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Terrestrial land-cover type richness is positively
linked to landscape-level functioning
Jacqueline Oehri 1*, Bernhard Schmid 1,2, Gabriela Schaepman-Strub 1 & Pascal A. Niklaus 1*

Biodiversity–ecosystem functioning (BEF) experiments have shown that local species rich-

ness promotes ecosystem functioning and stability. Whether this also applies under real-

world conditions is still debated. Here, we focus on larger scales of space, time and ecological

organization. We develop a quasi-experimental design in which we relate land-cover type

richness as measure of landscape richness to 17-year time series of satellite-sensed func-

tioning in 4974 landscape plots 6.25 or 25 ha in size. We choose plots so that landscape

richness is orthogonal to land cover-type composition and environmental conditions across

climatic gradients. Landscape-scale productivity and temporal stability increase with land-

scape richness, irrespective of landscape plot size. Peak season near-infrared surface albedo,

which is relevant for surface energy budgets, is higher in mixed than in single land-cover type

landscapes. Effect sizes are as large as those reported from BEF-experiments, suggesting that

landscape richness promotes landscape functioning at spatial scales relevant for

management.
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A large body of evidence supports the notion of positive
biodiversity effects on ecosystem functioning1. This evi-
dence mainly originates from studies in which plot-level

species richness was manipulated experimentally and diversity
effects were assessed for selected ecosystem functions, with pro-
ductivity being the most prominent one. With few exceptions, the
broad pattern emerging is one of positive decelerating responses
of productivity, i.e. productivity increases with species richness
but the incremental benefit of adding species is largest at low
diversity1. A second important general trend is that species-rich
ecosystems buffer disturbances more effectively than species-poor
ecosystems, resulting in a higher temporal stability of ecosystem
functioning1,2. However, BEF studies to date have mostly focused
on species-level richness and relatively small experimental field
plots3–5. These plots typically harbor a single plant community
only and treatment randomization statistically decouples species
richness from the structure and environmental conditions in the
surrounding of these plots. This markedly contrasts real-world
landscapes6–8, which resemble a heterogeneous patchwork of
land-cover types, including cultural and natural elements9,10.
Different land-cover types assemble to a complex landscape with
small and large patches that are intertwined to various
degrees11,12.

Phenomenologically, a positive diversity effect indicates that
systems composed of multiple different units (often called
“mixtures”) in general perform better than systems composed of
fewer different or identical units (often called “monocultures”).
Positive BEF effects thus occur when the average interaction
among non-equal units is more positive with respect to the
consequences for system functioning than the average interaction
among equal units. To the best of our knowledge, so far BEF
research has exclusively focused on groups of individuals, mostly
plants, as basic units of diversity. These units have been defined
based on taxonomic, phylogenetic, or functional attributes of
individuals, for example species identity1,13, genotype14,15,
growth form16, or metabolic capabilities such as the one to engage
in symbiotic associations allowing fixation of atmospheric dini-
trogen17,18. However, it is evident that interactions that shape the
functioning of systems can also occur at other organizational
levels. For example, heterozygous and polyploid organisms typi-
cally show enhanced performance, which is at least in part due to
intra-individual genetic diversity effects, i.e. due to a biodiversity
effect at a lower level of organization19. An alternative perspec-
tive, which is the one we introduce here, is that diversity effects
could also occur with respect to the richness of larger organiza-
tional units, namely of entire land-cover type units, in brief “land-
cover units”. Land-cover type richness, in brief “landscape rich-
ness”, encompasses mostly differences among ecosystems but also
includes largely abiotic land-cover types such as urban areas. In
real-world landscapes, land-cover units are interconnected
through the exchange of energy, matter, and organisms9,11,12,20.
Most research in interconnected ecosystems (which sometimes
are referred to as “meta-ecosystems”20) has been concerned with
the dispersal of species across networks of relatively similar land-
cover units21. However, there is evidence for a wide range of
additional, functionally important interactions among inter-
connected land-cover units. For example, resources such as
organic carbon and nutrients are moved between land-cover
units. The transport of these resources occurs in part passively
(e.g. by wind or gravity) but often also is mediated by animals
that forage and defecate in different land-cover units, thereby re-
locating nutrients, or that migrate in the course of their life cycle
and end up as carcasses depositing resources that were originally
assimilated in different places12. These processes are different
from dispersal, and there is growing evidence that such resource
transport rates between different land-cover units often are large

and shape local ecosystem functions22,23. Finally, significant
amounts of water and energy are moved between land-cover units
through atmospheric processes. Differences in surface energy
budgets drive heat-island and oasis effects that depend on size
and spatial configuration of land-cover units24,25. These island
effects can reach hundreds of meters or even kilometers into
adjacent land-cover units26. Surface roughness and resulting wind
shear affect spatial transport of heat at scales beyond the ones of
individual land-cover units27. Overall, it thus is evident that
numerous spatial links exist among land-cover units and that
these support novel emergent interactions in real-world land-
scapes11,28. However, we only begin to understand their func-
tional consequences22,24 and virtually nothing is known about
whether these sum up to relevant diversity effects at the
landscape scale.

