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Abstract

Single particle analysis for structure determination in cryo-electron microscopy is traditionally 

applied to samples purified to near homogeneity as current reconstruction algorithms are not 

designed to handle heterogeneous mixtures of structures from many distinct macromolecular 

complexes. We extend on long established methods and demonstrate that relating two-dimensional 

projection images by their common lines in a graphical framework is sufficient for partitioning 

distinct protein and multiprotein complexes within the same data set. The feasibility of this 

approach is first demonstrated on a large set of synthetic reprojections from 35 unique 

macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We 

then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and 

use existing methods to solve multiple three-dimensional structures ab initio. Incorporating 

methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will alleviate 

the need for stringent purification and pave the way toward investigation of samples containing 

many unique structures.
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Introduction

Cryo-electron microscopy (cryo-EM) has undergone a revolutionary shift in the past few 

years. Increased signal in electron micrographs, as a result of direct electron detectors, has 

allowed for the near-atomic resolution structure determination of many macromolecules of 

various shapes and sizes (Kühlbrandt, 2014). These new detectors combined with automated 

data collection software and improvements in image processing suggest that cryo-EM could 

be utilized as a high-throughput approach to structural biology. One emerging field in single 

particle cryo-EM that seeks to take advantage of these advances is the direct investigation of 

macromolecules from cellular extracts (Doerr, 2018; Kyrilis et al., 2019). Such an approach 

is motivated by many observations that fractions from chromatographically separated cell 

extracts combined with mass spectrometry can be mined for a wealth of information 

including the organization of macromolecules into larger assemblies (Wan et al., 2015). A 

natural complement to this information would be direct structural analysis of the 

macromolecular assemblies from the same fractions of cell extract. Single particle cryo-EM 

is a promising tool for this goal. Although spatial context is lost when compared to 

tomography, single particle approaches are more successful at producing high-resolution 

structures. However, one major obstacle remains: sorting through the immense heterogeneity 

that is present in a mixture of tens to hundreds of macromolecular assemblies.

We and others have shown that cellular extracts contain rich structural information which 

can be used for the identification of multiple structures using conventional single particle 

analysis (Kastritis et al., 2017; Verbeke et al., 2018). More recently, we extended this 

approach to reconstruct macromolecular machines from the lysate of a single C. elegans 
embryo (Yi et al., 2018). These studies were limited to the identification of only the most 

abundant and easily identifiable protein and protein–nucleic acid complexes due to a lack of 

methods to efficiently categorize which two-dimensional (2D) projection images derive from 

which three-dimensional (3D) assemblies on the basis of their structural features. While a 

number of 3D classification schemes exist, all failed to produce reliable reconstructions for 

the majority of particles in these complicated mixtures. This obstacle emphasizes the long-

standing need to sort mixtures of structures in addition to their conformational and 

compositional heterogeneity.

Several methods have been successfully implemented for sorting heterogeneity in cryo-EM 

data when there are conformational landscapes or variations in the subunit stoichiometry. 

These approaches generally fall into three categories. Currently, the most popular approach 

for sorting heterogeneity in cryo-EM data utilizes a maximum likelihood estimation to 

optimize the correct classification of particles into multiple structures (Scheres, 2012; 

Sigworth, 1998; Sigworth et al., 2010). Another approach is to estimate the covariance in 

cryo-EM data to search for regions of variability between the models and the data 

(Katsevich et al., 2015; Liao et al., 2015; Penczek et al., 2006). The last approach, and most 

relevant to this paper, involves computing similarities between projection images in the data 

before applying clustering methods to separate the data into homogenous subsets (Aizenbud 

and Shkolnisky, 2019; Herman and Kalinowski, 2008; Shatsky et al., 2010). All of these 

approaches have been demonstrated on samples containing a primary structure with multiple 
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conformations or variable subunits. However, little work has been done for sorting 

heterogeneous samples containing multiple distinct structures.

