function is then integrated with respect 

to the neighborhood center to give a global criterion of image segmentation. In a level set 

formulation, this criterion defines an energy in terms of the level set functions that represent a 

partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the 

image. Therefore, by minimizing this energy, our method is able to simultaneously segment the 

image and estimate the bias field, and the estimated bias field can be used for intensity 

inhomogeneity correction (or bias correction). Our method has been validated on synthetic images 

and real images of various modalities, with desirable performance in the presence of intensity 

inhomogeneities. Experiments show that our method is more robust to initialization, faster and 

more accurate than the well-known piecewise smooth model. As an application, our method has 
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been used for segmentation and bias correction of magnetic resonance (MR) images with 

promising results.
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I. Introduction

INTENSITY inhomogeneity often occurs in real-world images due to various factors, such 

as spatial variations in illumination and imperfections of imaging devices, which 

complicates many problems in image processing and computer vision. In particular, image 

segmentation may be considerably difficult for images with intensity inhomogeneities due to 

the overlaps between the ranges of the intensities in the regions to segmented. This makes it 

impossible to identify these regions based on the pixel intensity. Those widely used image 

segmentation algorithms [4], [17], [18], [23] usually rely on intensity homogeneity, and 

therefore are not applicable to images with intensity inhomogeneities. In general, intensity 

inhomogeneity has been a challenging difficulty in image segmentation.

The level set method, originally used as numerical technique for tracking interfaces and 

shapes [14], has been increasingly applied to image segmentation in the past decade [2], [4], 

[5], [8]-[12], [15]. In the level set method, contours or surfaces are represented as the zero 

level set of a higher dimensional function, usually called a level set function. With the level 

set representation, the image segmentation problem can be formulated and solved in a 

principled way based on well-established mathematical theories, including calculus of 

variations and partial differential equations (PDE). An advantage of the level set method is 

that numerical computations involving curves and surfaces can be performed on a fixed 

Cartesian grid without having to parameterize these objects. Moreover, the level set method 

is able to represent contours/surfaces with complex topology and change their topology in a 

natural way.

Existing level set methods for image segmentation can be categorized into two major 

classes: region-based models [4], [10], [17], [18], [20], [22] and edge-based models [3], [7], 

[8], [12], [21]. Region-based models aim to identify each region of interest by using a 

certain region descriptor to guide the motion of the active contour. However, it is very 

difficult to define a region descriptor for images with intensity inhomogeneities. Most of 

region-based models [4], [16]-[18] are based on the assumption of intensity homogeneity. A 

typical example is piecewise constant (PC) models proposed in [4], [16]—[18]. In [20], [22], 

level set methods are proposed based on a general piecewise smooth (PS) formulation 

originally proposed by Mumford and Shah [13]. These methods do not assume homogeneity 

of image intensities, and therefore are able to segment images with intensity 

inhomogeneities. However, these methods are computationally too expensive and are quite 

sensitive to the initialization of the contour [10], which greatly limits their utilities. Edge-

based models use edge information for image segmentation. These models do not assume 

homogeneity of image intensities, and thus can be applied to images with intensity 
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inhomogeneities. However, this type of methods are in general quite sensitive to the initial 

conditions and often suffer from serious boundary leakage problems in images with weak 

object boundaries.

In this paper, we propose a novel region-based method for image segmentation. From a 

generally accepted model of images with intensity inhomogeneities, we derive a local 

intensity clustering property, and therefore define a local clustering criterion function for the 

intensities in a neighborhood of each point. This local clustering criterion is integrated over 

the neighborhood center to define an energy functional, which is converted to a level set 

formulation. Minimization of this energy is achieved by an interleaved process of level set 

evolution and estimation of the bias field. As an important application, our method can be 

used for segmentation and bias correction of magnetic resonance (MR) images. Note that 

this paper is an extended version of our preliminary work presented in our conference paper 

[9].

This paper is organized as follows. We first review two well-known region-based models for 

image segmentation in Section II. In Section III, we propose an energy minimization 

framework for image segmentation and estimation of bias field, which is then converted to a 

level set formulation in Section IV for energy minimization. Experimental results are given 

in Section V, followed by a discussion of the relationship between our model and the 

piecewise smooth Mumford–Shah and piecewise constant Chan-Vese models in Section VI. 

This paper is summarized in Section VII.

II. Background

Let Ω be the image domain, and I :Ω ℜ be a gray level image. In [13], a segmentation of 

the image I is achieved by finding a contour C, which separates the image domain Ω into 

disjoint regions Ω1,⋯,ΩN, and a piecewise smooth function u that approximates the image I 
and is smooth inside each region Ωi. This can be formulated as a problem of minimizing the 

following Mumford-Shah functional

ℱMS(u, C) = ∫
Ω

(I − u)2dx + μ∫
Ω\C

∇u 2dx + ν |C| (1)

where |C| is the length of the contour C. In the right hand side of (1), the first term is the data 

term, which forces u to be close to the image I, and the second term is the smoothing term, 

which forces u to be smooth within each of the regions separated by the contour C. The third 

term is introduced to regularize the contour C.

