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Endoplasmic reticulum (ER) stress activates the unfolded pro-
tein response (UPR), which reduces levels of misfolded proteins.
However, if ER homeostasis is not restored and the UPR remains
chronically activated, cells undergo apoptosis. The UPR regula-
tor, PKR-like endoplasmic reticulum kinase (PERK), plays an
important role in promoting cell death when persistently acti-
vated; however, the underlying mechanisms are poorly under-
stood. Here, we profiled the microRNA (miRNA) transcriptome
in human cells exposed to ER stress and identified miRNAs that
are selectively induced by PERK signaling. We found that
expression of a PERK-induced miRNA, miR-483, promotes apo-
ptosis in human cells. miR-483 induction was mediated by a
transcription factor downstream of PERK, activating transcrip-
tion factor 4 (ATF4), but not by the CHOP transcription factor.
We identified the creatine kinase brain-type (CKB) gene, encod-
ing an enzyme that maintains cellular ATP reserves through
phosphocreatine production, as being repressed during the UPR
and targeted by miR-483. We found that ER stress, selective
PERK activation, and CKB knockdown all decrease cellular ATP
levels, leading to increased vulnerability to ER stress–induced
cell death. Our findings identify miR-483 as a downstream tar-
get of the PERK branch of the UPR. We propose that disruption
of cellular ATP homeostasis through miR-483–mediated CKB
silencing promotes ER stress–induced apoptosis.

Eukaryotic cells employ the endoplasmic reticulum (ER)4

organelle to fold secreted and membrane proteins, synthesize
hydrophobic lipids and sterols, and store free calcium (1). Phys-
iologic, pathologic, or environmental processes that interfere
with ER functions lead to a condition known as ER stress (2),
which is detected by a conserved intracellular signal transduc-
tion mechanism, the unfolded protein response (UPR) (3). The
UPR initiates transcriptional and translational programs that
seek to restore ER homeostasis.

In mammals, the UPR is controlled by three ER-resident
transmembrane sensors: inositol-requiring enzyme 1 (IRE1),
PKR-like endoplasmic reticulum kinase (PERK), and activating
transcription factor 6 (ATF6) (3). Each of these UPR regulators
has ER stress–sensing luminal domains coupled across the ER
membrane to cytosolic effector domains that initiate distinct
signal transduction cascades during the UPR (3). In particular,
PERK responds to ER stress by oligomerizing to activate its
cytosolic kinase domain, which specifically phosphorylates a
serine at position 51 of the � subunit of eukaryotic initiation
factor 2 (eIF2�) (4). eIF2� partners with eIF2� and eIF2� to
form the heterotrimeric eIF2 that is essential for canonical
translational initiation at AUG start codons, but phosphoryla-
tion of eIF2� at serine 51 abrogates eIF2-dependent protein
translation, leading to global slowdown of protein synthesis and
diminished protein folding demands on the ER (5, 6). However,
translation of many UPR genes, including activating transcrip-
tion factor 4 (Atf4), C/EBP homologous protein (Chop),
Gadd34, andBiP/Grp78,persistsorevenincreasesdespitephos-
phorylation of eIF2� because the 5�-UTRs of these transcripts
contain upstream open reading frames or internal ribosome
entry sites that enable them to bypass p-eIF2�–mediated trans-
lational slowdown or employ noncanonical modes of transla-
tional initiation during the UPR (7–13). Thus, the PERK arm of
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the UPR dampens protein translation and also triggers tran-
scriptional programs by production of transcription factors
such as activating transcription factor 4 (ATF4) and C/EBP-ho-
mologous protein (CHOP).

The transcriptional and translational programs governed by
IRE1, PERK, and ATF6 help cells to cope with and adapt to ER
stress by improving the fidelity of protein folding, enhancing
the elimination of irreparably damaged ER proteins, and allevi-
ating the protein-folding demands upon the ER through trans-
lational attenuation. The requirement of the UPR in maintain-
ing ER homeostasis is exemplified by the exquisite sensitivity of
cells bearing knockouts of UPR genes to ER stress-induced
damage and cell death and, conversely, the enhanced resistance
to ER stress when UPR-associated proteins are artificially acti-
vated (14 –19). However, if the transcriptional and translational
programs of the UPR fail to restore ER homeostasis and remove
ER stress, persistent UPR activation creates a maladaptive cel-
lular environment that can culminate in cell death. The mech-
anisms by which UPR signaling shifts from the restoration of ER
homeostasis to the promotion of cell death are under active
investigation, as this has important implications for cell survival
and function in many disease conditions.

