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Vectoral and alignment-free approaches to biological sequence representation have been explored 
in bioinformatics to efficiently handle big data. Even so, most current methods involve sequence 
comparisons via alignment-based heuristics and fail when applied to the analysis of large data sets. 
Here, we present “Spaced Words Projection (SWeeP)”, a method for representing biological sequences 
using relatively small vectors while preserving intersequence comparability. SWeeP uses spaced-words 
by scanning the sequences and generating indices to create a higher-dimensional vector that is later 
projected onto a smaller randomly oriented orthonormal base. We constructed phylogenetic trees for 
all organisms with mitochondrial and bacterial protein data in the NCBI database. SWeeP quickly built 
complete and accurate trees for these organisms with low computational cost. We compared SWeeP to 
other alignment-free methods and Sweep was 10 to 100 times quicker than the other techniques. A tool 
to build SWeeP vectors is available at https://sourceforge.net/projects/spacedwordsprojection/.

Biological sequence analyses and comparisons are traditionally performed using alignment algorithms, with 
BLAST being the most commonly used tool1. Even with dynamic computing techniques2,3, aligning large datasets 
requires an excessive amount of time and becomes unfeasible when complete genomes need to be analyzed4. 
Furthermore, the application of alignment techniques can become problematic when sequence identity is low 
because the substitution matrices can significantly affect alignment results5.

This need has led to the development of alternatives to accelerate structured data comparisons6–8. Several stud-
ies have successfully used alignment-free methods for the comparative analyses of complete genomes and other 
large biological sequence data sets4–13, but the investigation of these techniques is still necessary to ascertain their 
effectiveness. Therefore, approaches based on mapping relative word frequencies (k-mers) in vector spaces have 
been the subject of several recent studies3–18. Vector representations of proteins facilitate data handling and allow 
the use of data mining to identify important characteristics hidden in biological sequences18–21.

Here, we propose SWeeP, a method that handles large data sets, reducing computational costs while ensuring 
the quality of gene product analysis. It is based on the vector representation of protein sequences as a compact 
model based on the projection of k-mers sets onto a randomly oriented quasi-orthonormal base, with a sufficient 
number of coordinates to maintain intersequence comparisons. SWeeP uses spaced words14 to scan sequences 
and create indexes, which are employed to create a high-dimensional vector (HDV). The HDV allows dimen-
sionality reduction upon its projection onto a lower-dimensional vector and maintains most of the comparison 
information, as proposed by Johnson and Lindestrauss22. Additionally, SWeeP has the potential to decrease the 
biases caused by replacement arrays5.

To demonstrate the efficiency of SWeeP, we conducted two studies, one involving whole mitochondrial protein 
sequences (here called mitochondrial “proteomes”) and the other involving whole bacterial proteins (bacterial 
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“proteomes”). We constructed phylogenetic trees of the mitochondrial proteomes and compared the performance 
of the alignment and alignment-free methods. We also created SWeeP representations of all available complete 
bacterial genomes using their protein sequences. We then isolated the representations of the bacterial genera 
of some model organisms (Corynebacterium, Klebsiella, and Escherichia) and developed a machine learning 
approach to demonstrate the classification capacity of the general SWeeP model. The flowchart outlining the 
SWeeP model processes is shown in Fig. 1.

Results
SWeeP.  The input for SWeeP consists of a multiFASTA file containing amino acid sequences. In the case of a 
proteome containing several sequences (e.g., several genes), the proteins are concatenated, separated by delim-
iters - which are ignored in the construction of the vectors - to form a single sequence for each protein set (See 
Supplementary Fig. S1). Each proteome is then represented by a two-dimensional matrix M, of spaced words 
from the entire concatenated sequence using a predefined mask. Matrix M can be constructed in two formats: 
(1) reversible, based on the geometric mean of prime numbers, and (2) binary, which is economical and rapidly 
processed. The binary form was used for the case studies described in this paper.

Matrix M, when linearized by columns, is a vector reflecting highly representative sequence data, 
which we designate as a higher-dimensional vector (HDV). The SWeeP model projects these HDVs onto a 
quasi-orthonormal base, according to the Johnson–Lindestrauss lemma22, aiming to enable efficient performance 
with large data sets.

