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Summary

Inhibitory neurons, which play a critical role in decision-making models, are often simplified as a 

single pool of non-selective neurons lacking connection specificity. This assumption is supported 

by observations in primary visual cortex: inhibitory neurons are broadly tuned in vivo, and show 

non-specific connectivity in slice. Selectivity of excitatory and inhibitory neurons within decision 

circuits, and hence the validity of decision-making models, is unknown. We simultaneously 

measured excitatory and inhibitory neurons in posterior parietal cortex of mice judging 

multisensory stimuli. Surprisingly, excitatory and inhibitory neurons were equally selective for the 

animal’s choice, both at the single cell and population level. Further, both cell types exhibited 

similar changes in selectivity and temporal dynamics during learning, paralleling behavioral 

improvements. These observations, combined with modeling, argue against circuit architectures 

assuming non-selective inhibitory neurons. Instead, they argue for selective subnetworks of 

inhibitory and excitatory neurons that are shaped by experience to support expert decision-making.
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Graphical Abstract

eTOC blurb:

Najafi et al. studied selectivity of mouse excitatory and inhibitory neurons during decision making. 

Selectivity is equally strong in the two cell types, and emerges gradually during learning. These 

data, along with theoretical models, argue that selective subnetworks support decision-making.

Introduction

In many decisions, noisy evidence is accumulated over time to support a categorical choice. 

At the neural level, a number of models can implement evidence accumulation (Wang, 2002; 

Machens et al., 2005; Bogacz et al., 2006; Lo and Wang, 2006; Wong and Wang, 2006; Beck 

et al., 2008; Lim and Goldman, 2013; Rustichini and Padoa-Schioppa, 2015; Mi et al., 

2017). Although these circuit models successfully reproduc key characteristics of behavioral 

and neural data during perceptual decision-making, their empirical evaluation has been 

elusive, mainly due to the challenge of identifying inhibitory neurons reliably and in large 

numbers in behaving animals. Inhibition, which constitutes an essential component of these 

models, is usually provided by a single pool of inhibitory neurons receiving broad input 

from all excitatory neurons (non-selective inhibition, Deneve et al., 1999; Wang, 2002; Mi et 

al., 2017).
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The assumption of non-selective inhibition in theoretical models was, perhaps, motivated by 

empirical studies examining connectivity and tuning of inhibitory neurons. Many studies in 

primary visual cortex report that inhibitory neurons have, on average, broader tuning curves 

than excitatory neurons for visual stimulus features such as orientation (Sohya et al., 2007; 

Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010; Bock et al., 2011; Hofer et al., 

2011; Atallah et al., 2012; Chen et al., 2013; Znamenskiy et al., 2018), spatial frequency 

(Niell and Stryker, 2008; Kerlin et al., 2010; Znamenskiy et al., 2018), and temporal 

frequency (Znamenskiy et al., 2018). Broad tuning in inhibitory neurons has been mostly 

attributed to their dense (Hofer et al., 2011; Packer and Yuste, 2011), functionally unbiased 

inputs from surrounding excitatory neurons (Kerlin et al., 2010; Bock et al., 2011; Hofer et 

al., 2011). Excitatory neurons, by contrast, show relatively sharp selectivity to stimulus 

features (Sohya et al., 2007; Niell and Stryker, 2008; Ch'ng and Reid, 2010; Kerlin et al., 

2010; Hofer et al., 2011; Isaacson and Scanziani, 2011; Lee et al., 2016), reflecting their 

specific, non-random connectivity (Yoshimura et al., 2005; Ch'ng and Reid, 2010; Hofer et 

al., 2011; Ko et al., 2011; Cossell et al., 2015; Ringach et al., 2016).

Based on relatively weak tuning of inhibition, one might assume that inhibition in decision 

circuits is non-specific. However, the overall picture from experimental observations is more 

nuanced than the original studies suggest. First, some V1 studies report tuning of inhibitory 

neurons that is on par with excitatory neurons (Ma et al., 2010; Runyan et al., 2010), likely 

supported by targeted connectivity with excitatory neurons (Yoshimura and Callaway, 2005). 

Strong tuning of inhibitory neurons has also been reported in primary auditory cortex 

(Moore and Wehr, 2013). Further, in frontal and parietal areas, interneurons can distinguish 

go vs. no-go responses (Allen et al., 2017) and trial outcome (Pinto and Dan, 2015). 

Similarly, hippocampal interneurons have strong selectivity for the stimulus (Lowett-Brown 

2017), and the animal’s location (Maurer et al., 2006; Ego-Stengel and Wilson, 2007).

This selectivity of inhibitory neurons in a wealth of areas and conditions argues that the 

assumption of non-selective interneurons in decision-making models must be revisited. 

Here, we aimed to evaluate this directly. We compared selectivity of inhibitory and 

excitatory neurons in posterior parietal cortex (PPC) in mice during pereptual decisions. 

Surprisingly, we found that excitatory and inhibitory neurons are equally choice-selective. 

Our modeling argued that these observations imply selective subnetworks, a network 

architecture supporting enhanced decoding in the presence of noise. Finally, during learning, 

selectivity of excitatory and inhibitory neurons increased in parallel. These results constrain 

decision-making models, and argue that in decision areas, subnetworks of selective 

inhibitory neurons emerge during learning and are engaged during expert decisions.

Results

To test how excitatory and inhibitory neurons coordinate during decision-making, we 

measured neural activity in transgenic mice trained to report decisions about the repetition 

rate of a sequence of multisensory events by licking to a left or right waterspout (Figure 1A; 

Figure S1A). Trials consisted of simultaneous clicks and flashes, generated randomly (via a 

Poisson process) at rates that from 5-27 Hz over 1000 ms (Brunton et al., 2013; Odoemene 

et al., 2017). Mice reported whether event rates were high or low compared to a category 
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boundary (16 Hz) learned from experience. Decisions depended strongly on stimulus rate: 

performance was at chance when the stimulus rate was at the category boundary, and was 

better at rates further from the category boundary (Figure 1B). Choice depended on current 

stimulus strength, previous choice outcome (Hwang et al., 2017), and time elapsed since the 

previous trial (Figure S1B).

We imaged excitatory and inhibitory neural activity by injecting a viral vector containing the 

calcium indicator GCaMP6f to layer 2/3 of mouse Posterior Parietal Cortex (PPC; Harvey et 

al., 2012; Funamizu et al., 2016; Goard et al., 2016; Morcos and Harvey, 2016; Hwang et al., 

2017; Song et al., 2017). Mice expressed the red fluorescent protein tdTomato transgenically 

in all GABAergic inhibitory neurons (Methods). We used a two-channel two-photon 

microscope to record the activity of all neurons, a subset of which were identified as 

inhibitory (Figure 1C). This allowed us to measure the activity of excitatory and inhibitory 

populations in the same animal.

To detect neurons and extract calcium signals, we leveraged an algorithm that 

simultaneously identifies neurons, de-noises the fluorescence signal and de-mixes signals 

from spatially overlapping components (Pnevmatikakis et al., 2016; Giovannucci et al., 

2018) (Figure 1D middle). The algorithm also estimates spiking activity for each neuron, 

yielding, for each frame, a number that is related to the spiking activity during that frame 

(Figure 1D right). We refer to this number as “inferred spiking activity”, acknowledging that 

estimating spikes from calcium signals is challenging (Chen et al., 2013). Analyses were 

performed on inferred spiking activity. To identify inhibitory neurons, we developed a 

method to correct for bleed-through from the green to the red channel (Methods). We 

identified a subset of GCaMP6f-expressing neurons as inhibitory based on signal intensity 

(red channel) and spatial correlation between red and green channels (Figure 1C right, cyan 

circles). Inhibitory neurons constituted 11% of the population, within the range of the 

previous reports (Beaulieu, 1993; Gabbott et al., 1997; Rudy et al., 2011; Sahara et al., 

2012), but on the lower side due to our desire to be conservative in assigning neurons to the 

inhibitory pool (Methods).

Confirming previous reports (Funamizu et al., 2016; Morcos and Harvey, 2016; Runyan et 

al., 2017), we observed that the activity of individual neurons peaked at time points spanning 

the trial (Figure 1E,F). Diverse temporal dynamics were evident in both cell types (Figure 

1E,F) and did not appreciably differ between the two (Figure S2). The magnitude of inferred 

spiking activity was significantly different for inhibitory vs. excitatory neurons throughout 

the trial (Figure 1G; t-test, p<0.001). Just before the choice (97 ms, average of 3 frames), 

this difference was clear (Figure 1H) and significant for all mice (Figure 1I, t-test; p<0.001). 

Differences in GCaMP expression levels and calcium buffering between excitatory and 

inhibitory neurons, as well as how spiking activity is inferred (Methods), makes a direct 

estimate of the underlying firing rates challenging (Kwan and Dan, 2012). Nevertheless, the 

significant difference in the inferred spiking activity between excitatory and inhibitory 

neurons provides additional evidence that we successfully identified two separate neural 

populations.
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Individual excitatory and inhibitory neurons are similarly choice-selective

To assess the selectivity of individual excitatory and inhibitory neurons for decision 

outcome, we performed receiver operating characteristic (ROC) analysis (Green and Swets, 

1966) on single-neuron responses. A neuron was identified as “choice-selective” if the area 

under the ROC curve (AUC) differed significantly (p<0.05) from a shuffled distribution 

(Figure S3A; Methods), indicating that the neural activity differed significantly ipsi- vs. 

contralateral choices (Figure 2A).

The fraction of choice-selective neurons (Figure 2B) and the magnitude of choice selectivity 

(Figure 2D) gradually increased over the trial, peaking just after the animal reported its 

choice. Importantly, excitatory and inhibitory neurons were similar in terms of the fraction 

of choice-selective neurons (Figure 2B,C; Figure S3B,C), as well as the magnitude and time 

course (Figure 2D,E) of choice selectivity. When we restricted the analysis to excitatory and 

inhibitory neurons with similar spiking activity, the cell types remained equally selective for 

the animal’s choice (Figure S3D).

To assess whether neurons reflected the animal’s choice or the sensory stimulus, we 

compared choice selectivity on correct vs. error trials. For most neurons, choice selectivity 

on correct trials was similar to that on error trials, resulting in a positive correlation of the 

two quantities across neurons (Figure S3E). Positive correlations indicate that most neurons 

reflect the impending choice more so than the sensory stimulus that informed it (Methods). 