Here, we adopt a landscape-level system’s perspective11 to test
whether the richness of large ecological units, namely of land-
cover types, affects the functioning and stability of landscapes. In
other words, we use land-cover type richness (short “landscape
richness”) as a measure of landscape diversity. With this shift
in spatial and organizational scale from local species richness
(α-diversity of species) and ecosystem functioning in plots1 to
landscape richness (α-diversity of land-cover types) and land-
scape functioning we allow for the detection of landscape
richness–landscape functioning relationships that are mediated
through larger scale interactions among land-cover units as dis-
cussed above. Our approach is phenomenological, i.e. we focus on
the statistical relationship between landscape richness and land-
scape functioning rather than on specific processes. This is not
unlike most plot-scale BEF research which has revealed robust
relationships between species richness and ecosystem functioning
whereas the underlying specific mechanisms remained surpris-
ingly enigmatic29,30 except for few cases18. Specifically, we mea-
sure landscape functioning in terms of primary productivity,
vegetation phenology, land-surface albedo, and the temporal
stability of these variables. We derive these variables from
satellite-sensed data available at high spatial resolution (MODIS
EVI and albedo products31,32, years 2000–2016). A notorious
challenge in observational studies is that correlated drivers cannot
be separated statistically. To maximize statistical power and
minimize such confounding in inferred cause–effect relationships,
we use design principles from experimental BEF research33. We
first divide our study area into blocks based on the combination
of six biogeographic regions covered in our study area34 and
six altitude intervals partitioning the total elevation range
(193–3279 m a.s.l.; Fig. 1). The rationale underlying these blocks
is to account for variation across the study area with respect to
the pool of land-cover types present in each block, environmental
conditions and landscape management (see Fig. 1; and refer-
ences34,35). Within each block, we select landscapes that
span land-cover type richness gradients that are orthogonal to
land-cover type composition; in other words, the fractional
contribution of each land-cover type remains constant across the
landscape richness gradient (Fig. 1b). The landscapes within a
block are selected randomly, with the constraint that they need to
be well-spread in space, land-cover type evenness needs to be
high in mixed land-cover type landscapes, and that altitude, slope
angle, and the north-south aspect of the slope are distributed
similarly across all land-cover type compositions. This procedure
is repeated separately for landscape plots of 250 × 250 m and
500 × 500 m area, resulting in two independent, non-overlapping
data sets of 4186 and 788 landscapes, respectively.

Our study demonstrates that landscape-level vegetation func-
tioning and its temporal stability increase with landscape rich-
ness, most likely through species richness-independent
mechanisms that emerge at these large scales.
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Results
Primary productivity and phenology. We used a satellite-sensed
enhanced vegetation index (EVI) as measure of primary pro-
ductivity. Average growing-season productivity (EVI) and integrated
growing-season productivity (EVIGS; see Methods and ref. 35)
increased significantly with log-transformed landscape richness [log
(LR)] in 250 × 250m plots (F1,30= 9.0, P= 0.005) and trend-wise in
500 × 500m plots (F1,19= 3.6, P= 0.074; Fig. 2). The log(LR) effects

were similar for annual peak EVI (EVImax; 250 × 250m: F1,30= 7.6,
P= 0.010; 500 × 500m: F1,16= 3.7, P= 0.071). The net diversity
effect (NE36) was positive for both EVI and EVIGS (P= 0.001–0.003
depending on landscape size; Table 1), i.e. both EVI and EVIGS
“overyielded”37,38 in mixed landscapes relative to the average of the
corresponding single land-cover type landscapes. Within mixtures,
the net diversity effect (NE) increased significantly with log(LR)
in 250 × 250m plots, with a similar but less significant trend in
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Fig. 1 Study design: study area and selected networks of 250 × 250m and 500 × 500m landscapes. a The study area was divided into blocks defined by
biogeographic region (BGR; names in map) and altitude ranges. Pie charts show the fractional cover of the land-cover types in the different BGRs. b Within
each block, the largest possible set of land-cover types was chosen that allowed constructing gradients in landscape richness with all possible land-cover
combinations realized (see (a) for color legend; crosses indicate land-cover types not used in the respective block). Landscape richness was thus
orthogonal to fractional contribution of any land-cover type. Plots: the number of landscape plots; LCC: the number of unique land-cover compositions in
the corresponding BGR and altitude ranges.
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500 × 500m plots (Table 1). Growing-season length (GSL; Methods;
ref. 35) did not depend on log(LR) (Table 1; Fig. 2). The effects of log
(LR) were consistent across blocks [block × log(LR): n.s.].