Metazoan cells contain an abundance of small noncoding
microRNAs (miRs) that function in post-transcriptional gene
silencing. miR genes are present throughout the genome and
can be found within introns or exons of other genes. miRs are
initially transcribed as a much longer primary miRNA precur-
sor in the nucleus (20). Progressive processing by Drosha/
DGCR8 and Dicer enzymes ultimately yields the mature
18 –23-nucleotide miR in the cytosol (20). miRs typically regu-
late target genes by binding to cognate sequences within the
3�-UTR of target mRNAs, leading to translational inhibition
and mRNA degradation (20). By this mechanism, miRs play an
important role in regulating a wide variety of cellular signaling
events through modulating the protein levels of their target
genes (21). A growing number of studies have implicated a role
for miRs in the UPR (22). Numerous miRs have been identified
that target and down-regulate expression of UPR regulators
(23–29). Conversely, UPR-induced transcription factors such
as CHOP can directly up-regulate specific miR genes (30, 31).
These findings suggest that miRs sculpt the UPR by regulating
expression of UPR genes, and the UPR also induces miRs as part
of its transcriptional programs to influence cellular responses
to ER stress.

In this present study, we hypothesized that the UPR may
induce miRs that influence the cell life/death choice in response
to ER stress. We screened a commercially assembled human
microRNA gene panel for miRs up-regulated in HEK293 cells
exposed to chemical forms of ER stress. We identified a small
group specifically induced by the PERK arm of the UPR under
experimental conditions when unabated PERK signaling causes
cell death. We found that one of these, miR-483, promoted cell
death when expressed in human cells. We provide evidence
that miR-483 decreased cell viability by targeting expression of
creatine kinase brain-type, leading to loss of cellular ATP
stores.

Results

Comprehensive analysis of ER stress-regulated human miRNAs

Cells respond to ER stress by activating potent transcrip-
tional programs that up-regulate many mRNAs. We hypothe-
sized that ER stress also broadly reshapes the microRNA tran-
scriptome, similar to its effects on the mRNA transcriptome.
To investigate this potential role, we profiled the expression of
754 human miRNAs tiled on printed array cards (TaqMan
array human MicroRNA A�B cards, Thermo Fisher Scientific).
We probed these cards with total RNA samples collected from
HEK293 cells treated for 24 h with solvent control or tunicamy-
cin, an agent that blocks N-linked glycosylation to create potent
ER stress, and performed quantitative RT-PCR to determine
the expression levels of all 754 miRNAs in our experimental
samples. Using this strategy, we identified numerous miRNAs
whose levels were profoundly regulated positively and nega-
tively by ER stress (Fig. 1A). We focused our subsequent analy-
sis on miR-215 and miR-483-5p, two of the most highly ER
stress–induced miRNAs, because they were previously found
to influence cell growth and differentiation in experimental
cancer models. In glioma and colorectal cell lines, miR-215 pro-
moted tumor differentiation and survival (32, 33). In animal
tumor models, miR-483-5p prevented metastases (34). Another
highly ER stress–induced microRNA was miR-616*. Interest-
ingly, we found that the gene encoding miR-616 lay within
intron 2 of DDIT3/Chop, a proapoptotic transcription factor
strongly up-regulated by ER stress. This genomic pairing of
miR-616* within DDIT3/Chop was unique to primates and not
seen in mice or lower organisms. Based on these functional and
genomic observations, we selected miR-215, miR-483, and
miR-616* for additional investigation to see whether they influ-
enced cellular survival or death in response to ER stress.