Variability across mice in the strength of this correlation may indicate that the balance of 

sensory vs. choice signals within individual neurons varied across subjects (perhaps due to 

imaged subregions within the window, Figure S3E right). Importantly, however, within each 

subject, this correlation was very similar for excitatory vs. inhibitory neurons (Figure S3E), 

suggesting that the tendency for neurons to be modulated by the choice vs. the stimulus was 

similar in excitatory and inhibitory neurons.

The existence of task-modulated inhibitory neurons has been reported elsewhere (Maurer et 

al., 2006; Ego-Stengel and Wilson, 2007; Lovett-Barron et al., 2014; Pinto and Dan, 2015; 

Allen et al., 2017; Kamigaki and Dan, 2017), but importantly, here choice selectivity was 

similarly strong in excitatory and inhibitory neurons, both in fraction and magnitude. This 

was at odds with the commonly accepted assumption of non-specific inhibition in theoretical 

studies (Deneve et al., 1999; Wang, 2002; Mi et al., 2017), and surprising given the 

numerous empirical findings suggesting broad tuning and weakly specific connectivity in 

inhibitory neurons (Sohya et al., 2007; Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 

2010; Bock et al., 2011; Hofer et al., 2011; Isaacson and Scanziani, 2011; Packer and Yuste, 

2011; Atallah et al., 2012; Chen et al., 2013). This observation was a first hint that specific 

functional subnetworks, preferring either ipsi- or contralateral choices, exist within the 

inhibitory population, just like the excitatory population (Yoshimura and Callaway, 2005; 

Znamenskiy et al., 2018).
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Choice is decoded with equal accuracy from both excitatory and inhibitory 

populations

While individual inhibitory neurons could distinguish the animal’s choice as well as 

excitatory ones, overall choice selectivity in single neurons was small (Figure 2E). To further 

evaluate the neurons’ discriminability, we trained linear classifiers (support vector machine, 

SVM; Hofmann et al., 2008) to predict the mouse’s choice from the single-trial population 

activity (cross-validated; L2 penalty; see Methods).

We first tested all neurons imaged simultaneously in a single session (Figure 3A, left), 

training the classifier separately at each timepoint (97 ms bins). Classification accuracy 

gradually grew after stimulus onset and peaked at the time of the choice (Figure 3B, black). 

The ability of the entire population of PPC neurons to predict the choice confirms previous 

observations (Funamizu et al., 2016; Goard et al., 2016; Morcos and Harvey, 2016; Driscoll 

et al., 2017). Our overall classification accuracy was in the same range as these studies, and, 

as in those studies, was high although many individual neurons in the population were only 

weakly selective (Figure. 2A).

We then examined classifier accuracy for excitatory and inhibitory populations, subsampling 

the excitatory population so that the total number of neurons was matched (Figure 3A, 

middle). Overall classification accuracy was reduced due to the smaller population size, but 

performance was still well above chance (Figure 3B, blue trace). Finally, we included all 

inhibitory neurons (Figure 3A, right). Classification accuracy of inhibitory neurons was well 

above chance and was very similar to that of excitatory neurons (Figure 3B, red and blue 

traces overlap; Figure S4: additional example sessions). Similar classification accuracy for 

excitatory and inhibitory populations was observed in all subjects (Figure 3C). Excitatory 

and inhibitory populations were equally choice selective even when the analysis was 

performed on raw calcium traces (Figure S5).

Our analysis may have obscured a difference between excitatory and inhibitory neurons 

because we evaluated their performance separately, rather than considering how these 

neurons are leveraged collectively in a classifier with both cell types. To test this, we 

examined a classifier that was trained on all neurons (Figure 3A left; Figure 3B black), and 

compared classifier weights assigned to excitatory vs. inhibitory neurons. The weight 

magnitudes of excitatory and inhibitory neurons were matched for the entire trial (Figure 

3D), and the distributions of weights was very similar (Figures 3E, F). The comparable 

classifier weights for excitatory and inhibitory neurons argues that these cell types are 

similarly informative for choice.

We next tested whether excitatory and inhibitory populations can be decoded more 

accurately from a mixed population. This could occur, for example, if the excitatory-

inhibitory correlations were weak relative to excitatory-excitatory and inhibitory-inhibitory 

correlations (Panzeri et al., 1999; Averbeck et al., 2006; Moreno-Bote et al., 2014). To assess 

this, we trained the classifier on a population with half excitatory and half inhibitory neurons 

(Figure 3G bottom), and compared its accuracy with a classifier trained on a population of 

the same size that consisted only of excitatory neurons (Figure 3G top). Classification 
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accuracy was similar for both decoders (Figure 3H,I), arguing that a mixed population offers 

no major advantage to decoding.

We next trained new classifiers to evaluate whether population activity reflected additional 

task features. First, the population activity was somewhat informative about previous trial 

choice (Figure S6A), in agreement with previous studies (Morcos and Harvey, 2016; Hwang 

et al., 2017; Akrami et al., 2018); but also see (Zhong et al., 2018). Excitatory and inhibitory 

populations were similarly selective for previous choice (Figure S6A). The population 

activity was also somewhat informative about whether the stimulus was above or below the 

category boundary (Figure S6B). Again, excitatory and inhibitory populations were similarly 

selective (Figure S6B). Finally, population activity was strongly selective for trial outcome 

(reward vs. lack of reward; Figure S6C). Excitatory and inhibitory neurons showed a small 

but consistent difference in classifier accuracy after reward delivery (Figure S6C). This 

indicates that when the reward is delivered, the network enters a new regime, perhaps due to 

distinct reward-related inputs to excitatory and inhibitory neurons (Pinto and Dan, 2015; 

Allen et al., 2017). This possibility is in keeping with previous studies suggesting that neural 

populations explore different dimensions over the course of a trial (Raposo et al., 2014; 

Elsayed et al., 2016).

Finally, we studied the temporal dynamics of the choice signal. If excitatory and inhibitory 

neurons form connected subnetworks with frequent cross talk, the two populations should 

not only predict the animal’s choice with similar accuracy, as shown above, but the weights 

assigned by the classifier should exhibit similar temporal dynamics. To assess this, we 

quantified each population’s stability: the extent to which a classifier trained on choice at 

one time could successfully classify choice at other times. If population activity patterns are 

similar over time (e.g., all neurons gradually increase their firing rates), classifiers trained at 

one moment will accurately classify neural activity at different moments. Excitatory and 

inhibitory populations might differ in this regard, with one population more stable than the 

other.

As the gap between testing and training time increased, a gradual drop occurred in the 

classifier accuracy (Figure 4A,B). This drop in accuracy occurred at a similar rate for 

excitatory and inhibitory populations (Figure 4B). To quantify this, we determined the time 

window over which classifier accuracy remained within 2 standard deviations of the 

accuracy at the training time (Figure 4C). This was indistinguishable for excitatory and 

inhibitory neurons (Figure 4D; Figure S7A). An alternate method for assessing stability, 

computing the angle between the weights of pairs of classifiers trained at different time 

windows, likewise suggested that excitatory and inhibitory populations are similarly stable 

(Methods; Figure S7C).

Modeling rules out decision circuits with non-selective inhibition

These results seem to rule out circuitry from traditional decision-making models in which 

the inhibitory neurons are non-selective. This is because in non-selective circuits the average 

input to the inhibitory neurons is the same whether the evidence favors choice 1 or choice 2 

(Figure 5A, top). However, care must be taken in drawing this conclusion: while the average 
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input is the same, there are fluctuations in connection strength; those fluctuations will lead to 

some selectivity in inhibitory neurons. For instance, because of the inherent randomness in 

neural circuits, an inhibitory neuron could receive more connections from the excitatory 

neurons in population E1 vs. E2. If so, the firing rate of that inhibitory neuron would be 

slightly higher when evidence in favor of choice 1 is present. This could be exploited by a 

classifier to predict the choice. Hence, even a decision circuit with non-selective inhibition 

(Figure 5A, top) can lead to similar decoding accuracy in inhibitory and excitatory neurons, 

questioning whether our experimental findings (Figures 2,3) can be leveraged to constrain 

decision-making models.

To test this quantitatively, we modeled a non-selective circuit to evaluate the selectivity of 

inhibitory neurons (Methods). Classification accuracy depended on the connection strengths 

between excitatory and inhibitory neurons (horizontal axis on Figure 5A, bottom), as those 

connection strengths affect overall activity in the network. The most biologically plausible 

regime is near 0, corresponding to equal strengths for excitatory-to-inhibitory and inhibitory-

to-excitatory connections (Thomson and Lamy, 2007; Jouhanneau et al., 2015; Jouhanneau 

et al., 2018; Znamenskiy et al., 2018) (Figure 5A, bottom, arrow). For this value (and indeed 

for all other values), inhibitory neurons had lower classification accuracy than excitatory 

neurons (Figure 5A, bottom; Figure S8, left), inconsistent with our experimental results 

(Figure 3B,C). Therefore, in the non-selective circuit, although some inhibitory neurons are 

selective due to random biased inputs from the excitatory pools, classification accuracy of 

inhibitory neurons will still be lower than excitatory neurons, regardless of the model 

parameters. This is because even modest amounts of noise in the system are sufficient to 

overcome any informative randomness in excitatory to inhibitory connections.

Next, we modeled a signal-selective circuit; in which inhibitory neurons were connected 

preferentially to one excitatory pool (Figure 5B, top). In this circuit architecture, inhibitory 

and excitatory neurons had matched classification accuracy when the connection strength 

from excitatory to inhibitory neurons was about the same as the strength from inhibitory to 

excitatory (Figure 5B, bottom; Figure S8, middle).

Interestingly, a third circuit configuration likewise gave rise to excitatory and inhibitory 

neurons with matched classification accuracy near the biologically plausible regime (Figure 

5C, bottom; Figure S8, right). Here, inhibitory neurons were connected to excitatory neurons 

with a high signal-to-noise (SNR) ratio (Figure 5C, top).

Our modeling results raise two questions. First, how can the inhibitory population have 

higher classification accuracy than the excitatory population (Figure 5B,C, bottom; for part 

of the plot, red is above blue) given that all information about the choice flows through the 

excitatory neurons. Second, why is the relative strength of the excitatory to inhibitory vs. 

inhibitory to excitatory connections the critical parameter (Figure 5, bottom; x-axis)? The 

answers are related. Increasing the strength of the excitatory to inhibitory connections 

increases the signal in the inhibitory neurons, effectively decreasing the noise added to the 

inhibitory population (see Methods for details). This decrease in noise leads to improved 

decoding accuracy of both populations, because they are connected. However, the decrease 

in the noise added to the inhibitory neurons has a bigger effect on the inhibitory than the 
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excitatory population because the noise directly affects the inhibitory neurons, but only 

indirectly, through the inhibitory to excitatory connections, affects the excitatory neurons. 