The following steps are used to convert amino acid (aa) sequences to SWeeP vectors.
For a given amino acid sequence S( )i , defined in 1:

∈ .S S( ), {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}, representing the amino acids (1)i i

=i I n[1, ]

Let N  be an integer pointing uniquely to a subsequence of S( )i  of length k according to a given indexing func-
tion f:

= ≤N f S(( ) ) (2)k k n

We propose a reversible indexing function (f) to relate moving windows in S( )i  to coordinates in a matrix. 
Function f (Eq. 3) uniquely addresses the sequence in a given window, aiming to map all possible spaced k-mers 
to a matrix. Various functions could be used for this purpose; we chose the enumeration of the amino acid 
sequences starting from 1.

START

END

Load FASTA

Binary Matrix

Visualization

Criate 
Orthonormal 
Random base

Projection HDV

STEP 2

STEP 3

STEP 1

Criate a Large 
Vector (HDV)

Index/map
spaced-word

R base

Reversible Matrix

STEP 4

Figure 1.  The workflow of the SWeeP processes. The process begins with uploading a multiFASTA file 
containing the concatenated proteins (see Supplementary Fig. S1). The squares summarize the processes of the 
SWeeP method. Processes are linked by arrows, illustrating their order of execution.
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As f is reversible, for any finite N , there is a unique corresponding valid sequence, ≤S( )r r n, of length r (Eq. 4):

=−
≤f N S( , r) ( ) (4)r r n

1

As an example for f, consider SK representing an integer ≥1 in a vigesimal system (base 20), with k digits.
V is given in the correspondence list below:

aa
V

A R N D C Q E G H I L K M F P S T W Y V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

It can be seen that the order in which the amino acids are enumerated has no effect on the geometric properties 
of the vectors, but rather only to point to their coordinates (the same vectors for any order in V). Thus, we do 
not assign biological meaning to the numbers that are instead used to point to “boxes” containing information 
regarding the sequences (k-mers), as referends in other approaches13–23.

E.g.: For a subsequence composed of the amino acids ML:

= + − ∗ + − ∗ = + − ∗ + − ∗ =f ML V M V L( ) 1 ( ( ) 1) 20 ( ( ) 1) 20 1 (13 1) 20 (11 1) 20 2130 1 0 1

and

=−f ML(213, 2)1

Now, we define Z (Eq. 5) as coordinates representing a spaced window in (Si):

= =Z X Y f s f s( , ) ( (( )), (( ))) (5)i p q

(Sp) and (Sq) are subsequences of (Si), and p and q are the intervals:

= + α −p i i[ , ( 1)]

= + α + γ + α + γ + β −q i i[( ), ( 1)]

Here, a spaced window is a moving window controlled by a mask consisting of “take” (ones) and “don’t care” 
(zeros) positions23. The region between p and q, with zeros in the mask, is given by g; α, β and γ are the lengths of 
p, q, and g respectively (e.g., 111000011, α = 3, β = 2, and γ = 4; k = 9).

The content of each set of coordinates (X, Y) in the matrix is calculated in a form that enables the retrieval of 
all the initial positions in a sequence where the windows corresponding to the coordinates are found. To do this, 
we exploit the unique factorization theorem (or fundamental theorem of arithmetic), which states that any integer 
number is uniquely represented by the product of a set of prime numbers.

We define P as an ordered subset of consecutive prime numbers PI:

= …P P{2, 3, 5, 7, , }I n

For instance,

= = …= =P P2, 5,i i( 1) ( 3)

Let us consider the set of positions in (Si), where Zi J , is related to the same coordinates Zj= ′ ′X Y( , ). All i posi-
tions related to Zj can be reversibly represented by the geometric mean of the prime numbers Pj, to the power of 
a rational constant ε:

∏= ′ ′ = ε λG Z G X Y P( ) ( , )
(6)

j
J

/

where λ, is the number of elements in J, and 0 < ε ≤ 1.
Now, we can define M as Mr representing (Si) in a reversible manner:

=





∈
Mr

G X Y Z
otherwise

(X, Y)
, ( , )

0, (7)
J

Or as a binary compact matrix representing S( )i  with ε = 0:

=





∈Mb X Y Z
otherwise

(X, Y) 1, ( , )
0, (8)

i

When ε → 0, =Mr Mb. This means that, mathematically, there is a reversible vector (HDV) associated with Mr 
that is very close to a binary vector associated with Mb. The larger ε, the higher the impact of the sequence k-mers 
relative positions on the vector representation.
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Projection.  An orthonormal base is a set of orthogonal vectors. The projection of a set of vectors onto an ortho-
normal base creates a representation of the set in the given base. This projection is the product of the matrix of 
vectors to be projected and the matrix of the base. A quasi-orthonormal base refers to a base that is sufficiently 
orthogonal to obtain a satisfactory projection at a reasonable computational cost. In this case, the sufficient 
orthogonality condition is that the internal product of the vectors of the base is sufficiently small, but not neces-
sarily zero. In this study, we used quasi-orthonormal bases to obtain the projections for SWeeP.

We constructed a random bases, Rs (SRB: SWeeP Random Base) to obtain the SWeeP projections of W, the 
matrix product:

=W WR (9)s s

In Eq. 9, the subscript s denotes the number of coordinates defined in base Rs.
Here, we obtained R through economy-size Single Value Decomposition (SVD) of a random vector B of 

lengths u × v where u is the number of coordinates in the original space and v the number of coordinates in the 
projection. Note that we propose v ≪ u (u = 160,000 and v = 600 in the cases studied in this paper), and conse-
quently that SVD of B be computationally simpler than set of vectors of length u e.g. W.

Vector Ws has a smaller dimensionality than W, but with a sufficiently large s, the projection conserves the 
spatial comparability of the instances represented in W. Naturally, the SRB must be kept for future tasks involving 
the inclusion of new sequences in the analyses - a common event in data mining. The SRBs employed in this 
article were developed in MATLAB® and are available for download (see Data Availability). An example of these 
processes is available in Supplementary Fig. S2.

Study 1: Representation of mitochondrial proteomes.  The included studies all use protein data; 
nonetheless, nucleotide sequences can be used in an analogous manner. All mitochondrial protein sequences 
available in RefSeq24, from all complete mitochondrial genomes were represented in SWeeP vectors.

After downloading the sequences, we concatenated the proteins, where each proteome was represented 
by a SWeeP vector with the projection defined in the configuration test (see Implementation – Definition of 
parameters). Phylogenetic trees of the entire set of 8426 mitochondrial proteomes were constructed using the 
neighbor-joining and unweighted pair group method with arithmetic mean (UPGMA). The complete trees are 
available (see Data Availability). We chose to focus on Primate families because their mitochondrial proteins 
are manually curated and available in the literature25, and these organisms’ evolutionary history is well-defined 
(Fig. 2).

We analyzed several branches of the trees, but herein, we will only show the primate branches. The Platyrrhini 
and Catarrhini parvorders were separated as expected. The inner divisions in the Catarrhini branch are also in 
accord with the literature, what is clearly shown in the Hominid branches whose organization is in agreement 
with other studies26–28.

We found that, unlike reports in the literature29,30, the Cebidae family is not monophyletic in the SWeeP tree. 
A similar result was observed when the Platyrrhini branch was analyzed with two other approaches (Clustal 
Omega31 and Prot-Spam13), which suggests the need for further studies on the mitochondrial proteomes data of 
this branch.

We also present the branches containing the other Primates in the global tree, in Supplementary Fig. S3.

Performance test.  We defined the vector construction time for the 100- to 3000-coordinate projections and 
without a size reduction (160 K) as the time spent from the moment the multiFASTA file was read until termina-
tion. We observed that this time varied between a few seconds and minutes, as seen in Supplementary Table S1. 
The processing time was measured for each projection size at increments of 200 coordinates, including the unre-
duced projection W (160 K coordinates). Projection processing is rapid, and the processing time grows linearly as 
the projection increases, ranging from 8 seconds to 4.36 minutes. Estimation of the time for the construction of 
the mitochondrial phylogenetic trees from the projections is also rapid: approximately 10 seconds.

Comparison between SWeeP and alignment methods.  We compared phylogenetic trees of a mitochondrial pro-
teome dataset from 41 mammals8 constructed with SWeeP and Clustal Omega software31 (Fig. 3). We chose a 
smaller data subset because it is not possible to perform multiple alignment of the entire set of mitochondrial data 
in Clustal Omega (8,426 proteomes). To carry out the comparison, we organized all the mammalian mitochon-
drial proteins in an identical order; however, this is not necessary for SWeeP.