In particular, this work uses the principle of common lines to score the similarity between 

many otherwise disparate 2D projection images. The central section theorem states that the 

Fourier transform of any 2D projection of a 3D object is a 2D section through the center of 

the 3D Fourier transform of the 3D object. Additionally, the 2D central section is 

perpendicular to the direction of the projection. It follows a dimension lower that a 1D 

projection (line projection) of a 2D object is a 1D central section through the 2D Fourier 

transform of the 2D object. Stated in real space: any two 2D projections of the same 3D 

object must share a 1D line projection in common (i.e. common lines) (Van Heel, 1987). The 

central section theorem was initially used for ab initio 3D reconstructions but has largely 

been abandoned in favor of projection matching strategies due to a poor sensitivity to noise 

(Penczek et al., 1994). For our purposes of investigating structures from lysates, projection 

matching is largely ineffective because we do not have initial 3D structures or even know 

how many structures might be present in the data and therefore cannot bootstrap from the 

models. However, common lines still contain significant information that can be exploited to 

discriminate 2D projections from a heterogeneous mixture prior to 3D reconstruction by 

conventional methods.

Here, we develop a pipeline for building 3D reconstructions from rich mixtures of distinct 

particles by first grouping aligned and averaged 2D projections into discrete, particle-

specific classes using the principles of common lines and a novel graphical clustering 

framework. We demonstrate our method by partitioning reprojections from 35 previously 

solved structures into their correct groups. Furthermore, we applied this pipeline to an 

experimental set of cryo-EM micrographs containing a mixture of several macromolecular 

complexes. We were able to reconstruct multiple 3D structures after our clustering, 

improving on 3D classification of all particles simultaneously using current 3D 

reconstruction software. This work adds a new layer to the conventional classification 

schemes and is a necessary step for moving cryo-EM towards single particle structural 

biology from samples containing mixtures of many structures.

Results

Classifying projection images from multiple structures

A major challenge facing “shotgun”-style cryo-EM is to reconstruct models from projection 

images arising from multiple distinct structures present in a mixture. To overcome this 

obstacle, we sought a method to computationally group heterogeneous projection images 

into discrete clusters that each derive from the same structure. In order to partition 2D 

projections into homogenous subsets, we developed an algorithm for detecting Shared Lines 

In Common Electron Maps (SLICEM). Using this algorithm, we score the similarity of 1D 

line projections between sets of aligned, classified and averaged 2D projection images 

(referred to as 2D class averages) without knowledge of the number of underlying 3D 

objects, or what they look like. Subsequently, these similarity scores can be put into a 

graphical framework and clustering algorithms can be applied to group related 2D projection 

images for subsequent 3D reconstructions (Figure 1).
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Synthetic data

To test our approach using SLICEM, we generated synthetic reprojections from 35 

previously solved structures deposited in the PDB (see Methods). The structures ranged in 

molecular weight from ~30 – 3000 kDa (Figure 2A). Each PDB structure was low-pass 

filtered to 9 Å and uniformly reprojected to create 12 2D projection images, forming an 

initial set of 420 reprojections simulating 2D class averages from a mixture of structures 

(Ludtke et al., 1999) (Figure S1). Although these reprojections do not perfectly reflect 

experimentally determined 2D class averages, failure of this test would indicate little power 

for real data. Each 2D projection is in turn projected down to 1D in 5 degree increments over 

360 degrees.

The similarity between all 1D line projections from every 2D reprojection was then scored 

using different metrics to evaluate their performance for identifying common line 

projections. The metrics evaluated were Euclidean distance (Eq. 1), sum of the absolute 

difference (Eq. 2), cross-correlation (Eq. 3) and cosine similarity (Eq. 4) (see Methods). We 

additionally tested the performance of the Euclidean distance and cross-correlation after a Z-

score normalization of each 1D line projection. Scoring common lines depends heavily on 

the centering of 2D class averages. We address this in two ways in our algorithm. As an 

additional layer of image processing, the particle in each class average is centered by 

encompassing it in a minimal bounding box. Next, as part of the scoring, if there is a 

difference in length between a given pair of 1D projections, the smaller of the two vectors is 

translated pixel-wise relative to the other vector and scored at each position to account for 

class averages that might be offset relative to other similar class averages. The optimum 

score during translations is then used as the similarity between the two 1D line projections.