Thus, in all panels of Figure 5, classification accuracy increases faster for inhibitory neurons 

than excitatory ones as the excitatory to inhibitory connection strength increases. 

Interestingly, classification accuracy of both populations was overall higher for the signal-

selective and SNR-selective models because the selective targeting in those models mitigates 

the noise that limits classification accuracy. This advantage was most pronounced for the 

signal-selective model: the model has significantly higher classification accuracy compared 

to other models at all values of connectivity strength and noise (Figure S9). This may 

indicate that the signal-selective network configuration is especially advantageous to 

accurate decoding in the presence of noise.

Overall, the modeling rules out decision circuits with non-selective inhibition (Figure 5A), 

and instead demonstrates that excitatory and inhibitory neurons in decision circuits must be 

selectively connected, either based on the signal preference (Figure 5B) or the 

informativeness (Figure 5C) of excitatory neurons.

Correlations are stronger between similarly tuned neurons

If choice selectivity in inhibitory neurons emerges because of targeted input from excitatory 

neurons, one prediction is that correlations will be stronger between excitatory and 

inhibitory neurons with the same choice selectivity compared to those with the opposite 

choice selectivity (Cossell et al., 2015; Francis et al., 2018). To test this hypothesis, we 

compared pairwise noise correlations in the activity of neurons with same vs. opposite 

choice selectivity (Methods). Indeed, neurons with the same choice selectivity had stronger 

correlations (Figure 6A), in keeping with previous observations in mouse V1 during passive 

viewing (Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015; Znamenskiy et al., 2018), 

as well as the prefrontal cortex in behaving monkeys (Constantinidis and Goldman-Rakic, 

2002).

The higher noise correlations among similarly tuned excitatory-inhibitory neuron pairs is 

also consistent with the observation that in V1, excitatory and inhibitory neurons that belong 

to the same subnetwork are reciprocally connected (Yoshimura and Callaway, 2005). An 

alternative explanation, that the neurons with similar tuning share common inputs, is also 

possible. If that is the case, however, the common input is not exclusively stimulus driven 

because we observed the same correlation effects in the pre-trial period in which there is no 

stimulus (Figure S10A).

We next compared the strength of pairwise noise correlations within excitatory and 

inhibitory populations. Inhibitory pairs had significantly higher noise correlations compared 

to excitatory pairs (Figure 6B,C: noise correlations; Figure S10C: spontaneous correlations). 

This was true even when we restricted the analysis to inhibitory and excitatory neurons with 

the same inferred spiking activity (Figure S10D,E). Finally, similar to previous reports 

(Hofer et al., 2011; Khan et al., 2018), we found intermediate correlations for pairs 

consisting of one inhibitory neuron and one excitatory neuron (Figure S10B,C). Our findings 

align with previous studies in sensory areas reporting stronger correlations among inhibitory 
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neurons (Hofer et al., 2011; Khan et al., 2018). The correlations are likely driven at least in 

part by local connections, as evidenced by the dense connectivity of interneurons with each 

other (Galarreta and Hestrin, 1999; Packer and Yuste, 2011; Kwan and Dan, 2012). The 

difference we observed between excitatory and inhibitory neurons argues that this feature of 

early sensory circuits is shared by decision-making areas. Further, this clear difference 

between excitatory and inhibitory neurons, like the difference in inferred spiking (Figure 

1G-I) and outcome selectivity (Figure S6C), confirms that we successfully measured two 

distinct populations. Overall, noise correlation analyses suggest that selective connectivity 

between excitatory and inhibitory neurons depends on their functional properties.

Noise correlations limit decoding accuracy

Our results thus far demonstrate that neural activity in both excitatory and inhibitory 

populations reflect an animal’s impending choice (Figure 3B,C), and that there are 

significant noise correlations among neurons in PPC (Figure 6). However, the analyses so far 

do not demonstrate how this noise affects the ability to decode neural activity. Examining 

the effect of noise is essential because correlations affect classifier performance (Panzeri et 

al., 1999; Averbeck et al., 2006) even when correlations are weak (Averbeck et al., 2006; 

Moreno-Bote et al., 2014). Fortunately, our dataset with simultaneous activity from hundreds 

of neurons is especially well-suited to assess noise correlations.

To examine how noise correlations affect classification accuracy, we sorted neurons based 

on individual choice selectivity, adding them one by one to the population (from highest to 

lowest choice selectivity defined as ∣AUC-0.5∣). Classification accuracy improved initially as 

more neurons were included in the decoder, but quickly saturated (Figure 7A, black).

To assess the effect of noise correlations on classification accuracy, we created “pseudo 

populations”, in which each neuron in the population was taken from a different trial (Figure 

7A gray). This removed noise correlations because those are shared across neurons within a 

single trial. Higher classification accuracy in pseudo populations compared to real 

populations indicates the presence of noise that overlaps with signal, limiting information 

(Panzeri et al., 1999; Averbeck et al., 2006; Averbeck and Lee, 2006; Moreno-Bote et al., 

2014). This is what we observed (Figure 7A, gray trace above black trace). In all mice, 

removing noise correlations resulted in a consistent increase in classification accuracy 

(Figure 7B; filled vs. open circles), establishing that noise correlations limit population 

accuracy in PPC.

Selectivity increases in parallel in inhibitory and excitatory populations 

during learning

Our observations thus far argue that excitatory and inhibitory neurons form selective 

subnetworks. To assess whether the emergence of these subnetworks is experience-

dependent, and if it varies between inhibitory and excitatory populations, we measured 

neural activity as animals transitioned from novice to expert decision-makers (3 mice; 35-48 

sessions; Figure S11). We trained a linear classifier for each training session, and for each 

moment in the trial.
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Classification accuracy of the choice decoder increased consistently as animals became 

experts in decision-making (Figure 8A, left; Figure 8D, black), leading to a strong 

correlation between classifier accuracy and mouse performance over training (Figure 8B, 

left). The choice signal also became more prompt, emerging progressively earlier in the trial 

as mice became experts. Initially, classification accuracy was high only after the choice 

(Figure 8A, black arrow). As the animals gained experience, high classification accuracy 

occurred progressively earlier in the trial, eventually long before the choice (Figure 8A, gray 

arrow). This resulted in a negative correlation between mouse performance and the onset of 

super-threshold decoding accuracy (Figure 8C, left; Figure 8E, black).

Importantly, the choice signal emerged at the same time in both populations, and its 

magnitude and timing was matched for the two cell types throughout learning (Figure 8A-C, 

middle, right; Figure 8D-E, blue, red). This was not due to the presence of more correct 

trials in later sessions: an improvement in classification accuracy was clear even when the 

number of correct trials was matched for each session (Figure S13C). These findings 

indicate that learning induces the simultaneous emergence of choice-specific subpopulations 

in excitatory and inhibitory cells in PPC.

Notably, the animal’s licking or running behavior could not explain the learning-induced 

changes in the magnitude of classification accuracy (Figure S12). The center-spout licks 

preceding left vs. right choices were similar during the course of learning (Figure S12A), 

and did not differ in early vs. late training days (Figure S12B). The similarity in lick 

movements for early vs. late sessions contrasts the changes in the classification accuracy for 

early vs. late sessions (Figure 8). We also assessed running behavior during learning (Figure 

S12C,D). In some sessions, running distance differed preceding left vs. right choices (Figure 

S12C). Nonetheless, when we restricted our analysis to days in which running distance was 

indistinguishable for the two choices (0-97 ms before the choice, t-test, P>0.05), classifiers 

could still accurately predict the choice (Figure S12D). These observations provide 

reassurance that population activity does not entirely reflect preparation of licking and 

running movements, and argue instead that population activity reflects the animal’s 

stimulus-informed choice.

Finally, we studied how correlations changed over training. Pairwise correlations in neural 

activity were higher early in training, when mice were novices, compared to late in training, 

when mice approached expert behavior (Figure 8F, unsaturated colors above saturated 

colors). This was observed for all combinations of neural pairs (Figure 8F). These findings 

agree with previous reports suggesting that learning results in reduced noise correlations (Gu 

et al., 2011; Jeanne et al., 2013; Khan et al., 2018; Ni et al., 2018), enhancing information in 

neural populations. To test if the learning-induced increase in classification accuracy (Figure 

8A,B,D) was entirely a consequence of the reduction in noise correlations (Figure 8F), we 

studied how classification accuracy of pseudo populations, which lack noise correlations, 

changed with training. Interestingly, a significant increase in the classification accuracy of 

pseudo populations was present (Figure S13A,B). Therefore, the reduction in noise 

correlations cannot alone account for the improved classification accuracy during learning, 

suggesting that increased choice selectivity of individual neurons also contributes. Indeed, 
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the fraction of choice-selective neurons increased threefold during training, in both 

excitatory and inhibitory neurons (Figure 8G).

Discussion

Despite a wealth of studies assessing selectivity of inhibitory neurons for sensory features, 

little is known about the selectivity of inhibitory neurons in decision-making. This is a 

critical gap, and has left untested key features of decision-making models relying on 

inhibitory neurons. To close this gap, we simultaneously measured excitatory and inhibitory 

populations during perceptual decisions about multisensory stimuli.

We found that excitatory and inhibitory neurons predict the animal’s impending choice with 

equal fidelity (Figure 2,3). This result, along with our modeling (Figure 5), constrains circuit 

models of decision-making, ruling out models in which inhibitory neurons receive 

completely nonspecific input from excitatory populations (Figure 5A). Instead, our findings 

suggest that specific functional subnetworks exist within inhibitory populations, just like 

excitatory populations (Figure 5B). This implies targeted connectivity between excitatory 

and inhibitory neurons (Yoshimura and Callaway, 2005; Znamenskiy et al., 2018), and 

supports circuit architectures with functionally specific, reciprocally connected subnetworks.

A documented advantage of signal-selective architectures is that they can offer improved 

stability (Znamenskiy et al., 2018) and robustness to perturbations (Lim and Goldman, 

2013). However, in our circuit, selectivity did not improve stability but instead improved 

performance: classification accuracy for the signal selective model was the highest of the 

three we tested (Figure 5B, bottom row, Figure S9). These observations raise the possibility 

that among possible circuit architectures that could have been leveraged by the brain to 

support decision-making, the highest-performing one was chosen.