Let Ω1,⋯,ΩN be the regions in Ω separated by the contour C, i.e. Ω\C = ∪i = 1
N Ωi. Then, the 

contour C can be expressed as the union of the boundaries of the regions, denoted by 

C1,⋯,CN, i.e. C = ∪i = 1
N Ci. Therefore, the above energy ℱMS(u, C) can be equivalently 

written as
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ℱMS u1, ⋯, uN, Ω1, ⋯, ΩN

= ∑
i = 1

N ∫
Ωi

I − ui
2dx + μ∫

Ωi

∇ui
2dx + ν Ci

where ui is a smooth function defined on the region Ωi. The methods aiming to minimize this 

energy are called piecewise smooth (PS) models. In [20], [22], level set methods were 

proposed as PS models for image segmentation.

The variables of the energy ℱMS include N different functions u1,⋯,uN. The smoothness of 

each function ui in Ωi has to be ensured by imposing a smoothing term μ∫ Ωi
∇ui

2dx in the 

functional ℱMS. To minimize this energy, N PDEs for solving the functions u1,⋯,uN 

associated with the corresponding smoothing terms are introduced and have to be solved at 

each time step in the evolution of the contour C or the regions Ω1,⋯,ΩN. This procedure is 

computationally expensive. Moreover, the PS model is sensitive to the initialization of the 

contour C or the regions Ω1,⋯,ΩN. These difficulties can be seen from some experimental 

results in Section V-A.

In a variational level set formulation [4], Chan and Vese simplified the Mumford-Shah 

functional as the following energy:

ℱCV ϕ, c1, c2 = ∫
Ω

I(x) − c1
2H(ϕ(x))dx

+ ∫
Ω

I(x) − c2
2(1 − H(ϕ(x)))dx

+ ν∫
Ω

∇H(ϕ(x)) dx

(2)

where H is the Heaviside function, and ϕ is a level set function, whose zero level contour C 
= {x : ϕ(x) = 0} partitions the image domain Ω into two disjoint regions Ω1 = {x : ϕ(x) > 0} 

and Ω2 = {x : ϕ(x) < 0}. The first two terms in (2) are the data fitting terms, while the third 

term, with a weight v > 0, regularizes the zero level contour. Image segmentation is therefore 

achieved by find the level set function ϕ and the constants c1 and c2 that minimize the energy 

ℱCV. This model is a piecewise constant (PC) model, as it assumes that the image I can be 

approximated by constants c1 and c2 in the regions Ω1 and Ω2, respectively.
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III. Variational Framework for Joint Segmentation and Bias Field 

Estimation

A. Image Model and Problem Formulation

In order to deal with intensity inhomogeneities in image segmentation, we formulate our 

method based on an image model that describes the composition of real-world images, in 

which intensity inhomogeneity is attributed to a component of an image. In this paper, we 

consider the following multiplicative model of intensity inhomogeneity. From the physics of 

imaging in a variety of modalities (e.g. camera and MRI), an observed image I can be 

modeled as

I = bJ + n (3)

where J is the true image, b is the component that accounts for the intensity inhomogeneity, 

and n is additive noise. The component b is referred to as a bias field (or shading image). 
The true image J measures an intrinsic physical property of the objects being imaged, which 

is therefore assumed to be piecewise (approximately) constant. The bias field b is assumed 

to be slowly varying. The additive noise n can be assumed to be zero-mean Gaussian noise.

In this paper, we consider the image I as a function I :Ω ℜ defined on a continuous 

domain Ω. The assumptions about the true image J and the bias field b can be stated more 

specifically as follows:

(A1) The bias field b is slowly varying, which implies that b can be well 

approximated by a constant in a neighborhood of each point in the image domain.

(A2) The true image J approximately takes N distinct constant values c1,⋯,cN in 

disjoint regions Ω1,⋯,ΩN, respectively, where Ωi i = 1
N  forms a partition of the image 

domain, i.e. Ω = ∪i = 1
N Ωi and Ωi ∩ Ωj = ∅ for i ≠ j

based on the model in (3) and the assumptions A1 and A2, we propose a method to estimate 

the regions Ωi i = 1
N , the constants ci i = 1

N , and the bias field b. The obtained estimates of 

them are denoted by {Ωi}i = 1
N , the constants c i i = 1

N , and the bias field b , respectively. The 

obtained bias field b  should be slowly varying and the regions Ω1, ⋯, ΩN should satisfy 

certain regularity property to avoid spurious segmentation results caused by image noise. We 

will define a criterion for seeking such estimates based on the above image model and 

assumptions A1 and A2. This criterion will be defined in terms of the regions Ωi, constants 

ci, and function b, as an energy in a variational framework, which is minimized for finding 

the optimal regions {Ωi}i = 1
N , constants c i i = 1

N , and bias field b . As a result, image 

segmentation and bias field estimation are simultaneously accomplished.