The precision and recall of correctly pairing 2D class averages from the same 3D structures 

was then computed in order to determine the performance of each metric, and cosine 

similarity was determined to be the top performing metric (Figure 2B). Euclidean distance 

and normalized Euclidean distance had identical performance and are overlaid on the plot. 

Not surprisingly, cross-correlation was the worst performing metric as the dot product 

between two vectors scales with their magnitude. Thus, 1D projections from larger protein 

assemblies are more likely to score higher even if there is no true similarity between the 1D 

projections.

In order to identify sets of 2D projection images from the same 3D particles, we constructed 

a network from the comparisons between 2D reprojections, or class averages, as follows: 

Each 2D class average was represented as a node in a directed graph, with each node 

connected by edges to the nodes corresponding to the 5 most closely-related 2D class 

averages based on the similarity of their 1D line projections. While the top-scoring metric in 

our precision/recall analysis was cosine similarity, the network generated from the Euclidean 

distance similarity most clearly showed communities (clusters of 2D class averages) 

correctly partitioned by 3D structure (Figure S2). This result is reflected by the well 

separated distributions of scores for reprojections belonging to the same structure and scores 

for reprojections belonging to different structures (Figure 2C). We additionally applied a 

traditional hierarchical clustering scheme and show the block structure present in the 

similarity scores between reprojections (Figure S2). These results show that partitioning 2D 
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projection images by scoring the similarity of their 1D line projections is a powerful, 

unsupervised approach for sorting cryo-EM data from distinct 3D structures within a 

heterogeneous mixture.

We additionally tested the following cases that are often present in cryo-EM datasets: (1) 

uneven angular distribution and number of projections (i.e. non-uniform sampling of the 

structure), (2) molecular symmetry in the structure, and (3) conformational and subunit 

heterogeneity. In the first test, performance of the algorithm was only slightly diminished 

over the case of uniform projections (Figure S3). Preferential orientation negatively impacts 

3D reconstruction, but has significantly less effect when simply searching for common lines. 

Our algorithm was also able to effectively distinguish synthetic 2D reprojections for the 

latter two cases (Figure S4). In the competitive graphical framework, similar but lower 

scoring projections (e.g. due to a change in conformation) are outcompeted by higher 

scoring projections in the same conformation. Molecular symmetries may also be beneficial 

as they increase the chance of finding a common line between structures. Thus, scoring by 

common lines provides a powerful approach for ranking the similarity of 2D projections in a 

mixture.

Cryo-EM on a mixture of protein complexes

After validating our SLICEM algorithm on a synthetic dataset, we performed cryo-EM on an 

experimental mixture of structures and tested our approach as a proof-of-principle. Our 

experimental mixture consisted of 40S, 60S and 80S ribosomes at 75 nM, 150 nM and 50 

nM, respectively, and apoferritin and β-galactosidase each at 125 nM. We collected ~2,400 

images and used a template-based particle picking scheme to select ~523,000 particles from 

the entire data set (Roseman, 2004). Raw micrographs showed a mixture of disperse 

particles with varying size and shape (Figure S5). We then performed 2D classification on 

the entire set of particles using RELION (Scheres, 2012). After 1 round of filtering junk 

particles, the remaining ~203,000 particles were sorted into 100 classes using RELION. The 

class averages contained many characteristic ribosome projections and had distinct structural 

features (Figure S5). We were unable to identify any β-galactosidase particles in our 

collected images.

We then applied our SLICEM algorithm to the 100 2D class averages. The identity of each 

2D class average was manually annotated, where it was easily recognizable, to assess 

whether our algorithm was correctly separating the 2D projection images from our 

heterogeneous mixture (Figure 3). Based on these manual annotations, we again tested the 6-

different metrics in a precision-recall framework to determine which metric performed better 

on experimental data (Figure S6). The Euclidean distance and sum of the absolute difference 

scoring metrics significantly outperformed the cosine similarity. Using the sum of the 

absolute difference scoring metric, the network naturally partitioned into 3 distinct 

communities, one for each ribosome, prior to employing any community detection 

algorithms (Figure 3).