The equal selectivity for choice that we observed in excitatory and inhibitory populations is 

perhaps, at first, surprising, given the broad stimulus tuning curves observed in most V1 

inhibitory neurons (Sohya et al., 2007; Niell and Stryker, 2008; Kerlin et al., 2010; Bock et 

al., 2011; Hofer et al., 2011; Znamenskiy et al., 2018) (but see Runyan et al., 2010) and the 

dense connectivity for inhibitory neurons (Hofer et al., 2011; Packer and Yuste, 2011; 

Znamenskiy et al., 2018). Two differences between our study and previous ones may explain 

why we saw equal selectivity in excitatory and inhibitory populations.

First, we measured neural activity in PPC where the proportion of interneuron subtypes 

differs from V1: V1 is enriched for PV interneurons relative to SOM and VIP neurons, 

whereas the opposite is true in association areas (Kim et al., 2017; Wang and Yang, 2018). 

Moreover, interneuron subtypes vary in their specificity of connections (Pfeffer et al., 2013); 

for instance, PV interneurons have broader tuning than SOM and VIP cells (Wang et al., 

2004; Ma et al., 2010). Therefore, the strong selectivity we found in all GABAergic 

interneurons in PPC may not contradict the broad selectivity observed in studies largely 

performed on PV interneurons in V1. Future studies that measure the selectivity of distinct 

interneuron populations during decision-making in V1 vs. PPC will be helpful. Here, we 

measured all GABAergic interneurons instead of individual interneuron subtypes because of 
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the technical challenge in reliably identifying more than two cell types in a single mouse, 

and because of the importance of simultaneously measuring the activity of excitatory and 

inhibitory neurons within the same subject. Had we lacked within-mouse measurements, our 

ability to compare excitatory vs. inhibitory neurons would have been compromised by 

mouse-to-mouse variability (note matched selectivity of excitatory and inhibitory neurons 

within mice in Figure 3C despite overall variability across mice).

Second, analyzing neural activity in the context of decision-making naturally led us to make 

different comparisons than those carried out previously. For example, we measured 

selectivity for a binary choice, while sensory tuning curves are measured in response to 

continuously varying stimuli (e.g., orientation). Further, we measured activity in response to 

abstract stimuli, the meaning of which was learned gradually by the animal. This may recruit 

circuits that differ from those supporting sensory processing in passively viewing mice. 

Finally, we used stochastically fluctuating multisensory stimuli, which have not been 

evaluated in mouse V1.

Future studies that examine the tuning of V1 neurons to the sensory stimulus used here will 

determine if V1 inhibitory neurons will be as sharply tuned as excitatory neurons to the 

stimulus. This is a possibility: the tuning strength of interneurons can vary substantially for 

different stimulus features. For instance, PV neurons in V1 have particularly poor tuning to 

orientation, but their temporal-frequency tuning is considerably stronger (Znamenskiy et al., 

2018).

We not only studied expert animals, but also evaluated how acquiring expertise modulates 

activity. We observed that learning increased the number of choice-selective neurons and 

decreased noise correlations, indicating plasticity and reorganization of connections. 

Population responses preceding the two choices thus became progressively more distinct 

with training. Importantly, these changes occur in parallel in excitatory and inhibitory cells. 

Our findings are partially in agreement with those in V1, in which learning improves tuning 

to sensory stimuli in excitatory (Schoups et al., 2001; Poort et al., 2015; Khan et al., 2018) 

and some inhibitory (Khan et al., 2018) neurons. However, V1 excitatory neurons have 

stronger tuning to sensory stimuli early in training (Khan et al., 2018); in contrast, in our 

study, the magnitude of choice selectivity in PPC was the same for both cell types 

throughout training (Figure 8). Primate studies have likewise observed that perceptual 

learning changes the selectivity of neurons (Freedman and Assad, 2006; Law and Gold, 

2008; Viswanathan and Nieder, 2015) and reduces noise correlations (Gu et al., 2011; Ni et 

al., 2018).

Finally, we demonstrated that learning-induced changes in selectivity were closely 

associated with changes in animal performance, in keeping with primate studies of decision-

making (Law and Gold, 2008). This, together with our finding that changes in population 

activity do not purely reflect movements (Figure S12), corroborates the suggested role for 

PPC in mapping sensation to action (Law and Gold, 2008; Raposo et al., 2014; Pho et al., 

2018). Future experiments using causal manipulations will reveal whether the increased 

choice selectivity we observed in PPC originates there or is inherited from elsewhere in the 

brain.
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By measuring cell-type-specific activity in parietal cortex during decision-making, we 

observed that excitatory and inhibitory populations are equally choice-selective, and that 

these ensembles emerge in parallel, as mice become skilled decision-makers. These results 

argue against models with non-specific connectivity between excitatory and inhibitory 

neurons, at least in decision circuits. Future modeling efforts can incorporate subnetworks 

and evaluate their impact on key model outputs, such as reaction time distributions and firing 

rates. Such studies will shed light on how microcircuits of inhibitory and excitatory neurons 

vary across areas in their selectivity and specificity of connections, and will reveal the circuit 

architectures that allow for equally selective inhibitory and excitatory neurons.

STAR Methods

Lead contact and materials availability

Lead contact for additional inquiry: churchland@cshl.edu. This study did not generate new 

unique reagents.

Experimental model and subject details

Gad2-IRES-CRE (Taniguchi et al., 2011) mice were crossed with Rosa-CAG-LSL-

tdTomato-WPRE (aka Ai14; Madisen et al., 2010) to create mice in which all GABAergic 

inhibitory neurons were labeled. Adult mice (~2-month old; female and male) were used in 

the experiments.

Method Details

Surgical procedure—Meloxicam (analgesic), dexamethasone (anti-inflammatory) and 

Baytril (enrofloxacin; antibiotic) were injected 30min before surgery. Using a biopsy punch, 

a circular craniotomy (diameter: 3mm) was made over the left PPC (stereotaxic coordinates: 

2 mm posterior, 1.7 mm lateral of bregma (Harvey et al., 2012) under isoflurane (~5%) 

anesthesia. Pipettes (10-20 um in diameter, cut at an angle to provide a beveled tip) were 

front-filled with AAV9-Synapsin-GCaMP6f (U Penn, Vector Core Facility) diluted 2X in 

PBS (Phosphae-buffered saline). The pipette was slowly advanced into the brain (Narishige 

MO-8 hydraulic micro-manipulator) to make ~3 injections of 50nL, slowly over an interval 

of ~5-10 min, by applying air pressure using a syringe. Injections were made near the center 

of craniotomy at a depth of 250-350 μm below the dura. A glass plug consisting of a 5mm 

coverslip attached to a 3mm coverslip (using IR-curable optical bond, Norland) was used to 

cover the craniotomy window. Vetbond, followed by metabond, was used to seal the 

window. All surgical and behavioral procedures conformed to the guidelines established by 

the National Institutes of Health and were approved by the Institutional Animal Care and 

Use Committee of Cold Spring Harbor Laboratory.

Imaging—We used a 2-photon Moveable Objective Microscope with resonant scanning at 

approximately 30 frames per second (Sutter Instruments, San Francisco, CA). A 16X, 0.8 

NA Nikon objective lens was used to focus light on fields of view of size 512×512 pixels 

(~575 μm × ~575 μm). A Ti:sapphire laser (Coherent) delivered excitation light at 930nm 

(average power: 20-70 mW). Red (ET670/50m) and green (ET 525/50m) filters (Chroma 

Technologies) were used to collect red and green emission light. The microscope was 
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controlled by Mscan (Sutter). In mice in which chronic imaging was performed during 

learning, the same plane was identified on consecutive days using both coarse alignment, 

based on superficial blood vessels, as well as fine alignment, using reference images of the 

red channel (tdTomato expression channel) at multiple magnification levels. For each trial, 

imaging was started 500ms before the trial-initiation tone, and continued 500ms after reward 

or time-out. We aimed to image in the center of the window for all mice, but in one animal 

(Mouse 4), some tissue regrowth obscured the signal in this region and so imaging was 

performed slightly further back.

Decision-making behavior—Mice were gradually water restricted over the course of a 

week, and were weighed daily. Mice harvested at least 1 mL of water per behavioral/

imaging session, and completed 100-500 trials per session. After approximately one week of 

habituation to the behavioral setup, 15-30 training days were required to achieve 75% 

correct choice. Animal training took place in a sound isolation chamber. The stimulus in all 

trials was multisensory, consisting of a series of simultaneous auditory clicks and visual 

flashes, occurring with Poisson statistics (Brunton et al., 2013; Odoemene et al., 2017). 

Multisensory stimuli were selected because they increased the learning rate of the mice, a 

critical consideration since GCaMP6f expression can be unreliable over a long period of 

time. Stimulus duration was 1000 ms. Each pulse was 5 ms; minimum interval between 

pulses was 32 ms, and maximum interval was 250 ms. The pulse rate ranged from 5 to 27 

Hz. The category boundary for marking high-rate and low-rate stimuli was 16 Hz, at which 

animals were rewarded randomly on either side. The highest stimulus rates used here are 

known to elicit reliable, steady state flicker responses in retinal ERG in mice (Krishna et al., 

2002; Tanimoto et al., 2015).

Mice were on top of a cylindrical wheel and a rotary encoder was used to measure their 

running speed. Trials started with a 50 ms initiation tone (Figure S1A). Mice had 5 sec to 

initiate a trial by licking the center waterspout (Marbach and Zador, 2017), after which the 

multisensory stimulus was played for 1 second. If mice again licked the center waterspout, 

they received 0.5 μL water on the center spout, and a 50ms go cue was immediately played. 

Animals had to report a choice by licking to the left or right waterspout within 2 sec. Mice 

were required to confirm their choice by licking the same waterspout one more time within 

300 ms after the initial lick (Marbach and Zador, 2017). The “confirmation lick” helped 

dissociate the choice time (i.e. the time of first lick to the side waterspout), from the reward 

time (i.e. the time of second lick to the side waterspout); it also helped with reducing 

impulsive choices. If the choice was correct, mice received 2-4 μL water on the 

corresponding waterspout. An incorrect choice was punished with a 2 sec time-out. The 

experimenter-imposed inter-trial intervals (ITIs) were drawn from a truncated exponential 

distribution, with minimum, maximum, and lambda equal to 1 sec, 5 sec, and 0.3 sec, 

respectively. However, the actual ITIs could be much longer depending on when the animal 

initiates the next trial. Bcontrol (Raposo et al., 2014) with a Matlab interface was used to 

deliver trial events (stimulus, reward, etc) and collect data.