B. Local Intensity Clustering Property

Region-based image segmentation methods typically relies on a specific region descriptor 

(e.g. intensity mean or a Gaussian distribution) of the intensities in each region to be 
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segmented. However, it is difficult to give such a region descriptor for images with intensity 

inhomogeneities. Moreover, intensity inhomogeneities often lead to overlap between the 

distributions of the intensities in the regions Ω1,⋯,ΩN. Therefore, it is impossible to segment 

these regions directly based on the pixel intensities. Nevertheless, the property of local 

intensities is simple, which can be effectively exploited in the formulation of our method for 

image segmentation with simultaneous estimation of the bias field.

based on the image model in (3) and the assumptions A1 and A2, we are able to derive a 

useful property of local intensities, which is referred to as a local intensity clustering 

property as described and justified below. To be specific, we consider a circular 

neighborhood with a radius ⍴ centered at each point y ∈ Ω, defined by 𝒪y ≜ x: |x − y | ≤ ρ . 

The partition Ωi i = 1
N  of the entire domain Ω induces a partition of the neighborhood 𝒪y, 

i.e., 𝒪y ∩ Ωi i = 1
N

 forms a partition of 𝒪y. For a slowly varying bias field b, the values b(x) 

for all x in the circular neighborhood 𝒪y are close to b(y), i.e.

b(x) ≈ b(y) for x ∈ 𝒪y . (4)

Thus, the intensities b(x)J(x) in each subregion 𝒪y ∩ Ωi are close to the constant b(y)ci, i.e.

b(x)J(x) ≈ b(y)ci for x ∈ 𝒪y ∩ Ωi . (5)

Then, in view of the image model in (3), we have

I(x) ≈ b(y)ci + n(x) for x ∈ 𝒪y ∩ Ωi

where n(x) is additive zero-mean Gaussian noise. Therefore, the intensities in the set

Iy
i = I(x):x ∈ 𝒪y ∩ Ωi

form a cluster with cluster center mi ≈ b(y)ci, which can be considered as samples drawn 

from a Gaussian distribution with mean mi. Obviously, the N clusters Iy
1, ⋯, Iy

N, are well-

separated, with distinct cluster centers mi ≈ b(y)ci, i = 1,⋯,N (because the constants c1,⋯,cN 

are distinct and the variance of the Gaussian noise n is assumed to be relatively small). This 

local intensity clustering property is used to formulate the proposed method for image 

segmentation and bias field estimation as follows.

C. Energy Formulation

The above described local intensity clustering property indicates that the intensities in the 

neighborhood 𝒪y can be classified into N clusters, with centers mi ≈ b(y)ci, i = 1,⋯,N. This 

allows us to apply the standard K-means clustering to classify these local intensities. 

Specifically, for the intensities I(x) in the neighborhood 𝒪y, the K-means algorithm is an 
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iterative process to minimize the clustering criterion [19], which can be written in a 

continuous form as

Fy = ∑
i = 1

N ∫
𝒪y

I(x) − mi
2ui(x)dx (6)

where mi is the cluster center of the i-th cluster, ui is the membership function of the region 

Ωi to be determined, i.e. ui(x) = 1 for x ∈ Ωi and ui(x) = 0 for x ∉ Ωi. Since ui is the 

membership function of the region Ωi, we can rewrite Fy as

Fy = ∑
i = 1

N ∫
Ωi ∩ 𝒪y

I(x) − mi
2dx . (7)

In view of the clustering criterion in (7) and the approximation of the cluster center by mi ≈ 
(y)ci, we define a clustering criterion for classifying the intensities in 𝒪y as

ℰy = ∑
i = 1

N ∫
Ωi ∩ 𝒪y

K(y − x) | I(x) − b(y)ci |
2dx (8)

where K(y − x) is introduced as a nonnegative window function, also called kernel function, 

such that K(y − x) = 0 for x ∉ 𝒪y. With the window function, the clustering criterion 

function ℰy can be rewritten as

ℰy = ∑
i = 1

N ∫
Ωi

K(y − x) | I(x) − b(y)ci|
2dx . (9)

This local clustering criterion function is a basic element in the formulation of our method.

The local clustering criterion function ℰy evaluates the classification of the intensities in the 

neighborhood 𝒪y given by the partition 𝒪y ∩ Ωi i = 1
N

 of 𝒪y. The smaller the value of ℰy, the 

better the classification. Naturally, we define the optimal partition Ωi i = 1
N  of the entire 

domain Ω as the one such that the local clustering criterion function ℰy is minimized for all 

y in Ω. Therefore, we need to jointly minimize ℰy for all y in Ω. This can be achieved by 

minimizing the integral of ℰy with respect to y over the image domain Ω. Therefore, we 

define an energy ℰ ≜ ∫ ℰydy, i.e.,
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ℰ ≜ ∫ ∑
i = 1

N ∫
Ωi

K(y − x) I(x) − b(y)ci
2dx dy . (10)

In this paper, we omit the domain Ω in the subscript of the integral symbol (as in the first 

integral above) if the integration is over the entire domain Ω. Image segmentation and bias 

field estimation can be performed by minimizing this energy with respect to the regions 

Ω1,⋯,ΩN, constants c1,⋯,cN, and bias field b.