As part of our algorithm, we evaluated two community detection methods, edge 

betweenness and walktrap, to determine if the network should be further subdivided 

(Newman and Girvan, 2004; Pons and Latapy, 2005). We chose to use community detection 
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algorithms to prevent biasing the data by choosing a specific number of output clusters we 

expected. Briefly, the algorithms work as follows: For edge betweenness, edges with the 

highest “betweenness” score in a network are iteratively removed and the betweenness 

recalculated. At some iteration, the network is separated into separate components (i.e. 

communities). For walktrap, random walks on a graph tend to stay in the same community if 

they are densely packed. A similarity score between nodes can then be calculated and used 

for partitioning of the graph. Both approaches have advantages and disadvantages for our 

purpose here and the best choice for clustering is largely empirical.

As part of our processing pipeline, we note that the initial choice for the number of 2D class 

averages, computed here using RELION, can have an effect on the performance of our 

algorithm. We tested K = 80, 100, 120 and 200 classes to assess the effect on the 

performance of our algorithm (Figure S7). Despite varying the number of classes, the 

resulting networks still show correct grouping of 2D class averages from the same 3D 

structure. At all K values, performance measured by precision and recall is substantially 

better than random assignment of class averages. However, these results also suggest that 

moving forward, a more quantitative approach should be taken for selecting the number of 

2D class averages. Using our SLICEM algorithm, we demonstrate that it is possible to 

correctly separate 2D projection images from 3 large, asymmetric macromolecular 

complexes in the same mixture.

Summed pixel intensity as an additional filtering step

Apart from partitioning 2D projection images into homogenous subsets for 3D 

reconstruction, one additional goal of shotgun-EM is to determine the identity of each 

projection image. In previous studies, we and others have leveraged mass spectrometry data 

to help identify electron microscopy reconstructions from a heterogeneous mixture, such as 

cell lysate, where the architecture of every protein or protein complex is not known 

(Kastritis et al., 2017; Verbeke et al., 2018). However, this combined MS-EM approach was 

only useful for identifying highly abundant and easily recognizable structures.

To provide evidence of macromolecular identity from the electron maps, we calculated the 

sum of pixel intensities for each manually annotated 2D class average as a proxy for 

molecular weight (Figure 4). The summed pixel intensities of each annotated 2D class 

average is plotted as a point on the violin plot to show the distribution of summed pixel 

intensities between projections of the same structure and between projections of different 

structures. We found that each of the three ribosomes and apoferritin had unique summed 

pixel intensities that could be used to distinguish their class averages. Although these values 

do not directly correspond to molecular weight, and the values will depend on microscope 

settings or specimen variation, such as ice thickness, class averages belonging to the same 

structure should have similar values that can be ranked relative to external data (e.g. mass 

spectrometry data). A least-squares fit to the mean of the summed pixel intensities showed a 

linear relationship between summed pixel intensity and molecular weight.

The summed pixel intensities were therefore used as an additional filtering step by removing 

nodes in communities whose summed pixel intensities were outliers in that community. 

Using this filtering step, the apoferritin class average was removed from the community 
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containing predominantly 40S ribosome reprojections. Our data suggest that, given an 

appropriate set of standards, summed pixel intensity can be correlated to molecular weight. 

Thus, summed pixel intensity could be useful in narrowing down the possible identities for a 

set of electron density maps, when combined with sequence information from mass 

spectrometry.

3D classification of a mixture of protein complexes

The ultimate goal of our pipeline is to reconstruct multiple 3D models from our output of 

clustered 2D projection images. We chose to use cryoSPARC for 3D reconstructions because 

it can perform heterogeneous reconstruction without a priori information on structure or 

identity (Punjani et al., 2017). We used the particles from each of our 3 distinct communities 

in addition to the isolated apoferritin node for ab initio reconstruction in cryoSPARC (Figure 

5). The cluster containing primarily 40S ribosome particles was split into two classes to 

filter the additional junk particles present in the community. Comparison of our models 

reconstructed after clustering to the models produced using the entire data set as input for ab 
initio reconstruction in cryoSPARC with 4 classes (one for each protein complex in the 

mixture) showed our pre-sorting procedure improved the resulting structures (Figure 5). In 

particular, we were able to build an apoferritin model that was missed in the 3D 

classification of all particles from cryoSPARC. Our 80S model also shows a more complete 

density for the small subunit than its counterpart in the model created without clustering. We 

also observe that changing the number of classes using ab initio reconstruction in 

cryoSPARC had a substantial impact on the quality of classification (Figure S8).