The Clustal Omega method took 93 seconds, whereas SWeeP took 2 seconds, indicating that our method is not 
only quicker but also more practical since there is no need to align or even order the protein sequences to process 
them. The phylogenetic trees produced by the SWeeP vectors show a better organization than those produced 
by the alignment-based technique. For example, in the tree built by the Clustal Omega, there is a division in the 
branch containing the Artiodactyla family while in the tree constructed by SWeeP, the distribution of families is 
taxonomically correct.

As mentioned above, it was not possible to align the entire mitochondrial dataset with Clustal Omega. This 
makes SWeeP a better option for comparing large datasets due its better effectiveness, accuracy and lower com-
putational cost than alignment techniques.

Comparison of alignment free methods.  We compared SWeeP to other alignment-free methods by using the 
mitochondrial proteome sequences. For these tests, we used the standard parameters for our approach, i.e., k = 5 
(4 take and 1 don’t care positions - “11011” mask). To select the tools for comparison, we use the data availa-
ble in Supplementary Table S2 and the following inclusion criteria: a. Publicly available; b. Not only useful for 
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phylogeny; c. Accepts input files in amino acid format; d. Published in the last 5 years (for criteria details, see 
Supplementary Table S3).

The performance tests were conducted on an ordinary computer, to evaluate the performance of tools with 
lower processing power (for the specifications, see Implementation). Prot-Spam13, BioVec21 and Kmacs32 were 
tested. It is important to note that only the SWeeP algorithm is based on a vectoral representation of biological 
sequences and dimensionality reduction these tools cannot be considered similar to SWeeP. We tested each tool 
using its default parameters, Table 1 lists whether or not the tools use a vector representation as well as the time 
required to construct the distance matrix and output.

None of the tested tools provided vectors as output. The Biovec output is a Distance Matrix, a neural network 
model, and a database containing the reported data. We were able to write a Python script to obtain the output as 
vectors, though this is not provided by the application. The final outputs of Kmacs and Prot-Spam is a distance 
matrix of mismatches (for Kmacs) and matches (for Prot-Spam). Prot-Spam output is saved as a “.DMat” (default) 
file. To use the matrix of Kmacs, it is necessary to convert the data to the Phylip format, which limits the utility 
of the application.
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Figure 2.  Representation of Primates in the global mitochondrial tree created using SWeeP. (a) A cladogram of 
the SWeeP global mitochondrial tree containing 8,426 proteomes, with the projection size of 600 coordinates 
for the neighbor joining model. Pink: the position of primates in the global tree. (b) An enlarged branch 
phylogram, containing Primates. In blue square, the families; In dotted square, the subfamilies; In orange, the 
Platyrrhini parvorder; In green, the Catarrhini parvorder. The rest of the primates are shown in Supplementary 
Fig. S3.
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Representation of the nucleotide and/or amino acid sequences in vector form is essential for mathematical, 
statistical, and computational analysis. Here, the vectoral representation allows transformation of the symbolic 
representation into a structured numerical representation, which allows its use in machine learning algorithms 
and for knowledge discovery in biological data. The construction of the distance matrix is fundamental for wide 
context comparisons, particularly in scenarios involving thousands of sequences. In our tests SWeeP was 10 times 
faster than ProtSpam and BioVec and 100 times faster than Kmacs.

SWeeP is applicable to general purpose data mining and sequence comparison. Construction of phylogenetic 
trees was used as an example to explore the comparability potential of the method. We manually validated the 
taxonomical consistency of the phylogenetic trees based on the available literature.

SWeeP was quicker than BioVec, Prot-Spam, and Kmacs while constructing high quality trees that we con-
sidered equivalent; however, a detailed comparison of the trees is not within the scope of this paper. The trees 
constructed by Prot-Spam, BioVec, and Kmacs are available upon request.