The choice of the kernel function K is flexible. For example, it can be a truncated uniform 

function, defined as K(u) = a for |u| ≤ ρ and K(u) = 0 for |u| > ρ, with a being a positive 

constant such that ∫ K(u) = 1. In this paper, the kernel function K is chosen as a truncated 

Gaussian function defined by

K(u) =
1
ae

− u 2 /2σ2
, for u ≤ ρ

0, otherwise
(11)

where a is a normalization constant such that ∫ K(u) = 1, σ is the standard deviation (or the 

scale parameter) of the Gaussian function, and ρ is the radius of the neighborhood 𝒪y.

Note that the radius ρ of the neighborhood 𝒪y should be selected appropriately according to 

the degree of the intensity inhomogeneity. For more localized intensity inhomogeneity, the 

bias field b varies faster, and therefore the approximation in (4) is valid only in a smaller 

neighborhood. In this case, a smaller ρ should be used as the radius of the neighborhood 𝒪y, 

and for the truncated Gaussian function in (11), the scale parameter σ should also be smaller.

IV. Level Set Formulation and Energy Minimization

Our proposed energy ℰ in (10) is expressed in terms of the regions Ω1,⋯,ΩN. It is difficult to 

derive a solution to the energy minimization problem from this expression of ℰ. In this 

section, the energy ℰ is converted to a level set formulation by representing the disjoint 

regions Ω1,⋯,ΩN with a number of level set functions, with a regularization term on these 

level set functions. in the level set formulation, the energy minimization can be solved by 

using well-established variational methods [6].

In level set methods, a level set function is a function that take positive and negative signs, 

which can be used to represent a partition of the domain Ω into two disjoint regions Ω1 and 

Ω2. Let ϕ:Ω ℜ be a level set function, then its signs define two disjoint regions

Ω1 = x:ϕ(x) > 0 , and Ω2 = x:ϕ(x) < 0 (12)

which form a partition of the domain Ω. For the case of N > 2, two or more level set 

functions can be used to represent N regions Ω1,⋯,ΩN. The level set formulation of the 
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energy ℰ for the cases of N = 2 and N > 2, called two-phase and multiphase formulations, 

respectively, will be given in the next two subsections.

A. Two-Phase Level Set Formulation

We first consider the two-phase case: the image domain Ω is segmented into two disjoint 

regions Ω1 and Ω2. In this case, a level set function ϕ is used to represent the two regions Ω1 

and Ω2 given by (12). The regions Ω1 and Ω2 can be represented with their membership 

functions defined by M1(ϕ) = H(ϕ) and M2(ϕ) = 1 − H(ϕ), respectively, where H is the 

Heaviside function. Thus, for the case of N = 2, the energy in (10) can be expressed as the 

following level set formulation:

ℰ = ∫ ∑
i = 1

N ∫ K(y − x) I(x) − b(y)ci
2Mi(ϕ(x))dx dy . (13)

By exchanging the order of integrations, we have

ℰ = ∫ ∑
i = 1

N ∫ K(y − x) I(x) − b(y)ci
2dy Mi(ϕ(x))dx . (14)

For convenience, we represent the constants c1,⋯,cN with a vector c = (c1,⋯,cN). Thus, the 

level set function ϕ, the vector c, and the bias field b are the variables of the energy ℰ, which 

can therefore be written as ℰ(ϕ, c, b). From (14), we can rewrite the energy ℰ(ϕ, c, b) in the 

following form:

ℰ(ϕ, c, b) = ∫ ∑
i = 1

N
ei(x)Mi(ϕ(x))dx (15)

where ei is the function defined by

ei(x) = ∫ K(y − x) I(x) − b(y)ci
2dy . (16)

The functions ei can be computed using the following equivalent expression:

ei(x) = I21K − 2ciI(b ∗ K) + ci
2 b2 ∗ K (17)

where * is the convolution operation, and 1k is the function defined by 1k(x) = ∫ K(y − x)dy, 

which is equal to constant 1 everywhere except near the boundary of the image domain Ω.

The above defined energy ℰ(ϕ, c, b) is used as the data term in the energy of the proposed 

variational level set formulation, which is defined by

ℱ(ϕ, c, b) = ℰ(ϕ, c, b) + νℒ(ϕ) + μℛp(ϕ) (18)
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with ℒ(ϕ) and ℛp(ϕ) being the regularization terms as defined below. The energy term ℒ(ϕ)

is defined by

ℒ(ϕ) = ∫ ∇H(ϕ) dx (19)

which computes the arc length of the zero level contour of ϕ and therefore serves to smooth 

the contour by penalizing its arc length [4], [10]. The energy term ℛp(ϕ) is defined by

ℛp(ϕ) = ∫ p( ∇ϕ )dx (20)

with a potential (energy density) function p: [0, ∞) ℜ such that p(s) ≥ p(1) for all s, i.e. s = 
1 is a minimum point of p. In this paper, we use the potential function p defined by p(s) = 
(l/2)(s−l)2. Obviously, with such a potential p, the energy ℛp(ϕ) is minimized when |∇ϕ| = 1, 

which is the characteristic of a signed distance function, called the signed distance property. 