Each model was refined and evaluated using the gold-standard 0.143 Fourier shell 

correlation criterion (Figure S9). We obtained easily identifiable 40S, 60S, and 80S 

ribosome structures at 12, 4, and 5.4 Å resolution, respectively. We were also able to 

reconstruct the smaller, more compact apoferritin at 19 Å resolution. The ratio of particle 

numbers for each model was also compared to the input concentrations and shows a bias 

towards 60S particles (Figure S9). Notably, the 40S and 80S models contain streaks in one 

dimension, indicating that we are missing several orientations of the particles. We attribute 

this to preferential orientation of the particles in ice, rather than an inability of our algorithm 

to properly sort particles into correct communities. Together, these results demonstrate a 

functioning pipeline for sorting 2D projection images from a heterogeneous mixture of 3D 

structures, allowing for single particle EM to be applied to samples containing multiple 

proteins or protein complexes. Importantly, aside from choosing the most appropriate 

similarity measure, our approach is fully unsupervised, requiring no user defined estimate of 

the number of existing 3D classes.

Discussion

As cryo-EM continues to rapidly advance, one potential application would be to perform 

high-throughput single particle structural biology of the cell. In particular, our goal is to 

survey macromolecular structures directly from cell lysates. The ability to correctly sort and 

classify heterogeneous mixtures will become a necessary feature. One advantage of this 

approach would be to study closer-to-native proteins directly from cells without the need to 
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purify or alter the sample. Currently, handling compositional and conformational 

heterogeneity is a major challenge for the EM field, usually requiring expert, time-

consuming steps. For our purposes of samples containing many structures, the more 

sophisticated projection matching algorithms currently used are not effective by themselves 

as they require an estimate for the number of 3D models expected. Additionally, 

chromatographic separation of cell lysate is often done on the basis of size, ruling out using 

the size of 2D projections as a means for separating them.

In this study, we present an unsupervised algorithm, SLICEM, which extends on previous 

methods and demonstrates that scoring the similarity between 2D class averages based on 

their 1D line projections contains sufficient information to correctly cluster 2D class 

averages of the same 3D structure from a mixture of protein and protein-nucleic acid 

complexes. Using the principal of common lines in a competitive graphical framework 

provides auxiliary information which can enhance traditional classification. Additionally, as 

we are not using the common lines to define a relative angle about a tilt axis between 2D 

projections, many of the pitfalls previously observed with using common lines for 3D 

reconstruction do not apply. We first demonstrate that the algorithm successfully sorts a 

synthetic dataset of reprojections created from 35 unique macromolecular structures. Next, 

we show the same algorithm can successfully partition 2D class averages from an 

experimental data set containing multiple macromolecular complexes. Pre-sorting 2D 

projection images prior to 3D classification can allow for current reconstruction algorithms 

to be employed on datasets containing many unique structures.

Although we demonstrated the feasibility of our approach on synthetic and experimental 

data, we acknowledge that there are several limitations. In particular, our algorithm relies on 

the quality of upstream 2D alignment, classification and averaging. One possible approach 

to better quantify the 2D class averages input to our algorithm would be to sweep multiple 

values of 2D classes and compare their Fourier ring correlations to see which number of 

classes has the most similar, high-resolution classes. There will likely be a tradeoff between 

picking enough classes to cover the heterogeneity present in the data and still having enough 

signal for accurate common line detection. However, our intent with this algorithm is simply 

to pre-sort 2D projections belonging to the same structure allowing for more robust 3D 

classification schemes. As we observed during 2D classification of our cryo-EM data, all 

apoferritin particles were grouped into a single class average. However, during our network 

generation step, each class average is given multiple edges to the most similar classes, 

forcing the single apoferritin class average to have multiple spurious edges. This error will 

occur any time the number of class averages of a given structure is less than the number of 

edges used in the graph. Future modifications to the algorithm could include searching for 

symmetric class averages, where this error is more likely to occur, and removing them prior 

to community detection.