Study 2: Representation of bacterial proteomes.  A SWeeP vector with a 600-coordinate projection 
was created for the coding sequences (CDS) of all complete bacterial genomes available from NCBI at the time of 
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Figure 3.  Comparison between phylogenetic trees constructed using Clustal Ômega and SWeeP. Neighbor-
joining trees constructed using the mammalian proteome dataset8. All proteins were concatenated in the 
following order: NADH1, NADH2, COX1, COX2, ATP8, ATP6, COX3, NADH3, NADH4L, NADH4, NADH5, 
NADH6, and CYTB. The mammalian orders are represented by the colors in the trees: Rodentia, Cetacea, and 
Carnivore in shades of green; Artiodactyla in pink; Erinaceomorpha, Perissodactyla, and Lagomorpha in shades 
of purple; Primates in black. (a) Tree built with Clustal Omega using standard parameters (online version). (b) 
The tree constructed using a 600 coordiante SWeeP projection.

Tools
Vector 
representation (Y/N)

Distance matrix 
construction time (min) Output

SWeeP Y 6,4 Vector

Prot-SpaM N 60,6 Distance Matrix

Kmacs N 564,3 Distance Matrix

BioVec Y* 60,4
Distance Matrix
Neural network
Database

Table 1.  Comparison among alignment free methods. Note: Y- Yes and N- No. *The vector was obtained by 
writing custom scripts.
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writing (10,324 microorganisms) and a phylogenetic tree was constructed from them using the Ward method33. 
In this case study, the SWeeP method proved to be computationally effective when applied to a large number of 
proteomes of considerable size. The global phylogenetic tree of the bacterial taxa was analyzed manually, and the 
results were consistent with trees reported in the literature34–36. To the best of our knowledge, there is no other 
analogous comparison among these organisms that has been automatically created solely from complete genome 
sequence data.

Another goal of this analysis was to obtain a graphical visualization and detailed comparison of the 
genomes for Corynebacterium, Klebsiella and Escherichia. We also chose specific strains of these model organ-
isms, Escherichia coli strains K12 and CFT073, Klebsiella pneumoniae HS11286, Klebsiella variicola AT-22, 
Corynebacterium pseudotuberculosis C231, and Corynebacterium ulcerans 809, (Supplementary Table S4) for 
analysis.

A binary Mb matrix and the respective 600-coordinate SWeeP projection were created for each microorgan-
ism. Figure 4a depicts heatmaps of the matrices; each column corresponds to microorganisms of the same genus 
(one genus per column). One can see that microorganisms of the same genus are more similar to each other than 
to organisms in different genera. Nonetheless, zooming in for more detail (rectangle) reveals that even micro-
organisms belonging to the same genus differ from each other. This effect becomes clearer when the distance 
matrix (Fig. 4b) and the dendrogram (Fig. 4c) constructed from the SWeeP distance matrix of the six microbes 
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Figure 4.  Graphic representation of the bacterial proteome. (a) Heatmaps of bacterial proteomes represented 
by Matrix M (400 × 400). Black squares highlighted in the bacterial proteome depictions show one of the 
similarity areas between the proteomes of the Corynebacterium strains. Red squares show one of the similarities 
between the proteomes of Escherichia coli strains. Green squares show similarity areas between Klebsiella 
species. The arrows point to regions with less similarity between the Escherichia coli and Klebsiella proteomes. 
(b) Euclidean distance between the 600-coordinate projections of the bacterial proteomes in a. (c) The 
phylogenetic tree of bacteria created by a 600-coordinate SWeeP projection.
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are compared. Phylogenetically closer microorganisms show smaller reciprocal distances and greater proximity 
in the dendrogram.

From the 10324 bacterial proteomes projected with SWeeP onto 600 coordinates, we selected 1001 organisms 
and classified them as 1 – Corynebacterium, 2 - Klebsiella and 3 – Escherichia. A training set with 700 instances 
was used to construct a Support Vector Machine (SVM) trained in Weka software37. We then tested the trained 
model in the remaining 301 instances. The results are shown in Supplementary Fig. S4. In this test, all the 
instances of three genera were correctly classified. It can be seen that although the differences between Escherichia 
and Klebsiella are difficult to notice (Fig. 4a), these were classified properly through machine learning.

Additionally, for data visualization, the two principal components of the principal component analysis (PCA) 
of the vectors from the training set were plotted for each instance in the training and test sets (Fig. 5). Here, it can 
be seen that all the three genera are separated consistently, including the organisms referenced in Fig. 4 (black 
circles in Fig. 5).