Therefore, the regularization term ℛp(ϕ) is called a distance regularization term, which was 

introduced by Li et al. [11] in a more general variational level set formulation called distance 

regularized level set evolution (DRLSE) formulation. The readers are referred to [11] for the 

necessity and the mechanism of maintaining the signed distance property of the level set 

function in DRLSE.

By minimizing this energy, we obtain the result of image segmentation given by the level set 

function ϕ and the estimation of the bias field b. The energy minimization is achieved by an 

iterative process: in each iteration, we minimize the energy ℱ(ϕ, c, b) with respect to each of 

its variables ϕ, c, and b, given the other two updated in previous iteration. We give the 

solution to the energy minimization with respect to each variable as follows.

1) Energy Minimization With Respect to ϕ—For fixed c and b, the minimization of 

ℱ(ϕ, c, b) with respect to ϕ can be achieved by using standard gradient descent method, 

namely, solving the gradient flow equation

∂ϕ
∂t = − ∂ℱ

∂ϕ (21)

where ∂ℱ/ ∂ϕ is the Gâteaux derivative [1] of the energy ℱ.

By calculus of variations [1], we can compute the Gâteaux derivative ∂ℱ/ ∂ϕ and express the 

corresponding gradient flow equation as

∂ϕ
∂t = − δ(ϕ) e1 − e2 + νδ(ϕ)div ∇ϕ

∇ϕ
+ μdiv dp( ∇ϕ )∇ϕ

(22)

where ∇ is the gradient operator, div(·) is the divergence operator, and the function dp is 

defined as
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dp(s) ≜ p′(s)
s .

The same finite difference scheme to implement the DRLSE, as described in [11], can be 

used for the level set evolution (22). During the evolution of the level set function according 

to (22), the constants c1 and c2 in c and the bias field b are updated by minimizing the 

energy ℰ(ϕ, c, b) with respect to c and b, respectively, which are described below.

2) Energy Minimization With Respect to c—For fixed ϕ and b, the optimal c that 

minimizes the energy ℰ(ϕ, c, b), denoted by c = c i, ⋯, cN , is given by

c i =
∫ (b ∗ K)Iuidy
∫ b2 ∗ K uidy

, i = 1, ⋯, N (23)

with ui(y) = Mi(ϕ(y)).

3) Energy Minimization With Respect to b—For fixed ϕ and c, the optimal b that 

minimizes the energy ℰ(ϕ, c, b), denoted by b , is given by

b =
IJ(1) ∗ K

J(2) ∗ K
(24)

where J(1) = ∑i = 1
N ciui and J(2) = ∑i = 1

N ci
2ui. Note that the convolutions with a kernel 

function K in (24) confirms the slowly varying property of the derived optimal estimator b
of the bias field.

B. Multiphase Level Set Formulation

For the case of N ≥ 3, we can use two or more level set functions ϕ1,⋯,ϕk to define N 
membership functions Mi of the regions Ωi, i = 1,⋯,N, such that

Mi ϕ1(y), ⋯, ϕk(y) =
1, y ∈ Ωi
0, else.

For example, in the case of N = 3, we use two level set functions ϕ1 and ϕ2 to define M1(ϕ1, 
ϕ2) = H(ϕ1)H(ϕ2), M2(ϕ1, ϕ2) = H(ϕ1)(1 – H(ϕ2)), and M3(ϕ1, ϕ2) = 1 – H(ϕ1) to give a 

three-phase level set formulation of our method. For the four-phase case N = 4, the 

definition of Mi can be defined as M1(ϕ1, ϕ2) = H(ϕ1)H(ϕ2), M2(ϕ1, ϕ2) = H(ϕ1)(1 − H(ϕ2)), 
M3(ϕ1, ϕ2) = (1 − H(ϕ1))H(ϕ2), and M4(ϕ1, ϕ2) = (1 − H(ϕ1))(1 − H(ϕ2)).

For notational simplicity, we denote these level set functions ϕ1,⋯,ϕk by a vector valued 

function Φ = (ϕ1,⋯,ϕk). Thus, the membership functions Mi(ϕ1(y),⋯,ϕk(ϕ)) can be written 

as Mi(Φ). The energy ℰ in (10) can be converted to a multiphase level set formulation
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ℰ(Φ, c, b) = ∫ ∑
i = 1

N
ei(x)Mi(Φ(x))dx

with ei given by (16).