Logistic regression model of behavior—A modified version of a logistic regression 

model in (Busse et al., 2011) was used to assess the extent to which the animal’s choice 
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depends on the strength of sensory evidence (how far the stimulus rate is from the category 

boundary at 16Hz), the previous choice outcome (success or failure) and ITI, (the time 

interval between the previous choice and the current stimulus onset) (Figure S1B). The 

model has the form

p = 1
1 + e−z

z = β0 + (βr1R1 + βr2R2 + βr3R3 + βr4R4 + βr5R5 + βr6R6) + (βs1S1 + βs2S2) +

(β f 1F1 + β f 2F2)

eq.1

where p is the probability of choosing left. Stimulus strength (R) was divided into 6 bins (R1 

to R6). Previous success (S) was divided into 2 bins (S1 to S2), with S1 referring to success 

after a long ITI (> 7sec) and S2 to success after a short ITI (< 7sec). Previous failure (F) was 

divided into 2 bins (F1 to F2), with F1 referring to failure after a long ITI and F2 to failure 

after a short ITI. For example, if a trial had stimulus strength 3 Hz, and was preceded by a 

success choice with ITI 5 sec, then R2 and S1 would be set to 1 and all other R, S and F 

parameters to 0 (Figure S1B).

For each session the scalar coefficients β0, βr1 to βr6, βs1, βs2, βf1, and βf2 were fit using 

Matlab glmfit.m. Figure S1B left shows βr1 to βr6. Figure S1B middle shows βs1 and βs2, 

and Figure S1B right shows βf1 and βf2.

ROI (region of interest) extraction and deconvolution—The recorded movies from 

all trials were concatenated and corrected for motion artifacts by cross-correlation using 

Discrete Fourier Transform (DFT) registration (Guizar-Sicairos et al., 2008). Subsequently, 

active ROIs (sources) were extracted using the Constrained Nonnegative Matrix 

Factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) as implemented in the 

CaImAn package (Giovannucci et al., 2019) in MATLAB. The traces of the identified 

neurons were ΔF/F normalized and then deconvolved by adapting the FOOPSI 

deconvolution algorithm (Vogelstein et al., 2010; Pnevmatikakis et al., 2016) to a multi-trial 

setup. This was necessary because simply concatenating individual trials would lead to 

discontinuities in the traces, which could distort estimates of the time constants. Each value 

of Foopsi deconvolution represents spiking activity at each frame for a given neuron. We 

have referred to the deconvolved values as "inferred spiking activity" throughout the paper. 

The deconvolved values do not represent absolute firing rates, so they cannot be compared 

across neurons. However, for a particular neuron, higher inferred spiking activity means 

higher firing rate. We elected to base our analyses on inferred spiking activity rather than 

fluorescence activity because peak amplitudes and time constants of the fluorescence 

responses vary across neurons, affecting subsequent analyses (Machado et al., 2015; 

Helmchen and Tank, 2019).

We adapted the FOOPSI for multi-trial setup as follows. For each component, the activity 

trace over all the trials was used to determine the time constants of the calcium indicator 

dynamics as in (Pnevmatikakis et al., 2016). Then the neural activity during each trial was 

deconvolved separately using the estimated time constant and a zero baseline (since the 
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traces were ΔF/F normalized). A difference of exponentials was used to simulate the rise and 

decay of the indicator.

Neuropil Contamination removal—The CNMF algorithm demixes the activity of 

overlapping neurons. It takes into account background neuropil activity by modeling it as a 

low rank spatiotemporal matrix (Pnevmatikakis et al., 2016). In this study a rank two matrix 

was used to capture the neuropil activity. To evaluate its efficacy, we compared the traces 

obtained from CNMF to the traces from a “manual” method similar to (Chen et al., 2013) 

(Figure S14): the set of spatial footprints (shapes) extracted from CNMF were binarized by 

thresholding each component at 20% of its maximum. The binary masks were then used to 

average the raw data and obtain an activity trace that also included neuropil effects. To 

estimate the background signal, an annulus around the binary mask was constructed with 

minimum distance 3 pixels from the binary mask and width 7 pixels (Figure S14A). The 

average of the raw data over the annulus defined the background trace, which was subtracted 

from the activity trace. The resulting trace was then compared with the CNMF estimated 

temporal trace for this activity. The comparison showed a very high degree of similarity 

between the two traces (Figure S14; example component; r=0.96), with the differences 

between the components being attributed to noise and not neuropil related events. Note that 

this “manual” approach is only applicable in the case when the annulus does not overlap 

with any other detected sources. These results demonstrate the ability of the CNMF 

framework to properly capture neuropil contamination and remove it from the calcium 

traces.

ROI inclusion criteria—We excluded poor-quality ROIs identified by the CNMF 

algorithm based on a combination of criteria: 1) size of the spatial component, 2) decay time 

constant, 3) correlation of the spatial component with the raw ROI image built by averaging 

spiking frames, 4) correlation of the temporal component with the raw activity trace, and 5) 

the probability of fluorescence traces maintaining values above an estimated signal-to-noise 

level for the expected duration of a calcium transient(Giovannucci et al., 2018) (GCaMP6f, 

frame rate: 30Hz). A final manual inspection was performed on the selected ROIs to validate 

their shape and trace quality.

Identification of inhibitory neurons—We used a two-step method to identify inhibitory 

neurons. First, we corrected for bleed-through from green to red channel by considering the 

following regression model,

ri(t) = βi1p + sgi(t) + ϵ eq.2

where, ri(t) and gi(t) are vectors, indicating pixel intensity in red and green channel, 

respectively, with each component of the vector corresponding to one pixel in the ROI, i 
labels ROI (presumably each ROI is a neuron), βi is the offset, 1p is a vector whose 

components are all 1, and s is the parameter that tells us how much of the green channel 

bleeds through to the red one.

It is the parameter s that we are interested in. To find s, we define a cost function, C,
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C = ∫ dt∑i ri(t) − βi1p + sgi(t)
2

eq.3

and minimize it with respect to s and all the βi. The value of s at the minimum reflects the 

fraction of bleed-through from the green to the red channel. That value, denoted s*, is then 

used to compute the bleedthrough-corrected image of the red-channel, denoted I via the 

expression

I = R − s∗ G eq.4

where R and G are the time-averaged images of the red and green channels, respectively.

Once the bleedthrough-corrected image, I, was computed, we used it to identify inhibitory 

neurons using two measures,

1) A measure of local contrast, by computing, on the red channel (I, eq. 4), the average pixel 

intensity inside each ROI mask relative to its immediate surrounding mask (width=3 pixels). 

Given the distribution of contrast levels, we used two threshold levels, TE and TI, defined, 

respectively, as the 80th and 90th percentiles of the local contrast measures of all ROIs. ROIs 

whose contrast measure fell above TI were identified as inhibitory neurons. ROIs whose 

contrast measure fell below TE were identified as excitatory neurons, and ROIs with the 

contrast measure in between TE and TI were not classified as either group (“unsure” class).

2) In addition to a measure of local contrast, we computed for each ROI the correlation 

between the spatial component (ROI image on the green channel) and the corresponding 

area on the red channel. High correlation values indicate that the ROI on the green channel 

has a high signal on the red channel too; hence the ROI is an inhibitory neuron. We used this 

correlation measure to further refine the neuron classes computed from the local contrast 

measure (i.e. measure 1 above). ROIs that were identified as inhibitory based on their local 

contrast (measure 1) but had low red-green channel correlation (measure 2), were reset as 

“unsure” neurons. Similarly, ROIs that were classified as excitatory (based on their local 

contrast) but had high red-green channel correlation were reclassified as unsure. Unsure 

ROIs were included in the analysis of all-neuron populations (Figure 3A left); but were 

excluded from the analysis of excitatory only or inhibitory only populations (Figure 3A 

middle, right). Finally, we manually inspected the ROIs identified as inhibitory to confirm 

their validity. This method resulted in 11% inhibitory neurons, which is within the range of 

previous studies (10-20%: Rudy et al., 2011); (15%: Beaulieu, 1993); (16%: Gabbott et al., 

1997); (<5%: de Lima and Voigt, 1997); (10-25%: de Lima et al., 2009).

ROC analysis—The area under the ROC curve (AUC) was used to measure the choice 

preference of single neurons. Choice selectivity was defined as the absolute deviation of 

AUC from chance level: choice selectivity = 2*∣AUC-0.5∣. To identify significantly choice-

selective neurons, for each neuron we performed ROC on shuffled trial labels (i.e. left and 

right choices were randomly assigned to each trial). This procedure was repeated 50 times to 

create a distribution of shuffled AUC values for each neuron (Figure S3A, “shuffled”). A 

neuron’s choice selectivity was considered to be significant if the probability of the actual 
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AUC (Figure S3A, “real”) being drawn from the shuffled AUC distribution was less than 

0.05. Time points from 0–97 ms before the decision were used to compute the fraction of 

choice-selective neurons (Figure 2B; Figure 8G).

Decoding population activity—A linear SVM (Python sklearn package) was trained on 

each bin of the population activity in each session (non-overlapping 97ms time bins). To 

break any dependencies on the sequence of trials, we shuffled the order of trials for the 

entire population. To avoid bias in favor of one choice over the other, we matched the 

number of left- and right-choice trials used for classifier training. L2 regularization was used 

to avoid over-fitting. 10-fold cross validation was performed by leaving out a random 10% 

subset of trials to test the classifier performance, and using the remaining trials for training 

the classifier. This procedure was repeated 50 times. A range of regularization values was 

tested, and the one that gave the smallest error on the validation dataset was chosen as the 

optimal regularization parameter. Classifier accuracy was computed as the percentage of 

testing trials in which the animal’s choice was accurately predicted by the classifier, and 

summarized as the average across the 50 repetitions of trial subsampling. A minimum of 10 

correct trials per choice was required in order to run the SVM on a session. Inferred spiking 

activity of each neuron was z-scored before running the SVM.

When comparing classification accuracy for excitatory vs. inhibitory neurons, the excitatory 

population was randomly sub-sampled to match the population size of inhibitory neurons to 

enable a fair comparison (Figure 3, blue vs. red). To compare the distribution of weights in 

the all-neuron classifier (Figure 3 black), the weight vector for each session was normalized 

to unity length (Figure 3D-F).

When decoding the stimulus category (Figure S6B), we used stimulus-aligned trials, and 

avoided any contamination by the choice signal by sub-selecting equal number of left and 

right choice trials for each stimulus category. When decoding trial outcome (Figure S6C), 

we used outcome-aligned trials, and avoided contamination by the choice or stimulus signal 

by subselecting equal number of trials from left and right choice trials for each trial 

outcome.