Next, we examined whether miR-215, miR-483, and miR-
616* induction was evident in other human cell types and in
response to other sources of ER stress. To do this, we cultured
HeLa cells and treated them with tunicamycin or thapsigargin,
agents that induce potent ER stress by inhibiting protein glyco-
sylation or disrupting ER calcium stores, respectively. We col-
lected total RNA after 24 or 48 h of drug treatment and per-
formed qRT-PCR to measure miR-215, miR-483, and miR-616*
levels. We found progressive induction of all three microRNAs
after chemical ER stress induction (Fig. 1B), similar to the tran-
scriptional up-regulation of genes induced by ER stress, such as
BiP and Chop (Fig. 1C) (18). These results supported our qRT-
PCR array findings that miR-215, miR-483, and miR-616* are
induced by ER stress.

miRs-215, 483-5p, and 616* are induced by the PERK arm of
the unfolded protein response

In human cells, ER stress-induced transcriptional programs
are activated by the UPR signal transduction cascades con-
trolled by IRE1, PERK, and ATF6. To determine whether the
UPR regulated the expression of miR-215, miR-483, and miR-
616*, we selectively activated the IRE1, PERK, or ATF6 path-
ways in HeLa cells and then measured miRNA transcript levels
by qRT-PCR. To activate the transcriptional program initiated
by IRE1, we expressed the spliced X-box– binding protein 1
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(XBP1s) transcription factor specifically produced by IRE1’s
endoribonuclease function (35, 36). We confirmed increased
XBP1s transcriptional activity after transfection through
marked increase in mRNA levels of ERdj4, a target gene of
XBP1s (Fig. 2A) (37). By contrast, mRNA levels of Chop and
BiP, target genes of the PERK and ATF6 pathways (7, 37), were
not statistically significantly increased with XBP1s expression
(Fig. 2A). To activate the PERK pathway, we treated HeLa cells
expressing Fv2E-PERK, a chimeric fusion of the PERK kinase
domain with two FK506-binding domains, with AP20187, a
small-molecule ligand previously demonstrated to drive the

homodimerization, trans-phosphorylation, and activation of
Fv2E-PERK (10, 19, 38). Prior studies demonstrated that
AP20187 dimerization of Fv2E-PERK selectively activated the

Figure 1. Identification of human miRNAs induced by ER stress. A, HEK293
cells were treated with tunicamycin (Tm) at 5 �g/ml for 24 h, and total RNA
was isolated. The expression profiles of 754 human miRNAs from Tm-treated
samples (n � 3) were determined using Taqman miRNA array A�B cards and
are shown relative to untreated samples in the heat map. Three miRNAs
induced by Tm treatment, miR-483-5p, miR-215, and miR-616*, were selected
for further analysis. B and C, HeLa cells were treated with Tm (5 �g/ml) or 500
nM thapsigargin (Tg) for 0, 24, or 48 h. Total RNA was collected, and miR-483-
5p, miR-215, and miR-616* levels were measured by qPCR and shown relative
to levels at 0 h. In C, HSAP5/BiP and DDIT3/Chop mRNA levels were measured
by qRT-PCR and shown relative to 0 h. Values are expressed as mean � S.D.
(error bars) of at least three independent experiments. *, p � 0.05, Student’s t
test.