For the function Φ = (ϕ1,⋯,ϕk), we define the regularization terms ℒ(Φ) = ∑ j = 1
k ℒ ϕ j  and 

ℛp(Φ) = ∑ j = 1
k ℛp ϕ j , where ℒ ϕ j  and ℛp ϕ j  are defined by (19) and (20) for each level 

set function ϕj, respectively. The energy functional ℱ in our multiphase level set formulation 

is defined by

ℱ(Φ, b, c) ≜ ℰ(Φ, b, c) + ℛp(Φ) . (25)

The minimization of the energy ℱ(Φ, c, b) in (25) with respect to the variable Φ = (ϕ1,⋯,ϕk) 

can be performed by solving the following gradient flow equations:

∂ϕ1
∂t = − ∑

i = 1

N ∂Mi(ϕ)
∂ϕ1

ei + νδ ϕ1 div
∇ϕ1
∇ϕ1

+ μdiv dp ∇ϕ1 ∇ϕ1

⋮

∂ϕk
∂t = − ∑

i = 1

N ∂Mi(ϕ)
∂ϕk

ei + νδ ϕk div
∇ϕk
∇ϕk

+ μdiv dp ∇ϕk ∇ϕk .

(26)

The minimization of the energy ℰ(Φ, c, b) can be achieved by the same procedure as in the 

two-phase case. And it is easy to show that optimal c and b that minimize the energy 

ℰ(Φ, c, b) are given by (23) and (24), with ui = Mi(Φ) for i = 1,⋯,N.

C. Numerical Implementation

The implementation of our method is straightforward. The level set evolution in (22) and 

(26) can be implemented by using the same finite difference scheme as for the DRLSE 

provided in [11]. While we use an easy full domain implementation to implement the 

proposed level set method in this paper, it is worth pointing out that the narrow band 

implementation of the DRLSE, provided in [11], can be also used to implement the 

proposed method, which would greatly reduce the computational cost and make the 

algorithm significantly faster than the full domain implementation.

In numerical implementation, the Heaviside function H is replaced by a smooth function that 

approximates H, called the smoothed Heaviside function Hϵ, which is defined by
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Hϵ(x) = 1
2 1 + 2

π arctan x
ϵ (27)

with ϵ = 1 as in [4], [10]. Accordingly, the dirac delta function δ, which is the derivative of 

the Heaviside function H, is replaced by the derivative of Hϵ, which is computed by

δϵ(x) = Hϵ′(x) = 1
π

ϵ
ϵ2 + x2 . (28)

At each time step, the constant c = (c1,⋯,cN) and the bias field b are updated according to 

(23) and (24), with ui = Mi(ϕ) defined in Section IV. Notice that the two convolutions b * K 
and b2 * K in (17) for the computation of ei also appear in the computation of c i in (23) for 

all i = 1,⋯,N. Another two convolutions (IJ(1)) * K and J(2) * K are computed in (24) for the 

bias field b . Thus, there are a total of four convolutions to be computed at each time step 

during the evolution of ϕ. The convolution kernel K is constructed as a w × w mask, with w 
being the smallest odd number such that w ≥ 4 * σ + 1, when K is defined as the Gaussian 

kernel in (11). For example, given a scale parameter σ = 4, the mask size is 17 × 17.

The choice of the parameters in our model is easy. Some of them, such as the parameters μ 
and the time step Δt, can be fixed as μ = 1.0 and Δt = 0.1. Our model is not sensitive to the 

choice of the parameters. The parameter v is usually set to 0.001 × 2552 as a default value 

for most of digital images with intensity range in [0, 255], The parameter σ and the size of 

the neighborhood 𝒪y (specified by its radius ⍴) should be relatively smaller for images with 

more localized intensity inhomogeneities as we have mentioned in Section III-C.

V. Experimental Results

We first demonstrate our method in the two-phase case (i.e. N = 2). Unless otherwise 

specified, the parameter σ is set to 4 for the experiments in this section. All the other 

parameters are set to the default values mentioned in section IV-C. Fig. 1 shows the results 

for a camera image of limon and a computed tomography angiography (CTA) image of 

blood vessel. The curve evolution processes are depicted by showing the initial contours (in 

the left column), intermediate contours (in the middle column), and the final contours (in the 

right column) on the images. Intensity inhomogeneities can be clearly seen in these two 

images. Our method is able to provide a desirable segmentation result for such images.

The estimated bias field b  by our method can be used for intensity inhomogeneity correction 

(or bias correction). Given the estimated bias field b , the bias corrected image is computed 

as the quotient I /b . To demonstrate the effectiveness of our method in simultaneous 

segmentation and bias field estimation, we applied it to three medical images with intensity 

inhomogeneities: an MR image of breast, an X-ray image of bones, and an ultrasound image 

of prostate. These images exhibit obvious intensity inhomogeneities. The ultrasound image 

is also corrupted with serious speckle noise. We applied a convolution with a Gaussian 

kernel to smooth the ultrasound image as a preprocessing step. The scale parameter of the 

Gaussian kernel is chosen as 2.0 for smoothing this ultrasound image. The initial contours 

Li et al. Page 13

IEEE Trans Image Process. Author manuscript; available in PMC 2020 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are plotted on the original images in Column 1 of Fig. 2. The corresponding results of 

segmentation, bias field estimation, and bias correction are shown in Columns 2, 3, and 4, 

respectively. These results demonstrate desirable performance of our method in 

segmentation and bias correction.