Stability—To test the stability of the population code, decoders were trained and tested at 

different time bins (Kimmel et al., 2016) (Figure 4). To avoid the potential effects of auto-

correlation, we performed cross validation not only across time bins, but also across trials. In 

other words, even though the procedure was cross validated by testing the classifier at a time 

different from the training time, we added another level of cross-validation by testing on a 

subset of trials that were not used for training. This strict method allowed our measure of 

stability duration to be free of auto-correlation effects.

As an alternative measure of stability, the angle between pairs of classifiers that were trained 

at different moments in the trial was computed (Figure S7C). Small angles indicate 

alignment, hence stability, of the classifiers. Large angles indicate misalignment, i.e. 

instability of the classifiers.
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Noise correlations—To estimate noise correlations, the order of trials was shuffled for 

each neuron independently. Shuffling was done within the trials of each choice, hence 

retaining the choice signal, while de-correlating the population activity to remove noise 

correlations. Then we classified population activity in advance of left vs. right choice (at 

time bin 0–97 ms before the choice) using the de-correlated population activity. This 

procedure was performed on neural ensembles of increasingly larger size, with the most 

selective neurons (the ones with the largest value of ∣AUC-0.5∣) added first (Figure 7A). To 

summarize how noise correlations affected classification accuracy in the population (Figure 

7B), we computed, for the largest neural ensemble (Figure 7A, max value on the horizontal 

axis), the change in classifier accuracy in the de-correlated data (“pseudo populations”) vs. 

the original data. This analysis was only performed for the entire population; the small 

number of inhibitory neurons in each session prevented a meaningful comparison of 

classification accuracy on real vs. pseudo populations.

To measure pairwise noise correlations, we subtracted the trial-averaged response to a 

particular choice from the response of single trials of that choice. This allowed removing the 

effect of choice on neural responses. The remaining variability in trial-by-trial responses can 

be attributed to noise correlations, measured as the Pearson correlation coefficient for neuron 

pairs. We also measured noise correlations using the spontaneous activity defined as the 

neural responses in 0-97 ms preceding the trial initiation tone (Figure S10A,C). We 

computed the pairwise correlation coefficient (Pearson) for a given neuron with each other 

neuron within an ensemble (e.g., excitatory neurons). The resulting coefficients were then 

averaged to generate a single correlation value for that neuron. This was repeated for all 

neurons within the ensemble (Figure 6).

To compute pairwise correlations on excitatory and inhibitory neurons with the same 

inferred spiking activity (Figure S10D,E), we computed the median inferred spiking activity 

across trials for individual excitatory and inhibitory neurons in a session. The medians were 

then divided into 50 bins. The firing-rate bin that included the maximum number of 

inhibitory neurons was identified (“max bin”); inhibitory and excitatory neurons whose 

firing rate was within this “max bin” were used for the analysis. The firing rates were 

matched for these neurons because their median firing rate was within the same small bin of 

firing rates. Pairwise correlations were then computed as above.

Learning analysis—In 3 of the mice, the same field of view was imaged each session 

during learning. This was achieved in two ways. First, the vasculature allowed a coarse 

alignment of the imaging location from day to day. Second, the image from the red channel 

was used for a finer alignment. Overall, most neurons were stably present across sessions 

(Figure S11). This suggests that we likely measured activity from a very similar population 

each day. Importantly, however, our conclusions do not rely on this assumption: our 

measures and findings focus on learning-related changes in the PPC population overall, as 

opposed to tracking changes in single neurons. To assess how population activity changed 

over learning, we evaluated classification accuracy each day, training a new decoder for each 

session. This approach allowed us to compute the best decoding accuracy for each session.
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“Early days” (Figure 8; Figures S12,S13) included the initial training days in which the 

animal’s performance, defined as the fraction of correct choices on easy trials, was lower 

than the 20th percentile of performance across all days. “Late days” (Figure 8; Figures 

S12,S13) included the last training days in which the animal’s behavioral performance was 

above the 80th percentile of performance across all days.

To measure the timing of decision-related activity (Figure 8C,E), we identified all sessions 

in which classifier accuracy was significantly different than the shuffle (t-test, p<0.05) over a 

window of significance that was at least 500 ms long. We defined the “choice signal onset” 

(Figure 8C,E) as the trial time corresponding to the first moment of that window. Sessions in 

which the 500 ms window of significance was present are included in Figure 8C. The 

number of points (and hence the relationship between session number and color in Figure 

8C) differs slightly across the three groups. This is because on some sessions, the window of 

significance was present in one group but not another. For example, in a session the 

population including all neurons might have a 500 ms window of significance, hence it will 

contribute a point to Figure 7C left, while the population with only inhibitory neurons might 

be only transiently significant for <500ms, hence it will be absent from Figure 8C right.

Modeling decision circuits—We considered a linearized rate network of the form

dvE
dt = − vE + WEE ⋅ vE − WEI ⋅ vI + hS + ξE

dvI
dt = − vI + WIE ⋅ vE − WII ⋅ vI + ξI

where E and I refer to the excitatory and inhibitory populations, respectively, νE and νI are 

vectors of firing rates (νE = νE1, νE2, …, and similarly for νI), WEE, WEI, WIE and WII 

are the connectivity matrices (WEI indicates connection from inhibitory to excitatory 

neuron), hs is the input, with s either 1 or 2 (corresponding to left and right licks), and ξ is 

trial to trial noise, taken to be zero mean and Gaussian, with covariance matrices

〈ξEξE〉 = ΣEE
〈ξIξI〉 = ΣII .

For the input we’ll assume that about half the elements of hs are h0 for the rightward choice 

and −h0 for the leftward choice, and the rest are −h0 for the rightward choice and h0 for the 

leftward choice. We used h0 = 0.1. The noise covariance is diagonal but non-identity, with 

diagonal elements distributed as

ΣEE, ii ∼ Unif σ − δ
2, σ + δ

2
ΣII, ii ∼ Unif σ − δ

2, σ + δ
2 .

The goal is to determine the value of s (that is, determine whether h1 or h2 was present) 

given the activity of a subset of the neurons from either the excitatory or inhibitory 

populations. We’ll work in steady state, for which
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vE = WEE ⋅ vE − WEI ⋅ vI + hS + ξE
vI = WIE ⋅ vE − WII ⋅ vI + ξI .

Solving for νE and νI yields

vE = JE ⋅ (hS + ξE − WEI ⋅ ξI)
vI = JI ⋅ (ξI + WIE(hS + ξE)

where

JE ≡ (I − WEE + WEI ⋅ WIE)−1

JI ≡ (I + WII + WIE ⋅ WEI)−1

WEI ≡ WEI(I + WII)−1

WIE ≡ WIE(I − WEE)−1,

and I is the identity matrix. We are interested in the decoding accuracy of a sub-population 

of neurons. For that we’ll use a matrix Dn that picks out n components of whatever it’s 

operating on. So, for instance, Dn · νE is an n-dimensional vector with components equal to 

n of the components of νE.

For a linear and Gaussian model such as ours, in which the covariance is independent of s, 

we need two quantities to compute the performance of an optimal decoder: the difference in 

the means of the subsampled populations when h1 vs. h2 are present, and covariance matrix 

of the subsampled populations. The difference in means are given by

Δ〈Dn ⋅ vE〉 = Dn ⋅ JE ⋅ Δh
Δ〈Dn ⋅ vI〉 = Dn ⋅ JI ⋅ WIE ⋅ Δh

where Δh is the difference between the two inputs,

Δh ≡ h1 − h2 .

The covariances are given by

Cov[Dn ⋅ vE] = Dn ⋅ JE ⋅ ΣEE + WEI ⋅ ΣII ⋅ WEI
T ⋅ JE

T ⋅ Dn
T

Cov[Dn ⋅ vI] = Dn ⋅ JI ⋅ ΣII + WIE ⋅ ΣEE ⋅ WIE
T ⋅ JI

T ⋅ Dn
T

where T denotes transpose. Combining the mean and covariance gives us the signal to noise 

ratio,
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(S ∕ N)E = Δh ⋅ JE
T ⋅ Dn

T ⋅ Dn ⋅ JE ⋅ ΣEE + WEI ⋅ ΣII ⋅ WEI
T ⋅ JE

T ⋅ Dn
T −1 ⋅ Dn ⋅ JE ⋅ Δh

(S ∕ N)I = Δh ⋅ WIE
T ⋅ JI

T ⋅ Dn
T ⋅ Dn ⋅ JI ⋅ ΣII + WIE ⋅ ΣEE ⋅ WIE

T ⋅ JI
T ⋅ Dn

T −1 ⋅ Dn ⋅ JI ⋅ WIE ⋅ Δh .

The performance of an optimal decoder is then given by

fraction correct = Φ S ∕ N
2

where Φ is the cumulative normal function. All of our analysis is based on this expression. 

Differences in fraction correct depend only on differences in the connectivity matrices, 

which we describe next.

Connectivity matrices: We consider three connectivity structures: completely non-selective, 

signal-selective, and signal-to-noise selective (corresponding to Figures 5A, 5B and 5C, 

respectively). In all cases the connectivity is sparse (the connection probability between any 

two neurons is 0.1). What differs is the connection strength when neurons are connected. We 

describe below how the connection strength is chosen for our three connectivity structures.

Non-selective.: The connectivity matrices have the especially simple form

Wαβ, i j =
wαβ

cN
with probability c

0 otherwise

where α, β ∈ {E, I}, N(≡ NE + NI) is the total number of neurons, and wαβ are parameters.

Signal-selective.: We divide the neurons into two sets of excitatory and inhibitory sub-

populations, as in Figure 5B. The connection strengths are still given by the above 

expression, but now α and β acquire subscripts that specify which population they are in: α, 

β ∈ {E1, E2, I1, I2}, with E1 and I1 referring to population 1 and E2 and I2 to population 2. 

The within-population connection strengths are the same as for the non-selective population 

(wαiβi = wαβ, i = 1, 2), but the across-population connection strengths are smaller by a factor 

of ρ,

wαi, β j
wαi, βi

= ρ

for i = 1 and j = 2 or vice-versa. The value of ρ determines how selective the sub-populations 

are: ρ = 0 corresponds to completely selective sub-populations while ρ = 1 corresponds to 

the completely non-selective case.