Land surface albedo. Summer near-infrared albedo (αNIR;
June–August) increased with log(LR). Because the land-cover types
differed substantially in albedo, this effect was statistically significant
only for the net diversity effect NE, which adjusts for this difference
in baseline values (Methods; Table 1). Within mixtures, NE
increased with landscape richness [Table 1; P= 0.049 for LR; P=
0.064 for log(LR)]. This effect was found in all blocks but differed in
magnitude depending on altitude. No effects of log(LR) were found
for albedo in the visible (αvis) or total short-wave (αSW) range.

Temporal stability. We used the inverse coefficient of inter-
annual variation (CV−1; years 2000–2016) as measure of stability.

In 250 × 250 m plots, log(LR) promoted the stability of average
growing-season productivity (CV�1

EVI
; F1,29= 4.4, P= 0.045),

integrated growing-season productivity (CV�1
EVIGS

; F1,28= 4.1, P=
0.053), and maximum growing-season productivity (CV�1

EVImax
;

F1,29= 5.8, P= 0.022). Similar but weaker patterns were found
in 500 × 500 m plots, where effects were significant for CV�1

EVI
(F1,20= 4.7, P= 0.043; Fig. 3). We did not detect effects of log
(LR) on inter-annual stability of growing-season length (CV�1

GSL;
Fig. 3), land-surface albedo in the near-infrared (CV�1

αNIR
; Fig. 3),

visible (CV�1
αvis

) or total short-wave range (CV�1
αSW

).

Scale-dependence. The landscape richness–landscape functioning
relationships we found were consistent between 250 × 250m and
500 × 500 m plot sizes at which we assessed landscapes.

F1,30 = 9.0; P = 0.005
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Fig. 2 Effects of landscape richness on landscape functioning variables. Productivity: growing-season mean enhanced vegetation index (EVI), growing-
season integrated enhanced vegetation index (EVIGS); Phenology: growing-season length (GSL); Albedo: near-infrared range (αNIR, 500 × 500m landscape
plots only); black line and shaded areas: model-predicted mean ± s.e.m.; F: F-ratio with associated degrees of freedom; P: P-value. Symbols indicate
averages for each land-cover composition. Note the log-transformed axis for landscape richness (n= 237 and 77 for 250 × 250m and 500 × 500m land-
cover composition × block combinations, respectively). Source data are provided as a Source Data file.

Table 1 Net diversity effects (NE) on productivity, phenology and albedo.

Category Landscape
function

Landscape size NE > 0 effect
(mean ± s.e.m.)a

NE > 0 effect significance
(one-sample t-test)a

Linear effect of log(LR)
on NE (mean ± s.e.m.)a

Linear effect of log(LR) on NE
significance (F-test)a

Productivity EVI 250 × 250m 0.026 ± 0.008 t27= 3.3; P= 0.001 0.054 ± 0.019 F1,20= 7.7; P= 0.012
500 × 500m 0.035 ± 0.011 t19= 3.2; P= 0.003 0.087 ± 0.045 F1,16= 3.8; P= 0.067

EVIGS (yr) 250 × 250m 0.017 ± 0.005 t27= 3.6; P= 0.001 0.033 ± 0.013 F1,18= 6.8; P= 0.018
500 × 500m 0.022 ± 0.006 t19= 3.7; P= 0.001 0.045 ± 0.025 F1,15= 3.3; P= 0.088

Phenology GSL (d) 250 × 250m 1.807 ± 1.346 t27= 1.3; P= 0.095 3.364 ± 3.561 F1,19= 0.9; P= 0.357
500 × 500m 0.295 ± 1.862 t19= 0.2; P= 0.438 −2.101 ± 8.644 F1,24=0.1; P= 0.810

Albedo αNIR 500 × 500m 0.030 ± 0.007 t19= 4.2; P < 0.001 0.055 ± 0.028 F1,17= 3.9; P= 0.064

aStatistically significant results are highlighted in bold
The first test (NE > 0) indicates whether landscape plots with a mixture of land-cover types performed better than landscape plots with a single land-cover type. The second test [linear effect of log(LR)]
indicates whether NE increased with log-transformed landscape richness [log(LR)]. Productivity: growing-season mean enhanced vegetation index (EVI), growing-season integrated enhanced vegetation
index (EVIGS); Phenology: growing-season length (GSL); Albedo: near-infrared range (αNIR); t: t-value with associated degrees of freedom; F: F-ratio with associated degrees of freedom; P: P-value (n=
153 and 40 land-cover composition × block combinations with landscape richness > 1 in 250 × 250m and 500 × 500m landscapes, respectively)
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Specifically, the estimated coefficients for the landscape richness
term were statistically indistinguishable between the two data sets
for small and large plots [log(LR) × scale; P > 0.2 for all dependent
variables in general linear models combining the two data sets].