A. Performance Evaluation and Method Comparison

As a level set method, our method provides a contour as the segmentation result. Therefore, 

we use the following contour-based metric for precise evaluation of the segmentation result. 

Let C be a contour as a segmentation result, and S be the true object boundary, which is also 

given as a contour. For each point Pi, i = 1,⋯,N, on the contour C, we can compute the 

distance from the point Pi to the ground truth contour S, denoted by dist(Pi, S). Then, we 

define the deviation from the contour C to the ground truth S by

emean(C) = 1
N ∑

n = 1

N
dist Pi, S

which is referred to as the mean error of the contour C. This contour-based metric can be 

used to evaluate a subpixel accuracy of a segmentation result given by a contour.

1) Robustness to Contour Initialization—With the above metrics, we are able to 

quantitatively evaluate the performance of our method with different initializations and 

different settings of parameters. We applied our method to a synthetic image in Fig. 3 with 

20 different initializations of the contour and the constants c = (c1, c2). For examples, we 

show three of the 20 initial contours (white contours) and the corresponding results (black 

contours) in Fig. 3. In these three different initializations, the initial contour encloses the 

objects of interest [in Fig. 3(b)], crosses the objects [in Fig. 3(c)], and totally inside of one 

object [in Fig. 3(d)]. Despite the great difference of these initial contours, the corresponding 

results are almost the same, all accurately capturing the object boundaries. The segmentation 

accuracy is quantitatively verified by evaluating these results in terms of mean errors. The 

mean errors of these results are all between 0.21 and 0.24 pixel, as shown in Fig. 4(a). These 

experiments demonstrate the robustness of our model to contour initialization and a 

desirable accuracy at subpixel level.

2) Stable Performance for Different Scale Parameters—We also tested the 

performance of our method with different scale parameters σ, which is the most important 

parameter in our model. For this image, we applied our method with 12 different values of σ 
from 4 to 15. The corresponding mean errors of these 12 results are plotted in Fig. 4(b). 

While the mean error increases as σ increases, it is below 0.5 pixel for all the 12 different 

values of σ used in this experiment.

B. Comparison With Piecewise Smooth Model

We can also quantitatively compare our method with the PS model on synthetic images. We 

generated 15 different images with the same objects, whose boundaries are known and used 

as the ground truth. These 15 images are generated by smoothing an ideal binary image, 
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adding intensity inhomogeneities of different profiles and different levels of noise. Fig. 5 

show three of these images as examples, with the corresponding results of our model and the 

PS model in the middle and bottom rows, respectively. We use the same initial contour (the 

circles in the top row) for the two models and all the 15 images. It is obvious that our model 

produces more accurate segmentation results than the PS model. To quantitatively evaluate 

the accuracy, we compute the mean errors of both models for all the 15 images, which are 

plotted in Fig. 6(a), where the x-axes represent 15 different images. As shown in Fig. 6(a), 

the errors of our model are significantly lower than those of the PS model.

On the other hand, our model is much more efficient than the PS model. This can be seen 

from the CPU times consumed by the two models for the 15 images [see Fig. 6(b)]. In this 

experiment, our model is remarkably faster than the PS model, with an average speed-up 

factor 36.43 in our implementation. The CPU times in this experiment were recorded in 

running our Matlab programs on a Lenovo ThinkPad notebook with Intel (R) Core (TM)2 

Duo CPU, 2.40 GHz, 2 GB RAM, with Matlab 7.4 on Windows Vista.

C. Application to MR Image Segmentation and Bias Correction

In this subsection, we focus on the application of the proposed method to segmentation and 

bias correction of brain MR images. We first show the results for 3T MR images in the first 

column of Fig. 7. These images exhibit obvious intensity inhomogeneities. The 

segmentation results, computed bias fields, bias corrected images, are shown in the second, 

third, and fourth column respectively. It can be seen that the intensities within each tissue 

become quite homogeneous in the bias corrected images. The improvement of the image 

quality in terms of intensity homogeneity can be also demonstrated by comparing the 

histograms of the original images and the bias corrected images. The histograms of the 

original images (left) and the bias corrected images (right) are plotted in the fifth column. 

There are three well-defined and well-separated peaks in the histograms of the bias corrected 

image, each corresponding to a tissue or the background in the image. In contrast, the 

histograms of the original images do not have such well-separated peaks due to the mixture 

of the intensity distribution caused by the bias.

Our method has also been tested on 7T MR images with promising results. At 7T, significant 

gains in image resolution can be obtained due to the increase in signal-to-noise ratio. 

However, susceptibility-induced gradients scale with the main field, while the imaging 

gradients are currently limited to essentially the same strengths as used at lower field 

strengths (i.e., 3T). Such effects are most pronounced at air/tissue interfaces, as can be seen 

at the base of the frontal lobe in Fig. 8(a). This appears as a highly localized and strong bias, 

which is challenging to traditional methods for bias correction. The result for this image 

shows the ability of our method to correct such bias, as shown in Fig. 8(b) and (c).