Figure 2. The PERK branch of the UPR selectively induces miR-483-5p,
miR-215, and miR-616*. A, HeLa cells were transduced with XBP1s for 72 h.
Total RNA was collected, and ERdj4, Chop, and BiP mRNA levels were mea-
sured by qRT-PCR and shown relative to GFP-transduced cells. Values are
expressed as mean � S.D. (error bars) of at least three independent experi-
ments. *, p � 0.05, analysis of variance. B, C, and D, HeLa cells expressing
Fv2E-PERK or Tet-regulated ATF6(373) were treated with AP20187 (1 nM) or
doxycycline (100 �g/ml) for 48 h as indicated. BiP and Chop levels were mea-
sured by qRT-PCR, and Xbp-1 mRNA splicing was determined by RT-PCR. As a
positive control, in D, Xbp-1 mRNA splicing was determined in cells treated
with tunicamycin (5 �g/ml). E, HeLa cells were transduced with XBP1s (�) or
GFP (�). After 3 days, miR-483-5p, miR-215, and miR-616* levels were quan-
tified by qPCR and shown relative to GFP-transduced levels. F, HeLa cells
stably expressing a chemical dimerizer–inducible Fv2E-PERK were treated
with AP20187 (1 nM). After 48 h, miRNA expression levels were quantified by
qPCR from AP20187-treated cells (�AP) and shown relative to N,N-dimethyl-
formamide-treated samples (�AP). G, HeLa cells stably expressing a Dox-
regulated transcriptional activator domain of ATF6 were treated with 100
�g/ml Dox. After 48 h, miRNA expression levels were quantified by qPCR from
untreated cells (�Dox) and shown relative to Dox-treated cells (�Dox). Values
are expressed as mean � S.D. of at least three independent experiments. *,
p � 0.05, Student’s t test.
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translational and transcriptional programs of the PERK branch
of the UPR without activating IRE1 or ATF6 in cells (10, 19,
38 –40). Consistent with our prior studies, the addition of
AP20187 to cells bearing Fv2E-PERK caused marked induction
of Chop, a target gene robustly up-regulated by PERK activation
(Fig. 2B). By contrast, BiP, a marker for ATF6 signaling, and
spliced Xbp1 mRNA, a marker of IRE1 activation, were not
induced with AP20187 addition (Fig. 2, B and D). To activate
the ATF6 pathway, we used HeLa cells expressing the 373-a-
mino acid cytosolic transcriptional activator fragment of ATF6
(ATF6(373)) under the control of a doxycycline-regulated pro-
moter (40 –42). Prior studies demonstrated that the addition of
doxycycline lead to expression of the ATF6 transcriptional acti-
vator fragment and potent induction of the BiP gene, without
triggering Xbp1 mRNA splicing or activating the PERK path-
way (39, 40, 42). Consistent with our prior studies, the addition
of doxycycline to cells bearing the TetOn-ATF6(373) construct
led to marked induction of BiP, with lesser effects on Chop and
no splicing of Xbp-1 mRNA (Fig. 2, C and D).

Next, we applied these validated XBP1s, Fv2E-PERK, and
doxycycline (Dox)-regulated ATF6(373) systems to determine
how UPR signaling regulated the three ER stress-induced miRs
selected for analysis. We found that XBP1s expression did not
induce miR-215, miR-483, and miR-616* (Fig. 2E). By contrast,
selective PERK activation using the Fv2E-PERK system up-reg-
ulated all three miRs (Fig. 2F). Selective activation of the ATF6
pathway using the Dox-inducible ATF6(373) system up-regu-
lated miR-616* but had no significant effects on the levels of
miR-215 or miR-483 (Fig. 2G). These results showed that the
PERK signaling pathway was the most potent of the three sig-
naling arms of the UPR for induction of miR-215, miR-483, and
miR-616*.

Overexpression of miR-483 promotes cell death

Unabated ER stress or sustained signaling by the PERK arm
of the UPR promotes cell death by mechanisms that are poorly
understood. We investigated whether the ER stress and PERK-
induced expression of miR-215, miR-483, and miR-616* influ-
enced cell survival by overexpressing them in HeLa cells by
lentiviral transduction. We used the psiCHECK-2 microRNA
Biosensor luciferase reporter assay (Promega) to empirically
confirm that these overexpressed miRs were functional by
showing silencing of Renilla luciferase and a reduced ratio of
Renilla/firefly luciferase luminescence using this assay (Fig. S1).
When we examined protein lysates collected after 48 h of miR
expression, we found strong production of cleaved PARP and
cleaved caspase-3, markers of apoptosis, in cells expressing
miR-483 (Fig. 3, A and B). By contrast, we observed little cleaved
PARP production with miR-215 or miR-616* expression (Fig.
3A). These findings implicated miR-483 as a mediator of PERK-
induced cell death. Because ATF4 and CHOP are also induced
by PERK and promote cell death by inducing downstream tar-
get genes during the UPR (39, 43, 44), we next examined
whether the up-regulation of miR-483 by PERK signaling oper-
ated through ATF4 or CHOP. We used adenoviruses to over-
express ATF4 or CHOP, which were previously shown to
potently increase levels of functional ATF4 or CHOP proteins
(39, 43). We confirmed selective production of ATF4 or CHOP

protein in transduced cells, compared with GFP-transduced
cells (Fig. 3D). When we transduced cells with ATF4 for 48 h,
we found strong induction of miR-483 (Fig. 3D). By contrast,
CHOP expression failed to induce miR-483 (Fig. 3D).