It would be computationally difficult to perform PCA with the complete SWeeP matrix (160k) because of the 
high dimensionality, which in the case of the “11011” mask would require at least 2 × 1011 bytes of memory, that 
is, approximately 190 GB. In contrast, SWeeP projection onto 600-coordinates only requires 0.027 GB. Thus, we 
propose a viable approach to PCA for large volumes of sequences.

Discussion
Although alignment techniques are suitable for the comparison of protein sequences, their application to the 
analysis of large volumes of data is limited. In this study, we applied the SWeeP method to analyze large numbers 
of proteome sequences. We compared SWeeP to other methods, and for the first time, automatically constructed 
phylogenetic trees from complete mitochondrial and bacterial proteomes. We also used SWeeP for machine 
learning and PCA, showing its effectiveness in these applications.

The SWeeP method enables the rapid and sensitive construction of compact phylogenetic trees. The mito-
chondrial proteome trees created using SWeeP are currently the most complete trees available, including the 
supertrees for mitochondrial data. We show that alternative approaches such as SWeeP can be superior to 
sequence alignment–based techniques. We propose that the SWeeP method is an efficient alternative to sequence 
comparisons of large datasets. It should be noted that although other alternative sequence comparison techniques 
exist, sequence alignment is still the preferred method for most biological sequence comparisons. SWeeP is a new, 
innovative alignment-free method that could supersede the traditional alignment techniques in the comparison 
of biological sequences.

Vector representation of information is universally used and is well-defined in most areas. We propose this 
new approach so that available mathematical and computational resources can be extended and applied more 
easily to the analysis and mining of biological sequences.

Implementation
The SWeeP specific functions used in this study were implemented using the MATLAB programming language. 
The steps presented in the definition of parameters for study 1 and study 2 were performed on a 40-core Intel 
Xeon processor with 256 GB of RAM running Ubuntu 16.04.1 LTS. The comparisons with alignment-free meth-
ods were performed on an Intel Core i5 processor with 16 GB RAM running Biolinux 8.0 (based on Ubuntu 
18.04.01 LTS). The implementation is freely available for both operating systems (see Data Availability). For 
machine learning tests, we used Weka Software37.
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Corynebacterium
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Organisms in Figure 4

Figure 5.  Analysis of two principal components of the SWeeP projection for the three genera of model 
organisms. The figure highlights the comparability potential of the information contained in the SWeeP 
projection with 600 coordinates. In blue the points of the training set (used to create the base of the PCA). In 
pink, yellow and green the test set points. The black circles mark the comparative instances of Fig. 4.
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Test set.  The mitochondrial protein sequences were obtained from the RefSeq database available at ftp://
ftp.ncbi.nlm.nih.gov/refseq/release/. Visualization and manipulation of the phylogenetic trees constructed using 
SWeeP were performed using Dendroscope 338.

The CDSs of the bacterial genomes used for the graphical representation of the matrix M were obtained from 
NCBI. The organisms and their respective accession numbers are given in Supplementary Table S4.

Definition of parameters.  In this study, a reversible matrix is one where 1 is taken for ε (ε = 1) and a 
binary matrix is one where 0 is taken for ε →( 0). For all examples and case studies, W (higher-dimensional vec-
tors) were obtained from a binary matrix. This choice is due to the fact that the most relevant metric in this study 
is computational feasibility (SWeeP’s compression and processing speed) combined with our test findings show-
ing that SWeeP (600 coordinate projection) is highly correlated with W with a rate of 0.98 and p-value < 0.01. The 
spaced words were selected by applying the “11011” mask in all cases because it is suggested by the literature to be 
a good choice for proteins23. Nevertheless, the SWeeP method is adjustable and allows for several projections and 
multiple k-mers (via the alteration and/or addition of masks), enabling the model to be fitted to the data to be 
mined14,15, as increased k-mer size increases computational difficulty.

The best distance metric for mitochondrial proteomes is Euclidean distance, and the 600-coordinate sized 
projection was chosen for the analysis after manual validation and plot analysis (see Supplementary Fig. S5 and 
Table S5).

Data availability
https://sourceforge.net/projects/spacedwordsprojection/.
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