VI. Relation With Piecewise Constant and Piecewise Smooth Models

It is worth pointing out that our model in the two-phase level set formulation in (14) is a 

generalization of the well-known Chan-Vese model [4], which is a representative piecewise 

constant model. Our proposed enemy ℰ in (14) reduces to the data fitting term in Chan-Vese 

model when the bias field b is a constant b = 1. To show this, we need the fact that 
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∫ K(y − x)dx = 1 and recall that M1(ϕ) = H(ϕ) and M2 (ϕ) = 1−H(ϕ). Thus, for the case of b = 

1, by changing the order of summation and integration in (14), the energy ℰ can be rewritten 

as

ℰ = ∑
i = 1

2 ∫ ∫ K(y − x) I(x) − ci
2Mi(ϕ(x))dy dx

= ∑
i = 1

2 ∫ I(x) − ci
2Mi(ϕ(x))∫ K(y − x)dy dx

= ∑
i = 1

2 ∫ I(x) − ci
2Mi(ϕ(x))dx

= ∫ I(x) − c1
2H(ϕ(x))dx

+ ∫ I(x) − c2
2(1 − H(ϕ(x)))dx

which is exactly the data fitting term in the Chan-Vese model (2). The Chan-Vese model is a 

piecewise constant model, which aims to find constants c1 and c2 that approximate the 

image I in the regions Ω1 = {ϕ > 0} and Ω2 = {ϕ < 0}, respectively.

Our model is also closely related to the piecewise smooth Mumford-Shah model. The 

Mumford-Shah model performs image segmentation by seeking N smooth functions 

u1,⋯,uN defined on disjoint regions Ω1,⋯,ΩN ⊂ Ω, respectively, through a computationally 

expensive procedure as briefly described in Section II.

Different from the Mumford-Shah model, our model aims to find the multiplicative 

components of the image I: a smooth function b and a piecewise constant function J. The 

obtained b and J yield a piecewise smooth function bJ as an approximation of the image I. 
From the energy minimization processes in our method and the Mumford-Shah model as 

described before, it is clear that the former obtains the piecewise smooth approximation, 

thereby yielding the image segmentation result, in a much more efficient way than the latter.

VII. Conclusion

We have presented a variational level set framework for segmentation and bias correction of 

images with intensity inhomogeneities. Based on a generally accepted model of images with 

intensity inhomogeneities and a derived local intensity clustering property, we define an 

energy of the level set functions that represent a partition of the image domain and a bias 

field that accounts for the intensity inhomogeneity. Segmentation and bias field estimation 

are therefore jointly performed by minimizing the proposed energy functional. The slowly 

varying property of the bias field derived from the proposed energy is naturally ensured by 

the data term in our variational framework, without the need to impose an explicit smoothing 

term on the bias field. Our method is much more robust to initialization than the piecewise 

smooth model. Experimental results have demonstrated superior performance of our method 

in terms of accuracy, efficiency, and robustness. As an application, our method has been 

applied to MR image segmentation and bias correction with promising results.
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Fig. 1. 
Segmentation for an image of limon (upper row) and a CT image of vessel (lower row). The 

left, middle, and right columns show the initial contours (a triangle for the limon image and 

a quadrangle for the vessel image), the intermediate contours, and the final contours, 

respectively.
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Fig. 2. 
Applications of our method to an MR image of breast, an X-ray image of bones, and an 

ultrasound image of prostate. Column 1: Initial contour on the original image; Column 2: 

Final contours; Column 3: Estimated bias field; Column 4: Bias corrected image.

Li et al. Page 22

IEEE Trans Image Process. Author manuscript; available in PMC 2020 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Robustness of our method to contour initializations is demonstrated by its results for an 

synthetic image in (a) with different initial contours. The initial contours (white contours) 

and corresponding segmentation results (black contours) are shown in (b–d).
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Fig. 4. 
Segmentation accuracy of our method for different initializations and different scale 

parameters σ. (a) Mean errors of the results for 20 different initializations; (b) Mean errors 

of the results for 12 different scale parameters σ, with σ = 4, 5, … , 15.

Li et al. Page 24

IEEE Trans Image Process. Author manuscript; available in PMC 2020 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Performances of our method and the PS model in different image conditions (e.g. different 

noise, intensity inhomogeneities, and weak object boundaries). Top row: Initial contours 

plotted on the original image; Middle row: Results of our method; Bottom row: Results of 

the PS model.
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Fig. 6. 
Comparison of our model and the PS model in terms of accuracy and CPU time. (a) Mean 

errors. (b) CPU times.
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Fig. 7. 
Applications of our method to 3T MR images. Column 1: Original image; Column 2: Final 

zero level contours of ϕ1 (red) and ϕ2 (blue), i.e. the segmentation result; Column 3: 

Estimated bias fields; Column 4: Bias corrected images; Column 5: Histograms of the 

original images (left) and bias corrected images (right).
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Fig. 8. 
Application to a 7T MR image. (a) Original image; (b) Bias corrected image; (c) Computed 

bias field.
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