As we move cryo-EM towards structural determination from complicated mixtures, several 

other technical challenges will emerge, such as universal freezing conditions. In our mixture 

of 5 macromolecular complexes, we were unable to easily find freezing conditions that 

accommodated all proteins. The result was a mixture missing β-galactosidase and containing 

orientation preferences for the 40S and 80S ribosome. However, previous work has produced 
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e.g. high-resolution structures of fatty-acid synthase from fractionated cell lysate, suggesting 

it is possible to find suitable cryo-conditions for solutions containing many macromolecular 

species (Kastritis et al., 2017). An additional challenge will be developing particle picking 

algorithms specifically for mixtures, where the particle shape may be unknown and, perhaps 

more importantly, non-uniform. While in this study we used a template picking scheme, 

future studies with mixtures of unknown composition will require more sophisticated 

approaches.

An expert might be able to manually sort the class averages from our cryo-EM data set; 

however, as mixtures grow in complexity, manual sorting will certainly become infeasible. 

Introducing algorithms such as SLICEM will provide an unbiased way to group 2D 

projection images and can be easily implemented in conjunction with a variety of image 

processing and 3D reconstruction packages. One additional utility of this algorithm could be 

to remove junk class averages from data in a semi-supervised manner by removal of 

communities of projection images that do not appear to have structural features. Our 

approach for sorting mixtures of structures combined with previous approaches for sorting 

conformational heterogeneity could be a powerful tool for deep classification. Development 

of methods to sort mixtures of structures in single particle cryo-EM will allow us to solve 

more structures in parallel and alleviate time-consuming protein purification and sample 

preparation.

Materials and Methods

Synthetic data generation

The following list of PDB entries were used to create the dataset of synthetic reprojections 

(1A0I, 1HHO, 1NW9, 1WA5, 3JCK, 5A63, 1A36, 1HNW, 1PJR, 2FFL, 3JCR, 5GJQ, 

1AON, 1I6H, 1RYP, 2MYS, 3VKH, 5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 4F3T, 6B3R, 1FPY, 

1MUH, 1SXJ, 2SRC, 4V6C, 6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 5A1A). Each PDB entry was 

low-pass filtered to 9 Å and converted to a 3D EM density using ‘pdb2mrc’ in EMAN 

(Ludtke et al., 1999). These densities were then uniformly reprojected using ‘project3d’ in 

EMAN to create 12 2D reprojections for each structure (Ludtke et al., 1999). Reprojections 

were centered in 350 Å boxes.

Purification of apoferritin and β-galactosidase

Size-exclusion chromatography was performed at 4 °C on an AKTA FPLC (GE Healthcare). 

Approximately 10 mg of apoferritin (Sigma A3660–1VL) and 5 mg of β-galactosidase 

G5635–5KU were independently applied to a Superdex 200 10/300 GL analytical gel 

filtration column (GE Healthcare) equilibrated in 20 mM HEPES KOH, 100 mM potassium 

acetate, 2.5 mM magnesium acetate, pH 7.5 at a flow rate of 0.5 mL min-1. Fractions were 

collected every 0.5 mL.

SLICEM Algorithm

Our algorithm consists of five main steps: (1) Extracting 2D class average signal from 

background, (2) Generating 1D line projections from the extracted 2D projection images, (3) 

Scoring the similarity of all pairs of 1D line projections, (4) Building a nearest-neighbors 

graph of the 2D class averages and (5) Partitioning communities within the graph.
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(1) Extracting 2D class averages from background—The input to our algorithm is a 

set of centered and normalized 2D class averages. The images are normalized according to 

the RELION conventions of setting particles to a mean value of zero and a standard 

deviation of one for all pixels in the background area. We then extract the centered region of 

positive pixels values from the zero-mean normalized images to remove background signal 

and extra densities that might be present in a class average. This step also serves to re-center 

the class average by surrounding it with a minimal bounding box.