To further test the link between ATF4 and miR-483, we
introduced short hairpin RNAs against Atf4 mRNA sequences
(shATF4) into the HeLa[Fv2E-PERK] cells. This shATF4 con-
struct was previously demonstrated to robustly knock down
ATF4 in HT1080 and DLD1 human cell lines (45). We con-
firmed that ATF4 production was substantially diminished in
our HeLa cells expressing shATF4 compared with control
scrambled mRNA hairpin sequences after tunicamycin or
AP20187 exposure (Fig. 3C, top). We confirmed that ASNS, a
downstream target gene of ATF4, was not normally induced
when ATF4 was knocked down (Fig. 3C, bottom) (17, 43). When
we measured miR-483 levels under these conditions, we found
significantly reduced miR-483 production when ATF4 was
knocked down compared with controls. These findings placed
ATF4 upstream of miR-483 induction and suggested that ATF4
may directly up-regulate miR-483 transcription.

miR-483 silences creatine kinase brain-type during the UPR

To explore the mechanism by which miR-483 caused cell
death during the UPR, we identified potential mRNA targets
based upon the presence of bioinformatically predicted miR-
483– binding sites within the 3�-UTR of mRNAs using the Tar-
getScan algorithm (http://www.targetscan.org/vert_72/) (81).5
We focused on two predicted miR-483 target mRNAs that
encoded for proteins with functions required for cell homeo-
stasis and whose loss could increase cell death upon miRNA-
483–mediated gene silencing. The creatine kinase brain-type
(CKB) mRNA contained a miR-483 binding site in its 3�-UTR
that was conserved across mammalian CKB mRNAs (Fig. 4A).
CKB catalyzes the production of phosphocreatine to ensure
that cells have sufficient ATP for cellular energy demands.
Recent experiments demonstrated that miR-483 overexpres-
sion suppressed tumor liver metastasis by down-regulating
CKB in the hepatic microenvironment of experimental animal
models (34). Another mRNA encoding X-linked inhibitor of
apoptosis (XIAP) also contained multiple putative miR-483–
binding sites in its 3�-UTR (Fig. 4A), although these were not
conserved in Xiap mRNAs from other species. XIAP prevents
cell death by directly inhibiting and promoting the degradation
of caspase enzymes (46). We previously demonstrated that
XIAP protein levels fall in response to ER stress and PERK
activation (39). These observations suggested that miR-483
impaired cell viability via two different mechanisms: 1) sup-
pression of XIAP to release the brake against caspases and 2)
suppression of CKB to disrupt cellular ATP stores.

In support of this model, we saw clear drops in XIAP and
CKB protein levels after miR-483 expression (Fig. 4, C and D)
comparable with the drops in XIAP and CKB levels seen after
tunicamycin treatment or selective PERK activation (Fig. 4B)
(39). To further test miR-483’s role in suppressing XIAP and
CKB, we used CRISPR-Cas9 gene editing to delete miR-483

5 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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from HeLa[Fv2E-PERK] cells (Fig. 4E). Then we selectively acti-
vated the PERK pathway using AP20187. In HeLa[Fv2E-PERK]
cells retaining miR-483, we found a progressive reduction in
XIAP and CKB levels upon AP20187 treatment, but this was
abolished in cells deleted for miR-483 (Fig. 4F). These findings
provided experimental evidence linking miR-483 expression to
down-regulation of XIAP and CKB protein levels.