Relative importance of landscape richness effects. We quanti-
fied the relative importance of log(LR) for all the dependent
variables analyzed by calculating normalized effect sizes (Zr;
Fisher’s z-transformation based on correlation coefficients
derived from F-ratios39; Fig. 4). Zr values for log(LR) ranged from
0.30 to 0.52 for the productivity measures EVI and EVIGS and
from 0.15 to 0.47 for the corresponding stability measures (CV�1

EVI
and CV�1

EVIGS
), with no or only little differences between 250 × 250

m and 500 × 500 m landscape plots (Fig. 4). These Zr values are
comparable to the ones reported for species richness effects on
ecosystem functioning in grassland BEF experiments (Methods;
Zr= 0.33 and 0.53 for effects on productivity and temporal sta-
bility of productivity, respectively).

Discussion
In our study, we adopted design principles from experimental
BEF research to test whether landscape diversity is related to
landscape functioning of real-world7 landscapes. Expanding
concepts of classical BEF experiments, we focused on larger scales
of space and ecological organization and used the α-diversity of
land-cover types in landscapes as measure of landscape diversity.
This metric essentially captures the diversity of ecosystem types.
Using a 17-year time series encompassing 4974 landscape plots
deliberately selected in a quasi-experimental design40 to represent
landscape richness gradients orthogonal to land-cover type

composition, we demonstrate an increase in landscape func-
tioning with landscape richness for satellite-sensed primary
productivity, inter-annual stability of productivity, and to a lesser
extent near-infrared albedo. These positive landscape
richness–landscape functioning relationships were robust across
broad ranges of environmental conditions defined by altitude and
biogeographic region and across two plot sizes of 6.25 and 25 ha.

Biodiversity effects on the functioning of real-world ecosystems
have so far mostly been analyzed with respect to local (α) species
richness. These studies covered a wide range of ecosystems
including drylands41, grasslands42, forests43 and aquatic sys-
tems42 and support the notion of positive BEF relationships
similar to the ones observed in BEF experiments using artificially-
established plots with areas in the square-meter range. Effects of
spatial turnover of species, i.e. of β-diversity44, have received less
attention. Analyses at different levels of spatial aggregation of
data from spatially contiguous45,46 or disconnected47,48 natural
and experimental plots suggest that the β-diversity of species also
affects ecosystem functioning, in particular landscape-scale multi-
functionality (but see ref. 49). A recent study has integrated local
richness and spatial turnover of species and demonstrated posi-
tive effects of γ-species diversity on landscape-level productivity,
stability and shifts in phenology in response to decadal
warming35.

Landscape richness, the unit of diversity we use here, likely is
linked to measures of β- and γ-diversity of species because eco-
systems representing different land-cover types likely harbor
dissimilar sets of species. However, these diversity metrics remain
conceptually distinct. An interesting aspect of using larger eco-
logical entities as basic units of diversity is that it allows inte-
grating interactions between different ecosystem types and also
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Fig. 3 Effects of landscape richness on the temporal stability of landscape functioning variables. Stability is expressed as inverse coefficient of variation
(CV−1). Productivity: growing-season mean enhanced vegetation index (EVI), growing-season integrated enhanced vegetation index (EVIGS). Phenology:
growing-season length (GSL); Albedo: near-infrared range (αNIR, 500 × 500m landscape plots only); black line and shaded areas: model-predicted mean ±
s.e.m.; F: F-ratio with associated degrees of freedom; P: P-value. Symbols indicate averages for each land-cover composition (n= 237 and 77 for 250 × 250
m and 500 × 500m land-cover composition × block combinations, respectively). Source data are provided as a Source Data file.
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with land-cover units that don’t represent typical ecosystems. In
our study, urban areas, water bodies, and bare land harbored
organisms including plants, but their numbers likely were com-
parably low and we therefore think that the effect of these areas
was to an important degree abiotic. The identification and
process-level investigation of such abiotic effects is beyond the
scope of the present study. However, given that this is, to the best
of our knowledge, a novel class of mechanisms that potentially
underpin landscape-level diversity-functioning relationships, we
think that it is useful to speculate about their nature and how they
conceptually integrate into existing frameworks of mechanisms.
Urban areas often show higher air temperatures, increased cloud
formation and increased precipitation50. Although not an
important source of primary productivity themselves, these
entities interact with their surrounding and can affect plant
productivity there through a range of mechanisms including
advective heat transport26. Along similar lines, the scale shift
from species to larger ecological entities such as ecosystems
allows to implicitly account for anthropogenic effects such as the
emission of volatile nitrogenous compounds from agriculture or
urban areas, effects that have no proximal causal relationship to
species numbers. Interestingly, some of these effects may be
described in analogy to mechanisms that support biodiversity
effects in plant communities. For example, beneficial climatic
effects of neighboring land-cover units may be thought of as
facilitation51. Further, land-cover units differ in qualities such
as albedo or surface roughness, properties that can be considered
as functional traits and which may be useful in predicting
landscape-level functioning. Also, different land-cover types may
respond asynchronously to environmental drivers, thereby