SNR- selective.: We choose the connectivity as in the non-selective case, and then change 

synaptic strength so that the inhibitory neurons receive stronger connections from the 
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excitatory neurons with high signal to noise ratios. To do that, we first rank excitatory units 

in order of ascending signal to noise ratio (by using D1 in the expression for (S/N)E in the 

previous section). We then make the substitution

WIE, i j WIE, i j
r j

NE

4

where rj is the rank of excitatory j in the order of ascending signal to noise ratio and, recall, 

NE is the number of excitatory neurons. This downweights projections from low signal to 

noise ratio excitatory neurons and upweights connections from high signal to noise ratio 

neurons. Finally, all elements are scaled to ensure that the average connection strength from 

the excitatory to the inhibitory network is the same as before the substitution.

Simulation details

• Noise level (σ) = 1.25

• Breadth of noise level distribution (δ) = 0.75

• Excitatory → excitatory coupling (wEE) = 0.25

• Inhibitory → inhibitory coupling (wII) = −2

• Excitatory → inhibitory coupling (reference) (wIE
(0)) = 0.87

• Inhibitory → excitatory coupling (reference) (wEI
(0)) = −0.87

• Connection probability (c) = 0.1

• Number of excitatory neurons (NE) = 4000

• Number of inhibitory neurons (NI) = 1000

• Number of readout neurons (n) = 50

• Input strength (h0) = 0.1

• Selectivity index (ρ) = 0.75

The simulation parameters are indicated above. In addition, there are a number of relevant 

details, the most important of which is related to the input, hs. As mentioned in the previous 

section, about half the elements of hs are h0 for the rightward choice and −h0 for the 

leftward choice, and the rest are h0 for the leftward choice −h0 for the rightward choice. This 

is strictly true for the completely non-selective and signal to noise selective connectivity; for 

the signal selective connectivity, we use hs,i = h0 for the rightward choice and −h0 for the 

leftward choice when excitatory neuron i is in population 1, and hs,i = h0 for the leftward 

choice and −h0 for the rightward choice when excitatory neuron i is in population 2. In either 

case, however, this introduces a stochastic element: for the completely non-selective and 

signal to noise selective connectivities, there is randomness in both the input and the circuit; 

for the signal selective connectivity, there is randomness in the circuit. In the former case, 

we can eliminate the randomness in the connectivity by averaging over the input, as follows.
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Because the components of Δh are independent, we have

〈Δhs, iΔhs, j〉 = δi j〈Δhs, i
2 〉

where δij is the Kronecker delta (δij = 1 if i = j and zero otherwise). Because Δhs,i is either 

+h0 or −h0, we have

〈ΔhΔh〉 = 4h0
2I

where I is the identity matrix. Thus, when we average the signal to noise ratios over Δh, the 

expressions simplify slightly,

〈(S ∕ N)E〉

4h0
2 = trace Dn ⋅ JE ⋅ ΣEE + WEI ⋅ ΣII ⋅ WEI

T ⋅ JE
T ⋅ Dn

T −1 ⋅ Dn ⋅ JE ⋅ JE
T ⋅ Dn

T

〈(S ∕ N)I〉

4h0
2 = trace Dn ⋅ JI ⋅ ΣII + WIE ⋅ ΣEE ⋅ WIE

T ⋅ JI
T ⋅ Dn

T −1 ⋅ Dn ⋅ JI ⋅ WIE ⋅ WIE
T ⋅ JI

T ⋅ Dn
T .

To avoid having to numerically average over input, we used these expressions when 

computing decoding accuracy for the completely non-selective and signal to noise selective 

connectivity. That left us with some randomness associated with the networks (as 

connectivity is chosen randomly), but that turned out to produce only small fluctuations, so 

each data point in Figures 5A and 5C was from a single network. For the signal selective 

connectivity (Figure 5B), the network realization turned out to matter, so we averaged over 

25 networks, and for each of them we did a further averaging over 100 random picks of the 

50 neurons from which we decoded.

In Figure 5, the x-axis is the ratio of the average connection strength from excitatory to 

inhibitory neurons to the average connection strength from inhibitory to excitatory neurons. 

This was chosen because it turned out to be the connectivity parameter with the largest effect 

on decoding accuracy. That in turn is because it turns out to be equivalent to the input noise 

to the inhibitory population. To see why, make the substitution

WIE γWIE
WEI γ−1WEI .

By letting νI → γνI, we see that this is formally equivalent to letting ξI → γ−1ξI, which in 

turn corresponds to letting ΣII → γ−2ΣII. Thus the x-axis in Figure 5 can be thought of as 

the axis of decreasing input noise to the inhibitory neurons.

We produced a range of values for γ by changing the coupling strengths between excitatory 

and inhibitory populations, while keeping their product constant at a reference value
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wIEwIE = wIE
(0)wEI

(0)

Immunofluorescence staining for TdTomato and GABA—To determine the fraction 

of inhibitory neurons that were labeled in our experiments, we performed double 

Immunofluorescence (IF) staining using antibodies against tdTomato (anti-RFP(tdTomato) 

Rockland 600-401-379) and GABA (anti-GAD67(GABA) MAB5406, EMD Millipore). 

Also, we used DAPI to stain the nuclei (Figure S15; GABA: green; tdTomato: red; DAPI: 

blue). 5 coronal sections which included the area PPC (Allen Brain Atlas) were used to 

quantify the fraction of overlap between GABA and tdTomato. We found GABA and 

tdTomato highly colocalized (Figure S15B-D; red and green are co-expressed in the vast 

majority of cells): 98.2 % of tdTomato neurons expressed GABA, and all of the GABAergic 

neurons expressed tdTomato. These results indicate a very high level of selectivity and 

specificity for the labeling of inhibitory neurons in GAD-Cre;Ai14 mice, confirming original 

reports for these transgenic lines (Taniguchi et al., 2011).

Quantification and statistical analysis

Our simultaneous imaging and decision-making dataset includes 135 sessions from 4 mice 

(45, 48, 7, and 35 sessions per mouse). Median number of trials per session is 213, 253, 264, 

and 222, for each mouse. On average, 480 neurons were imaged per session, out of which 

~40 neurons were inhibitory and ~330 were excitatory. Approximately 100 neurons per 

session were not classified as either excitatory or inhibitory since they did not meet our strict 

cell-type classification criteria (see below). In 3 of the mice, the same group of neurons was 

imaged throughout learning (35-48 training days).

All analyses were performed on inferred spiking activity. Traces were down-sampled, so 

each bin was the non-overlapping moving average of 3 frames (97.1 ms, which we refer to 

as 97 ms). Inferred spiking activity for each neuron was normalized so the max spiking 

activity for each neuron equaled 1. The trace of each trial was aligned to the time of the 

choice (i.e. the time of the 1st lick to either of the side waterspouts after the go tone). Two-

tailed t-test was performed for testing statistical significance. Summary figures including all 

mice were performed on the time bin preceding the choice, i.e. 0-97 ms before choice onset. 

All reported correlations are Pearson’s coefficients. Analyses were performed in Python and 

Matlab.

Data and code availability

All the data used in the paper are publicly available on CSHL repository: http://

repository.cshl.edu/36980/. Further, all the data is converted into the NWB format 

(Neurodata Without Boarders (Teeters et al., 2015; Ruebel et al., 2019), and is available on 

CSHL repository: https://dx.doi.org/10.14224/1.37693

Code for data processing and analysis is publicly available on github: https://github.com/

farznaj/imaging_decisionMaking_exc_inh
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Code for converting data to NWB format is also available on github:https://github.com/

vathes/najafi-2018-nwb

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Excitatory and inhibitory neurons are equally selective during decision-

making

• Selectivity of the two cell types increases in parallel during learning

• Models and experiments reject decision circuits with non-selective inhibition.

• Selective subnetworks of neurons emerge during learning to support decision-

making
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Figure 1. Simultaneous imaging of inhibitory and excitatory populations during decision-
making.
A. Behavioral apparatus. Multisensory stimuli are presented via a visual display and a 

speaker. To initiate trials, mice lick the middle waterspout. To report decisions about 

stimulus rate, mice lick left/right spouts. Objective: 2-photon microscope used to image 

neural activity through an implanted window. B. Psychometric function showing the fraction 

of trials in which the mouse chose “high” as a function of stimulus rate. Dots: mean (10 

mice). Line: Logit regression model (glmfit.m); mean across mice. Shaded area: standard 

deviation of the fit across mice. Dashed vertical line: category boundary (16Hz). C, Average 

image (10,000 frames). Left: green channel, GCaMP6f. Middle: red channel, tdTomato. 
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Right: merge of left and middle. Cyan circles: GCaMP6f-expressing neurons identified as 

inhibitory. D, Example neurons identified by the Constrained Nonnegative Matrix 

Factorization algorithm (Methods) (arrow: inhibitory neuron). Left: raw ΔF/F traces. 

Middle: de-noised traces. Right: inferred spiking activity. Imaging was not performed 

during inter-trial intervals; traces from 13 consecutive trials are concatenated; dashed lines: 

trial onset. E, Example session; 568 neurons. Rows: trial-averaged inferred spiking activity 

of a neuron (frame resolution: 32.4ms). Neurons are sorted based on timing of peak activity. 

To ensure peaks were not driven by noisy fluctuations, we first computed trial-averaged 

activity using 50% of trials for each neuron. We then identified the peak-activity time for the 

trial-averaged response. Finally, these peak times determined the plotting order for the trial-

averaged activity for the remaining 50% of trials. This cross-validated approach ensured that 

the tiling appearance of peak activities was not due to the combination of sorting and false-

color-plotting. Red ticks at right: inhibitory neurons (n=45). Red vertical lines: trial events; 

Duration between events varied across trials; to make trial-averaged traces, traces were 

separately aligned to each trial event, and then averaged across trials. Next, averaged traces 

(each aligned to a different trial event) were concatenated. Vertical blue lines: border 

between the concatenated traces. F, Trial-averaged inferred spiking activity of 4 excitatory 

(top) and 4 inhibitory (bottom) neurons, for ipsi- (black) and contralateral (green) choices 

(mean±standard error (SEM); ~250 trials per session). G, Inferred spiking activity for 

excitatory (blue) and inhibitory (red) neurons. Example mouse; mean±SEM across days 

(n=46). Each point corresponds to an average over trials and neurons. Inferred spiking 

activity was downsampled by averaging over three adjacent frames (Methods). H, 
Distribution of inferred spiking activity 0-97ms before choice (averaged over three frames) 

for all mice/sessions (41,723 excitatory; 5,142 inhibitory). I, Inferred spiking activity 

0-97ms before the choice (averaged over three frames) for individual mice (mean±SEM 

across days).