To determine whether miR-483 directly silenced the Xiap or
CKB mRNAs through putative binding sites in the 3�-UTR, we
used Renilla luciferase mRNA reporters fused to the 3�-UTRs
of Xiap or CKB lacking or mutated at the miR-483 binding sites
(34). Next, we expressed miR-483 in cells bearing these lucifer-
ase 3�-UTR reporters. We found that Renilla luciferase fused to
the Xiap 3�-UTR lacking both putative miR-483– binding sites

was still suppressed by miR-483 (Fig. 4G). By contrast, mutation
of the miR-483– binding site in the 3�-UTR of CKB rendered
the Renilla luciferase-CKB-3�-UTR reporter construct insensi-
tive to miR-483 suppression (Fig. 4H). These findings provided
evidence that miR-483 directly targeted the CKB mRNA to
silence its expression, whereas it indirectly down-regulated
XIAP. Our findings indicate that miR-483 directly silences CKB
and indirectly gene-silences XIAP after induction by PERK
signaling.

ER stress suppresses CKB to deplete cellular ATP stores

To explore how cellular ATP levels changed during the UPR, we
created HeLa cells bearing a fluorescence-based intracellular
reporter of ATP concentrations, ATeam (adenosine 5�-triphos-

Figure 3. miR-483 expression induces apoptosis and is up-regulated by ATF4. A, HeLa cells were transduced with lentivirus expressing GFP, miR-483-5p,
miR-215, or miR-616* for 48 h. Cell lysates were immunoblotted for apoptosis marker cleaved PARP (cPARP) or actin (loading control). B, HeLa cells were
transduced with lentivirus expressing GFP, single miR-483 transduction, or double miR-483 transduction for 48 h. Cell lysates were immunoblotted for cPARP,
cleaved caspase-3, or actin (loading control). C, HeLa[Fv2E-PERK] cells stably expressing a short hairpin sequence against Atf4 (shATF4) or a scrambled control
(shCont) were treated with Tm (5 �g/ml) or AP20187 (1 nM) for 48 h. Cell lysates were immunoblotted for ATF4 or actin (loading control). Total RNA was
collected, and miR-483 levels were analyzed by qRT-PCR and shown relative to levels in cells with no drug treatment (�). ASNS is a transcriptional target of ATF4
and was also evaluated by qRT-PCR to confirm reduced ATF4 transcriptional function in shATF4-treated cells. Representative immunoblots are shown, and
values are expressed as mean � S.D. (error bars) of at least three independent experiments. *, p � 0.05 Student’s t test. D, top, cells were transduced with
adenovirus expressing GFP, ATF4, or Chop at 109 (�), 1010 (��), or 1011 (���) pfu, and protein lysates were immunoblotted for ATF4 or CHOP. �-Tubulin was
used as a loading control. Bottom, HeLa cells were transduced with adenovirus expressing ATF4 or CHOP at 1011 pfu. Total RNA was collected after 48 h, and
miR-483 levels were analyzed by qRT-PCR and are shown relative to untransduced controls (�). Values are expressed as mean � S.D. of at least three
independent experiments. *, p � 0.05, Student’s t test.
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phate indicator based on � subunit for analytical measurements)
(47). In this reporter, a cyan fluorescent protein (CFP) and a yellow
fluorescent protein (YFP) are linked by the small ATP-binding �

subunit of a bacterial F0F1-ATP synthase (Fig. 5A). When ATP is
absent, the � subunit linker is distended, allowing for distinct CFP
fluorescence (Fig. 5A). Upon ATP binding to the � subunit, the