temporally stabilizing landscape level functioning in a way
comparable to what has been found in species-level field
studies and modeling analyses of communities and meta-
communities52,53. Overall, we therefore argue that
diversity–functioning analyses at the local and landscape scale are
driven by different though conceptually comparable mechanisms
and provide complementary insights, and that at larger scale
emergent, species-independent mechanisms may play an impor-
tant role. A multi-scale perspective that allows for such emergent
effects appears particularly important when considering today’s
terrestrial land surface which is profoundly shaped by anthro-
pogenic activities54.

Our analyses aimed at identifying empirical patterns of rela-
tionships between landscape richness and landscape functioning,
but the question about the underlying mechanisms is both
obvious and relevant. Because our focus was phenomenological
and we did not study mechanisms in detail, we cannot evaluate
these directly, but will discuss some possibilities and corre-
sponding analyses. Specifically, we were interested whether (1)
effects were driven by particular land-cover type combinations;
(2) effects might be related to local within-ecosystem α-diversity
of species, through causal links or indirect associations between
species richness and landscape richness; and (3) whether the
spatial configuration of land-cover units can explain variation in
addition to the variation explained by landscape richness. In the
following, we consider these possibilities separately.

Plot-scale BEF experiments have shown that species-richness
effects can emerge from dominant effects of one or few particular
species (or their combination), or from more even contributions
by many species1,36. A prominent example for the first is the
interaction of legumes with non-legume plant species which
accounted for a large fraction of the productivity rise with species
richness in several grassland experiments17,18. We therefore asked
whether the presence of particular combinations of land-cover
types also would explain important parts of the overall landscape
richness–landscape functioning relationship that we observed.
Because we could not break down the satellite-sensed landscape-
level functions to contributions of single land-cover types within
landscapes, we could not infer complementarity or selection
effects using additive partitioning36. Instead, we used mechanistic
diallel analysis55 (Supplementary Methods, Supplementary Dis-
cussion and Supplementary Fig. 1) to assess whether specific pairs
of land-cover types systematically increased or decreased land-
scape functions. One parameter derived from this partitioning
scheme, the so-called “specific combining ability” (SCA), assesses
such interactive effects of pairs of land-cover types. The analysis
of SCAs showed statistically significant positive effects of com-
bining two different land-cover types, corroborating our finding
that mixed landscapes on average performed better than single-
land-cover type landscapes due to land-cover type com-
plementarity. It further showed statistically significant effects of
particular combinations of land-cover types on specific landscape
functions, but these effects were inconsistent across blocks,
landscape sizes, and landscape functions. Overall, interactions
among the different land-cover types thus added up to a net
positive contribution to productivity, but attributing these effects
to specific land-cover combinations and mechanisms was not
possible and will require further research. It is critical to under-
stand that the higher productivity in mixed landscapes we report
here is an average property and unlikely to apply to all land-cover
combinations individually. These “overyielding” effects may
rarely be transgressive38, in particular when functioning levels
differ significantly between interacting land-cover types. For
example, fragmenting a large continuous forest by urbanization
will almost certainly reduce landscape productivity despite
increased landscape richness (but the productivity of this
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intertwined landscape may exceed the productivity of a landscape
in which the same total forest and urban areas are spatially
separated).