Najafi et al. Page 34

Neuron. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Single-cell and pairwise analyses argue for non-random connections between excitatory 
and inhibitory neurons.
All panels: blue/red indicate excitatory/inhibitory neurons, respectively. A, Distribution of 

AUC values (area under the curve) of an ROC analysis for distinguishing choice from the 

activity of single neurons in an example session. Data correspond to the 97 ms window 

preceding choice (285 excitatory and 29 inhibitory neurons). Values larger than 0.5 indicate 

preference for ipsilateral choice; values smaller than 0.5 indicate preference for contralateral 

choice. Shaded areas: significant AUC values (compared to a shuffle distribution). 

Distributions were smoothed (moving average, span=5). 5 inhibitory and 24 excitatory 

neurons (17% and 8%, respectively) were significantly choice selective. B, ROC analysis on 

97 ms non-overlapping time windows. Vertical axis: fraction of excitatory or inhibitory 

neurons with significant choice selectivity; example mouse; mean±SEM across days (n = 45 

days). C, Fraction of excitatory and inhibitory neurons that are significantly choice-selective 

(0-97 ms before the choice) summarized for each mouse; mean±SEM across days (n = 45, 

48, 7, 35 sessions per mouse). Star indicates significant difference (t-test; p<0.05); see also 

Figure S3D. Fraction selective neurons at 0-97ms before choice (median across mice): 

excitatory: 13%; inhibitory: 16%, (~6 inhibitory and 43 excitatory neurons with significant 

choice selectivity per session). D, ROC analysis for 97 ms non-overlapping time windows. 

Time course of normalized choice selectivity (defined as twice the absolute deviation of 

AUC from chance, given explicitly by 2*∣AUC-0.5∣) for excitatory and inhibitory neurons in 

an example mouse; mean±SEM across days, n = 45 sessions. E, Average of normalized 

choice selectivity for excitatory and inhibitory neurons (0-97 ms before choice) summarized 

for each mouse; mean±SEM across days. “Shuffled” denotes AUC was computed using 

shuffled trial labels.
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Figure 3. Linear classifiers can predict the animal’s choice with equal accuracy from the activity 
of excitatory or inhibitory populations.
A, Schematic of decoding choice from all neurons (left), only excitatory (middle), 

subsampled to the same number as inhibitory neurons, and only inhibitory (right). A linear 

SVM assigns weights of different magnitude (indicated by lines of different thickness) to 

each neuron in the population. B, Top: classification accuracy of decoders trained on all 

neurons (black), subsampled excitatory neurons (blue), and inhibitory neurons (red) (cross-

validated; decoders trained on every 97ms time bin; example session; mean±SEM across 50 

cross-validated samples). Data are aligned to the animal’s choice (black dotted line). 

Unsaturated lines : performance on shuffled trials. Bottom: distribution of stimulus onset, 

offset, go tone, and reward occurrence for the example session above. C, Classification 

accuracy (0-97 ms before the choice, mean±SEM across days) for real (saturated) and 
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shuffled (unsaturated) data. D, Absolute value of weights for excitatory and inhibitory 

neurons in decoders trained on all neurons; mean±SEM across days. E, Distribution of 

classifier weights (decoder training time: 0-97 ms before the choice) for excitatory and 

inhibitory neurons. Neurons from all mice pooled (42,019 excitatory and 5,172 inhibitory 

neurons). Shading: standard error. F, Absolute value of weights in the classifier (0-97 ms 

before choice) for excitatory vs. inhibitory neurons. Mean±SEM across days. Star: p<0.05, t-

test. G, Schematic of decoding choice from a population of subsampled excitatory neurons 

(top) vs. a population with half inhibitory and half excitatory neurons (bottom). H, Classifier 

accuracy of populations including only excitatory (blue) or half inhibitory, half excitatory 

neurons (magenta); example session. Classifier trained at each moment in the trial. Traces 

show mean±SEM (50 cross-validated samples). I, Summary of each mouse (mean±SEM 

across days) for the decoders (0-97 ms before the choice).
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Figure 4. Classifiers, whether trained on excitatory or inhibitory neurons, show comparable 
stability during decision formation.
Cross-temporal generalization of choice decoders. A, Classification accuracy of decoders for 

each pair of training/testing time points, for all neurons (left), subsampled excitatory 

neurons (middle), or inhibitory neurons (right). Diagonal: same training, testing time (as in 

Figure 3). Example mouse, mean across 45 sessions. B, Example classification accuracy 

traces showing how classifiers trained at 0-97 ms before choice generalize across time. Same 

mouse as in (A), mean±SEM across days C, Decoders are stable in a short window outside 

their training time. Red indicates that classification accuracy of a decoder tested at the time 

on the horizontal axis is ≤2 standard deviations of the decoder tested at the training time. 

Example mouse; mean across days. D, Summary of stability duration for decoders trained 

from 0-97 ms before choice, using inhibitory neurons (red) or subsampled excitatory 

neurons (blue). Mean±SEM across days, per mouse.
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Figure 5. Modeling decision circuits with different architectures.
A, Top: Non-selective decision-making model. E1 and E2: pools of excitatory neurons, each 

favoring a different choice, that excite a single pool of non-selective inhibitory neurons (I). 

Bottom: Classification accuracy of excitatory (blue) and inhibitory (red) neurons as a 

function of the relative strength of excitatory-to-inhibitory vs. inhibitory-to-excitatory 

connections. Arrow in this and subsequent panels: parameter value in line with experimental 

data. B, Top: Signal-selective model. I1 and I2: pools of inhibitory neurons connected more 

strongly to E1 and E2, respectively, than to E2 and E1; cross-pool connections are weaker 

than within-pool connections. Bottom: Decoding accuracy of inhibitory and excitatory 

neurons match at the biologically plausible regime (arrow). Cross-pool connectivity was 

25% smaller than within-pool connectivity. C, Top: SNR-selective model: inhibitory 

neurons connect more strongly to excitatory neurons with high signal to noise ratios. 

Bottom: Decoding accuracy of inhibitory and excitatory neurons match near the biologically 

plausible regime (arrow). All plots reflect 50 excitatory and 50 inhibitory neurons out of a 

population containing 4000 excitatory/1000 inhibitory neurons.

Najafi et al. Page 39

Neuron. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Pairwise noise correlations are stronger between neurons with the same choice 
selectivity.
A, Left: Noise correlations (Pearson’s coefficient) for pairs of excitatory-inhibitory neurons 

with the same (dark green) or opposite (light green) choice selectivity. Middle, right: same 

as left, but for excitatory-excitatory, and inhibitory-inhibitory pairs, respectively. “Shuffled” 

denotes quantities were computed using shuffled trial labels. Mean±SEM across days; 0-97 

ms before the choice. Same vs. opposite is significant in all cases, except for mouse 3 in EE 

and II pairs (t-test, p<0.05). B, Example mouse: distribution of noise correlations (Pearson’s 

correlation coefficients, 0-97 ms before the choice) for excitatory (blue; n=11867) and 

inhibitory (red; n=1583) neurons. Shaded areas: significance compared to a shuffled control 

in which trial orders were shuffled for each neuron to remove noise correlations. C, 
Summary of noise correlation coefficients; mean±SEM across days.
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Figure 7. Noise correlations reduce classification accuracy.
A, Classification accuracy for an example session (0-97 ms before the choice) on neural 

ensembles of increasingly larger size. Mean±SEM (50 cross-validated samples). Gray: 

classification accuracy for pseudo-populations. Black: real populations. Both cell types were 

included (“All neurons”). B, Summary for each mouse; points show mean±SEM across 

days. Values were computed for the largest neuronal ensemble (the max value on the 

horizontal axis in A).
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Figure 8. Learning leads to improved choice decoding, increased fraction of choice-selective 
neurons, and reduced noise correlations in both populations.
A, Decoder accuracy for each training session, for all neurons (left), subsampled excitatory 

(middle), and inhibitory neurons (right). White vertical line: choice. Rows: average across 

cross-validated samples; example mouse. Colorbar applies to both plots. B, Scatter plot of 

classifier accuracy (0-97 ms before choice) vs. behavioral performance (fraction correct on 

easy trials) for all training days. r: Pearson correlation coefficient (p<0.001 in all plots); 

same example mouse as in (A). Correlations for behavior vs. classification accuracy for all 

neurons, excitatory and inhibitory: 0.55, 0.35, 0.32 in mouse 2; 0.57, 0.63, 0.32 in mouse 3. 

Correlations for behavior vs. choice-signal onset for all neurons, excitatory and inhibitory: 

−0.60, −0.34, −0.38, in mouse 2; −0.60, −0.27, −0.28 in mouse 3. All values: p<0.05 C, 
Same as (B), except showing the onset of choice signal (the first moment in the trial that 

classifier accuracy was above chance, relative to choice onset) vs. behavioral performance. 

D, Summary of classification accuracy averaged across early (dim colors) vs. late (dark 

colors) training days. E, Same as (D), but showing choice signal onset (ms). F, Same as (D), 

but showing pairwise noise correlation coefficients. EI:excitatory-inhibitory; EE:excitatory-
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excitatory; II:inhibitory-inhibitory. G, Fraction of choice-selective neurons increases over 

training; average across early (dim colors) and late (dark colors) training days (0-97 ms 

before the choice). Early days: first few training days in which the animal’s performance 

was lower than the 20th percentile of performance across all days. Late days: training days 

in which performance was above the 80th percentile of performance across all days.

Najafi et al. Page 43

Neuron. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Graphical Abstract
	eTOC blurb:
	Introduction
	Results
	Individual excitatory and inhibitory neurons are similarly choice-selective
	Choice is decoded with equal accuracy from both excitatory and inhibitory populations
	Modeling rules out decision circuits with non-selective inhibition
	Correlations are stronger between similarly tuned neurons
	Noise correlations limit decoding accuracy
	Selectivity increases in parallel in inhibitory and excitatory populations during learning
	Discussion
	STAR Methods
	Lead contact and materials availability
	Experimental model and subject details
	Method Details
	Surgical procedure
	Imaging
	Decision-making behavior
	Logistic regression model of behavior
	ROI (region of interest) extraction and deconvolution
	Neuropil Contamination removal
	ROI inclusion criteria
	Identification of inhibitory neurons
	ROC analysis
	Decoding population activity
	Stability
	Noise correlations
	Learning analysis
	Modeling decision circuits
	Connectivity matrices
	Non-selective.
	Signal-selective.
	SNR- selective.

	Simulation details

	Immunofluorescence staining for TdTomato and GABA

	Quantification and statistical analysis
	Data and code availability

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.