Figure 4. miR-483 targets creatine kinase brain-type (CKB) mRNA and down-regulates XIAP. A, predicted miR-483–binding sites in the 3�-UTR of CKB and XIAP.
The nucleotides mutated in the CKB luciferase reporter are highlighted in red. B, HeLa[Fv2E-PERK] cells were treated with Tm (5 �g/ml) or AP20187 (1 nM) for 48 h), and
CKB and actin (loading control) were detected by immunoblotting. C and D, cells were transduced with miR-483 or scrambled control, and CKB, XIAP, or actin (loading
control) was detected by immunoblotting. E, CRISPR-Cas9 deletion of miR-483 in HeLa[Fv2E-PERK] cells. Two guide RNAs were designed from chromosome 11
sequences flanking miR-483 and inserted into the PX330 CRISPR vector. HeLa[Fv2E-PERK] cells were transfected, and puromycin-resistant colonies were subcloned.
Individual clones were genotyped for deletion of the miR-483 region by PCR using forward and reverse primers flanking the deleted region. Correctly edited clones
generated a�330-bp PCR product compared with a�480-bp PCR amplicon in clones retaining the miR-483 region. A representative gel is shown. F, HeLa[Fv2E-PERK]
parental cells or cells edited for miR-483 were treated with AP20187 (1 nM) for the indicated durations. CKB, XIAP, and actin (loading control) levels were detected by
immunoblotting. G, miR-483 was transfected into cells expressing firefly luciferase (FLuc) or Renilla luciferase (RLuc) fused to Xiap mRNA 3�-UTR lacking all predicted
miR-483–binding sites (Xiap-3�UTR-2kb) or bearing intact miR-483–binding sites (Xiap-3�UTR-3kb). RLuc/FLuc activity was measured by luminometer and shown
relative to untransfected samples. H, miR-483 was transfected into cells expressing FLuc or RLuc fused to WT CKB mRNA 3�-UTR (CKB-3�UTR-Wt) or mutated at the
miR-483–binding site (CKB-3�UTR-Mut). RLuc/FLuc activity was measured by luminometer and shown relative to untransduced samples. For G and H, values are
expressed as mean � S.D. (error bars) of at least three independent experiments. *, p � 0.05, Student’s t test.
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linker contracts to bring the CFP and YFP in close proximity,
thereby enabling excitation of acceptor YFP by donor CFP (YFP-
FRET signal) (Fig. 5A). Prior studies had demonstrated that the
ATeam construct enabled sensitive real-time identification of

HeLa cells with depleted ATP levels by quantification of the YFP-
FRET/CFP ratio in live cells (47).

We transduced HeLa cells stably expressing the ATeam
reporter with miR-483 or GFP. We found a substantial decrease

Figure 5. CKB suppression during the UPR depletes cellular ATP stores. A, the YFP-FRET/CFP ratio was measured by flow cytometry in HeLa cells stably
expressing the ATeam reporter and transduced with lentivirus expressing GFP or miR-483 for 24 h. Values are expressed as mean � S.D. (error bars) of at least
three independent experiments. *, p � 0.05, Student’s t test. B, HeLa cells were transduced with lentivirus expressing GFP or miR-483 for 24 h. Cell lysates were
collected, and the ADP/ATP ratio was measured using the ADP/ATP ratio assay kit (MAK135, Sigma), Values are expressed as mean � S.D. of at least three
independent replicates. p 	 0.05, Student’s t test. C, HeLa cells transduced with lentivirus expressing GFP, miR-483, control shRNAs (scrambled or anti-
luciferase sequences), or shRNAs against CKB were incubated in standard or glucose-free medium for 8 h. Total and viable cell counts were performed using
trypan blue exclusion. Values are expressed as mean � S.D. of at least three independent experiments. *, p � 0.05, two-way analysis of variance and Tukey’s test
for multiple comparisons. D, HeLa cells were transfected with CKB and treated with Tm for 72 h at the indicated concentrations. Protein lysates were
immunoblotted for cleaved caspase-3 (cCasp3) or actin (loading control). E, model of disruption of intracellular ATP homeostasis through PERK-mediated
induction of miR-483 in response to ER stress.
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in the YFP/CFP ratio in cells expressing miR-483 (Fig. 5A).
Consistent with our live-cell measurements, we also saw a
trending decrease in ATP levels using an enzymatic assay of
lysates prepared from cells expressing miR-483 (Fig. 5B). Addi-
tionally, following glucose starvation, miR-483–transduced
cells exhibited decreased cell viability compared with GFP-
transduced control cells, whereas CKB shRNA-transduced
cells were also less viable than cells expressing control shRNA
sequences (Fig. 5C). These findings suggested that miR-483–
dependent silencing of CKB leads to cellular ATP depletion
with deleterious consequences for cell viability.