In our study, we used landscape richness, i.e. the richness of
land-cover types, to predict landscape functioning. However, the
local species richness of ecosystems within these land-cover types
certainly also varied and could have driven local BEF effects
through mechanisms similar to the ones identified in experi-
mental BEF studies. Understanding the correlation between
landscape richness and local species richness therefore is
important to understand the observed patterns in landscape
functioning, which are the manifestation of compound effects at
both scales. Because no species inventories were available for our
study landscapes, we tentatively explored the general relationship
between landscape richness and species richness using data from
a national biodiversity monitoring initiative56 that reported,
among other species-richness variables, the richness of forest
plant species for 1 × 1 km plots and that of herbaceous plants for
10 × 10 m plots across Switzerland (Supplementary Methods,
Supplementary Discussion and Supplementary Table 1). Land-
scape richness and species richness were only very weakly cor-
related (r2= 0.008–0.018; Pearson correlation coefficients
adjusted for blocks). This suggests that the landscape
richness–landscape functioning effects we observed were unre-
lated to potential effects of species richness and most likely ori-
ginated from larger scale interactions between land-cover units.
Searching for more specific evidence of such species richness-
independent effects (Supplementary Methods, Supplementary
Discussion and Supplementary Fig. 2), we found that average
growing-season productivity of forest-only landscapes decreased
with the amount of land covered by water in their surroundings
(EVI; F1,367= 13, P < 0.001; 250 × 250 m plots). Conversely, the
amount of agricultural land around these forests increased
growing-season length (GSL; F1,367= 10 and F1,119= 22, P=
0.002 and P < 0.001, for 250 × 250 m and 500 × 500m plots,
respectively). These findings are compatible with the idea of
spatial heat subsidies that are positive from agricultural land (due
to low albedo, at least when ground cover is low) and negative
early in the season for water surfaces due to their high heat
capacity, but a conclusive identification would require more
extensive and process-oriented investigations. Nevertheless, we
think that these patterns highlight the importance to further
investigate interactions between land-cover types24,57. These may
represent a new class of mechanisms underpinning diversity
effects at the landscape level and corresponding ecosystem ser-
vices provided by diverse landscapes5.

In virtually all real-world landscapes, compositional diversity is
intrinsically linked to configurational diversity. In other words,
landscapes that differ in number of land-cover types also differ
with respect to size, shape, and arrangement of these ele-
ments58,59. This suggests that some interactions among land-
cover units and types may occur primarily along their interfaces,
while others may depend more on unit size and arrangement.
Unsurprisingly, landscape richness was highly correlated with
measures of configurational diversity in our study (Supplemen-
tary Methods, Supplementary Discussion, Supplementary Table 2,
Supplementary Figs. 3 and 4). Adding these as additional expla-
natory variables to our statistical models indicated that edge
density (the total interface length between land-cover types per
unit area) and the connectedness of land-cover units of the same
land-cover type explained additional variance in landscape
functions that was not explained by landscape richness alone.

Unlike randomized BEF experiments, the statistical analysis of
observational BEF data is plagued by correlations among multiple
potential drivers of functioning. Many of these originate from
effects of environmental variables that vary at large spatial scales

and influence both diversity and functioning at these scales. For
example, in our study area temperature decreases strongly with
altitude and is associated with lower primary productivity and
shorter growing seasons; at the same time species richness
decreases with altitude35. Such effects can be separated only to
some extent using more sophisticated statistical models35,60.
Here, we tried to avoid these problems by using a quasi-
experimental approach that allowed land-cover type richness and
land-cover type composition to be treated as design variables that
were uncorrelated with each other and with major environmental
variables40. Our study thus covers a middle ground between
randomized experiments by retaining some of their favorable
properties, and real-world systems by allowing for their inherent
complexity that likely is important for their functioning11.

It has previously been established that within-ecosystem spe-
cies diversity matters for ecosystem functioning and stability1,2.
Our analysis suggests that a similar relationship between land-
scape diversity and landscape functioning exists. Although its
mechanistic basis awaits future investigation, some of the effects
we report here appear to depend at least in part on emergent
mechanisms independent of species diversity. We contend that
landscape-level diversity–functioning relationships deserve
increased attention, not least because they underlie the delivery of
ecosystem services to humans5.

Methods
Study design. We established two networks of plots that contained landscapes
with a spatial extent of either 250 × 250 m or 500 × 500 m; their boundaries were
congruent with MODIS 250 m and 500 m Vegetation Index pixels31, respectively.
The plot networks covered the entire area of Switzerland (41,248 km2) and
spanned an altitudinal range of 193 to 3279 m above sea level. To account for
regional variation in environmental conditions, we divided the study area into six
biogeographic regions (BGR) that form distinct units with respect to climate,
edaphic conditions, and distribution patterns of fauna and flora34. We then sub-
divided the six BGRs by altitude, using 500 m increments (Fig. 1a). Not all land-
cover types and type combinations occurred in the 36 established BGR × altitude
blocks (Fig. 1b). We therefore used a nested design with independent gradients of
land-cover type richness, hereafter referred to as landscape richness (LR), in each of
these BGR × altitude blocks. Within each block, we determined the largest set of
land-cover types that still allowed spanning a wide gradient in landscape richness
with all possible land-cover combinations (i.e. land-cover compositions) realized.
Hence, landscape richness gradient and average land-cover abundance were
orthogonal (Fig. 1b). Using an optimization procedure, we attempted to select 24
replicates for each land-cover composition in each block. This procedure further
(1) maximized the minimum pairwise distance among all selected landscapes
within a block, ensured (2) that landscapes of identical land-cover composition
were at least 1 km apart, (3) that the mean altitude, slope, and north-south aspect
were as equally distributed as possible in all land-cover compositions, and (4) that
these values and the fractional cover of land-cover types showed as little correlation
as possible with landscape richness. If not enough landscapes could be found that
satisfied these criteria, we lowered the number of replicates per land-cover com-
position in this particular block and landscape richness level. Only plots with land-
cover fractions that deviated by less than 50% (250 × 250 m landscape plots) or
80% (500 × 500 m landscape plots) from perfect evenness were considered for the
optimization. The final data sets encompassed 4186 (250 × 250 m) and 788 land-
scape plots (500 × 500 m), representing 35 and 27 unique land-cover compositions,
respectively, (237 and 77 unique land-cover composition × block combinations;
Fig. 1b). Importantly, these sets of plots showed no significant correlation of
landscape richness with the fractional cover of any land-cover type within or across
blocks (Supplementary Fig. 3), i.e. land-cover type richness and the abundance of
particular land-cover types were orthogonal for any practical purpose. Blocking
also minimized any correlation of landscape richness with environmental factors
that could co-drive productivity or other landscape functions (Fig. 5).