(2) Generating 1D line projections from extracted 2D projection images—Each 

newly extracted class average is then projected into 1D over 360 degrees in 5 degree 

intervals by summing the pixel values along the projection axis. The 1D line projections are 

then ready to be scored or are independently zero-mean normalized if the normalized cross-

correlation or normalized Euclidean distance scoring metric are selected.

(3) Scoring the similarity of all pairs of 1D line projections—To score the 

similarity of the 1D line projections we consider 6 different scoring metrics. The metrics 

evaluated were Euclidean distance (Eq. 1), sum of the absolute difference (Eq. 2), cross-

correlation (Eq. 3) and cosine similarity (Eq. 4). We additionally consider Euclidean 

distance and cross-correlation after a Z-score normalization of each 1D line projection. For 

two 1D line projection vectors p and q, the difference d between the vectors can be 

calculated as follows:

d p, q = Σ
i = 1

n
pi − qi

2 (1)

d p, q = Σ
i = 1

n
pi − qi (2)

d p, q = Σ
i = 1

n
piqi (3)

d p, q =
Σi = 1

n piqi

Σi = 1
n pi

2 Σi = 1
n qi

2 (4)

The similarity of the 1D line projections is calculated for all pixel-wise translations of the 

smaller 1D projection across the larger 1D projection if there is a difference in projection 

size, analogous to the ‘sliding’ feature of standard cross-correlations. The optimum score 

during the translations is kept for each pair of 1D projections. After pairwise scoring of all 

1D line projections from all 2D class averages, the similarity between each pair of 2D class 

averages is defined by their respective best scoring 1D line projections.

(4) Building a nearest-neighbors graph of the 2D class averages—SLICEM then 

constructs a directed graph using the similarity scores calculated for each pair of 2D class 

Verbeke et al. Page 10

J Struct Biol. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averages. Each node (2D class average) is connected to the 5 most similar (top scoring) 2D 

class averages. Each edge is assigned a weight computed as a Z-score relative to all scores 

for a given 2D class average.

(5) Partitioning communities within the graph.—The resulting graph is then 

subdivided using a community detection algorithm. Specifically, we evaluated the edge-

betweenness and walktrap algorithms to define clusters in the graph. The default parameters 

for each clustering method implemented in iGraph were used in our algorithm, however we 

note that different similarity metrics and ‘clustering strengths’ can be applied. For edge-

betweenness, the dendrogram is cut at the level which maximizes the modularity and for 

walktrap, the length of the random walks is set to 4. Then, the median absolute deviation of 

summed pixel intensities for each node is calculated to remove outliers from clusters. 

Finally, for each community, the individual raw 2D particles corresponding to the now-

grouped 2D class averages are then used as input for 3D reconstruction in cryoSPARC.

Cryo-EM grid preparation and data collection

C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-coated with a thin layer of 

freshly prepared carbon film and glow-discharged for 30 seconds using a Gatan Solarus 

plasma cleaner before addition of sample. 2.5 μl of a mixture of 75 nM 40S ribosome, 150 

nM 60S ribosome, 50 nM 80S ribosome, 125 nM apoferritin and 125 nM β-galactosidase 

were placed onto grids, blotted for 3 seconds with a blotting force of 5 and rapidly plunged 

into liquid ethane using a FEI Vitrobot MarkIV operated at 4 °C and 100% humidity. Data 

were acquired using an FEI Titan Krios transmission electron microscope (Sauer Structural 

Biology Laboratory, University of Texas at Austin) operating at 300 keV at a nominal 

magnification of ×22,500 (1.1 Å pixel size) with defocus ranging from −2.0 to −3.5 μm. The 

data were collected using a total exposure of 6 s fractionated into 20 frames (300 ms per 

frame) with a dose rate of ~8 electrons per pixel per second and a total exposure dose of ~40 

e− Å−2. A total of 2,423 micrographs were automatically recorded on a Gatan K2 Summit 

direct electron detector operated in counting mode using the MSI Template application 

within the automated macromolecular microscopy software LEGINON (Suloway et al., 

2005).