Landscape richness (LR). Landscape richness (LR) was determined as the number
of land-cover types found in a landscape. Land cover information was taken from
100-m spatial resolution point data available from the Swiss Federal Statistical
Office (GEOSTAT, product name: NOAS04). The originally 17 land-cover types
were aggregated into the 8 land-cover types forest (original classes: forest [except
brush]; brush forest; woods), grassland (meadows, farm pastures, alpine meadows,
alpine pastures), arable (vineyard and horticulture; orchard; arable), urban
(industrial and commercial; building; transportation; special urban), urban green
(recreational and cemeteries), water (lakes; rivers), unproductive (unproductive
vegetation), and bare land (bare land; glaciers, perpetual snow). We determined the
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fractional cover of each land-cover type by clipping land-cover pixels at the
boundaries of the study landscapes defined by the MODIS Vegetation Index pixels.

Primary productivity and phenology. We used space-borne MODIS Vegetation
Index data (MOD13Q1 and MOD13A131) with 250 m and 500m spatial resolution
and 16-day temporal resolution to derive land-surface phenology and growing-
season productivity metrics. Specifically, we used the EVI which quantifies pho-
tosynthetically active vegetation from the ratio of reflected red and near-infrared
light; it is similar to the normalized difference vegetation index (NDVI) but more
robust because it uses blue reflectance data to reduce bias from aerosols61. We
derived the vegetation growing season for every study landscape and year
(2000–2016) by smoothing EVI time series for the respective year using a modified
version of the harmonic analysis of time series algorithm (HANTS; refs. 35,62).
More specifically, we fitted a model consisting of three dominant harmonics and an
intercept to the observed EVI time series [EVI(ω) ~ α1cos(ω+ φ1)+ α2cos(2ω+
φ2)+ α3cos(4ω+ φ3)+ β]. As specified by the HANTS algorithm, observed data
with residuals exceeding specific thresholds (0.5, 0.2, 0.1 and 0.05 raw EVI values)
were replaced by model predictions and the procedure repeated. Growing-season
length (GSL) was determined using the NDVI-ratio method63, which defines the
growing season as the time of the year when vegetation activity exceeds the mean of
its annual minimum and maximum value (ref. 35). GSL is a commonly used land
surface phenology metric for large spatial scales64,65. We used two primary pro-
ductivity metrics; the first, EVI, equals the average growing-season EVI. The sec-
ond integrates EVI over the growing season: EVIGS=

REOS
SOS EVI tð Þdt ¼ EVI � GSL.

We further determined growing-season peak EVI (EVImax). EVI values are
dimensionless, and so are EVI and EVImax; EVIGS and GSL are shown in units of
years (yr) and days (d), respectively.

Land-surface albedo. We used space-borne land surface albedo (α; dimensionless)
data with a spatial resolution of 500 m (MODIS MCD43A332). These data are
calculated from multi-date (16 days), multi-band, cloud-free, atmospherically-
corrected surface reflectance. We focused on white-sky albedo (WSA) because it is
an inherent property of the land surface and is used as input to climate models66.
Specifically, we used the 17-year average of mean summer (June to August)
shortwave WSA (αSW; 0.3–5.0 µm wavelength) and its two components visible
WSA (αVIS; 0.3–0.7 µm) and near-infrared WSA (αNIR; 0.7–5.0 µm). The parti-
tioning of αSW into αVIS and αNIR is necessary because of the marked difference of
vegetation reflectance in these spectral domains67.

Stability. We quantified the temporal stability of all productivity and albedo
metrics as inverse of the coefficient of variation (CV−1), i.e. as mean of the

annual values divided by the standard deviation of the annual values (2000–2016;
n= 17). This is a commonly used measure of population, community or
ecosystem stability in ecological studies1,13,68,69. Although other metrics of
stability exist70,71 we used CV−1 (1) because it allows direct comparison with other
BEF studies, and (2) because in our case variation in functioning likely was the
result of a range of environmental factors, many of which remain unknown,
precluding the use of metrics that depend on timing and magnitude of a specific
disturbance.

Net diversity effects (NE). NE values were calculated as the observed value of a
metric in a mixed landscape (landscape richness > 1) minus its expected value36.
The expected value was the weighted mean of the average values of the corre-
sponding single land-cover type landscapes (landscape richness= 1) in the
respective block; as weights we used the proportion of land covers in the mixed
landscape. NE was determined within blocks. NE quantifies the change in a metric
with an increase in landscape richness, while adjusting for land-cover composition.
For productivity terms, NE often also is referred to as “overyielding”37,38.

Environmental co-variables. The topographic co-variables altitude (Alt; m above
sea level), slope (Slope; degrees inclination) and north-south-component of the
slope (N-aspect; positive and negative values for north- and south-facing slopes,
respectively) were calculated from a digital elevation model with 25 m spatial
resolution (product DHM25; Swiss Federal Office of Topography swisstopo) and
averaged per landscape plot. Climatic co-variables were mean annual temperature
(Temp; in °C, average of years 2000–2014), annual precipitation (Precip; in mm,
average of years 2000–2014), and mean annual surface incoming short-wave
radiation (Irrad; in Wm−2, average of years 2004–2012). These data were calcu-
lated from interpolated gridded monthly data sets [0.0208° spatial resolution (~2.3
km in east-west and 1.6 km in north-south direction), Swiss Federal Office of
Meteorology and Climatology MeteoSwiss, products TabsM, RhiresM, and msg.
SIS.M].

Statistical analysis. We tested effects of landscape richness using general linear
mixed models summarized by analysis of variance (ANOVA; ASReml-R package72;
VSN International, Hemel Hemsted, UK; R 3.5; http://r-project.org). Fixed effects
were, in this order, BGR, ALT, BGR × ALT (BGR: biogeographic regions; ALT:
altitude interval; the terms so far specify the blocks), log-transformed landscape
richness [log(LR)], and the fraction of low-productivity land-cover types (fracL; see
below). Land-cover composition was a random term defining the replication level
for landscape richness. We evaluated different transformations of landscape rich-
ness and found that the natural logarithm of landscape richness [log(LR)] fitted the
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data slightly better than untransformed landscape richness, although differences in
Akaike’s information criterion were small (ΔAIC= 1.3, average across all
response variables). Models with quadratic and cubic transformations of landscape
richness performed substantially worse (ΔAIC= 4.7 and 7.5, respectively). Land-
cover types fell into two main groups that differed systematically in productivity.
To adjust model residuals for this systematic, non-random, effect, we included the
land-cover fraction of low-productivity land-cover types (fracL) as additional term
after log(LR); low-productivity land-cover types were water, bare land, urban and
unproductive vegetation. For the analysis of net diversity effects (NE), we first
tested whether mixed landscapes performed better than single land-cover type
landscapes (NE > 0; one-sample t-test), followed by a test whether NE increased
with log(LR) by using linear mixed models as described above but excluding fracL
because the correction for low-productivity land-cover types is inherent in the
calculation of NE.

Given the different land-cover compositions in 250 × 250m and 500 × 500m
landscape plots, we analyzed these data sets separately, except when testing for the
scale-dependence of effects where we included the fixed effects terms SCALE and log
(LR) × SCALE plus the additional random-effects term land-cover composition ×
SCALE. Prior to analysis, we aggregated all dependent variables to a single value
for each land-cover composition × block combination, which reduced data from
the original number of study units to 237 (35 unique land-cover compositions) for
250 × 250m landscape plots and to 77 (27 unique land-cover compositions) for
500 × 500m landscape plots.

For all effects of log(LR), we derived normalized effect sizes (Zr= 1
2 loge

1þr
1�r

� �

with r=
ffiffiffiffiffiffiffiffi
F

Fþdf

q
; F=ANOVA-table F-value with df denominator degrees of

freedom; ref. 39) and their corresponding asymptotic variance (Vz ¼ 1
n�3, n= total

sample size39). Zr values allow comparison with virtually any study because they
can be derived from many summary statistics. To compare these meta-analytical
effect sizes to the ones from plot-scale BEF experiments4, we calculated average Zr
values for plant species-richness effects on aboveground biomass production (n=
13 experiments4,73) and its temporal stability (n= 3 experiments13,68,69) in a range
of grassland biodiversity field experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used in this study are available from Dryad (https://doi.org/10.5061/dryad.
gb5mkkwkj). Data used to produce Figs. 2–5 are provided as a Source Data file.

Code availability
The computer code used to run the analyses is provided as a Source Data file.
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