Cryo-EM data processing

All image pre-processing was performed in Appion (Lander et al., 2009). Individual movie 

frames were aligned and averaged using ‘MotionCor2’ drift-correction software (Zheng et 

al., 2017). These drift-corrected micrographs were binned by 8, and bad micrographs and/or 

regions of micrographs were removed using the ‘manual masking’ command within Appion. 

A total of 522,653 particles were picked with a template-based particle picker using a 

reference-free 2D class average from a small subset of manually picked particles as 

templates. The contrast transfer function (CTF) of each micrograph was estimated using 

CTFFIND4 (Rohou and Grigorieff, 2015). Selected particles were extracted from 

micrographs using particle extraction within RELION (Scheres, 2012) and the EMAN2 

coordinates exported from Appion. Two rounds of reference free 2D classification with 100 

classes for each sample were performed in RELION to remove junk particles, resulting in a 

clean stack of 202,611 particle images.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single particle cryo-EM can be performed on mixtures containing multiple 

distinct macromolecular assemblies

• Developed an algorithm using common lines in a graphical framework to 

classify 2D projection images

• Using this algorithm, we separate a mixture of synthetic data and a mixture of 

experimental data
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Figure 1. Computational pipeline for SLICEM
Individual particle images are averaged after reference-free 2D alignment and classification. 

Using a Radon transform, 1D line projections are created from the 2D class averages 

(referred to as 2D projections). Each 1D line projection from every 2D projection is then 

scored for similarity. The top scores between 2D projections are then used to create edges 

connecting 2D projections that have a similar 1D line projection, forming a graph. 2D 

projection images are then partitioned into groups belonging to the same putative structure 

using a community detection algorithm. Individual particle images belonging to each 2D 

projection within a community are subjected to ab initio 3D reconstruction.
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Figure 2. Separating mixtures of synthetic 2D reprojections
Synthetic reprojections were generated from 35 distinct PDB structures low-pass filtered to 

9 Å from protein and protein assemblies ranging in molecular weight from ~30 – 3000 kDa, 

prior to separation using SLICEM. (A) Low-pass filtered models of each PDB structure. (B) 

Precision-recall plot ranking 6 different metrics at scoring the similarity between 1D line 

projections from each 2D reprojection. (C) Distribution of scores calculated using Euclidean 

distance for reprojections belonging to the same structure and reprojections belonging to 

different structures.
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Figure 3. Experimental 2D class averages and resulting network
Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid complexes. 

Representative 2D class averages of the 4 complexes identified in the mixture are shown on 

the left. The identity of each class average was manually annotated were it could be easily 

identified. The class average corresponding to apoferritin was further subdivided into 

multiple classes for visualization. Each box corresponds to a width of 422 Å. The network 

displayed was generated after using SLICEM on the 100 2D class averages scored using the 

sum of the absolute difference metric. Nodes representing each 2D class averages are 

colored by their putative structural identity and are connected to their 5 most similar class 

averages.
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Figure 4. Summed pixel intensities of 2D class averages correlate to molecular weight
(A) 2D to 1D projections (projection angle orthogonal to the x-axis) for representative 2D 

class averages of each structure present in the mixture. 1D projection plots show the line 

profile for a single 1D projection of each 2D class average. Pixel heat maps show the 

intensity of the line profile at each pixel. (B) Distribution of the summed pixel intensities 

calculated for each 2D class average. Summed pixel intensities for each manually identified 

2D class average are plotted against their respective molecular weight. Black points are the 

mean summed pixel intensity for each structure and n indicates the number of 2D classes for 

each structure.
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Figure 5. Ab initio structures from an experimental mixture
(Top) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and 

Leschziner, 2015), 60S ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-4214 

(Scaiola et al., 2018) and apoferritin EMD-2788 (Russo and Passmore, 2014). (Middle) 3D 

models of the 80S ribosome, 60S ribosome, 40S ribosome and apoferritin generated by 

sorting particles using SLICEM prior to ab initio 3D reconstruction in cryoSPARC. 

(Bottom) 3D models generated using ab initio reconstruction to generate 4 classes in 

cryoSPARC without pre-sorting particles using SLICEM.
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