To further determine how CKB protein levels impacted cell
survival during ER stress, we tested whether restoration of CKB
could prevent ER stress-induced cell death. We transfected
cells with CKB and exposed them to increasing doses of tuni-
camycin. We confirmed increased CKB protein levels by immu-
noblotting in transfected cells compared with mock-treated
cells (Fig. S2). After 72 h, we saw increased cell death morpho-
logically and biochemically with increased production of
cleaved caspase-3 on immunoblotting, and this was partially
attenuated in cells overexpressing CKB (Fig. 5D). These results
provide evidence that CKB played a cytoprotective role during
the UPR, and its down-regulation by PERK’s induction of miR-
483 increased cellular vulnerability to ER stress–induced cell
death.

Discussion

Unchecked ER stress leads to cell death, and dysregulated
PERK activity can drive this process (18, 19, 43, 48). In this
study, we identified novel signal transduction steps by which
PERK signaling impairs cell viability (Fig. 5E). First, we found
that the PERK arm of the UPR selectively up-regulated miR-483
through the actions of the ATF4 transcription factor. Then we
demonstrated that miR-483 silenced two genes regulating vital
cellular processes: XIAP and CKB. miR-483 directly targeted
the 3�-UTR of CKB, leading to its silencing, consistent with
prior report of this interaction in metastatic cancer cells (34).
Next, we provided evidence that miR-483 overexpression
depleted cellular ATP stores. Based on these findings, we pro-
pose that dysregulated PERK signaling disrupts ATP homeosta-
sis and metabolically weakens the cell. Coupled with other mal-
adaptive changes induced by extended UPR signaling, the cell
readily succumbs to cell death in the face of continued ER
stress.

Our identification of miR-483 as part of the PERK signaling
cascade adds to the growing number of genes induced by the
PERK arm of the UPR that elicit maladaptive cellular effects.
The best-characterized example is CHOP. CHOP’s proapopto-
tic properties were initially noted because of the enhanced abil-
ity of Chop�/� cells to survive chemically induced ER stress in
vitro (44) and were later reaffirmed, in vivo, by the partial ame-
lioration of pathology and improved tissue function when Chop
was deleted in some mouse models of diseases associated with
ER stress (49 –53). CHOP’s transcriptional program imposes
protein-folding demands on the ER and disrupts the luminal ER
redox environment during the UPR (43, 54), and in some cell
types, CHOP directly induces cell death executioners (48, 55,
56). However, CHOP expression does not trigger cell death, and

Chop deletion does not change outcomes in many other ER
stress disease models (39, 43, 57–60). By contrast, ATF4 can
mediate ER stress-induced cell death both in vitro and in vivo
(61–65). ATF4 can biochemically partner with CHOP via their
bZIP domains and shares many transcriptional targets with
CHOP (7, 43, 66). ATF4 also engages apoptotic pathways by
stimulating TRAIL death receptors and suppressing anti-apo-
ptotic IAP molecules (39, 67). These findings implicate both
ATF4 and CHOP as PERK-induced transcription factors that
drive the maladaptive phase of the UPR leading to cell death.
Indeed, ATF4 and CHOP co-expression caused increased pro-
tein expression, increased oxidative stress, reduced ATP/ADP
ratios, and more cell death (43).

This reduction of ATP during the UPR was previously pro-
posed to be a consequence of increased energy consumption
arising from ATF4-CHOP– driven protein expression. Our
current study provides a direct mechanism into how ATP is
depleted during the UPR, through our identification of an ER
stress– and PERK–induced miR-483 that directly silences the
CKB enzyme required for maintaining cellular ATP stores.
ATF4 promotes the loss of ATP via miR-483 induction and
suppression of phosphocreatine generation, but ATF4 also
concomitantly promotes new protein synthesis by activation
of the ATF4-CHOP transcriptional program (43). Clearly,
increased energy demand in the face of falling energy supplies
is unsustainable for the cell. Reducing energy demands and
restoring ATP levels could be accomplished if ATF4, CHOP,
and miR-483 levels returned to baseline. However, in situations
with persistent ER stress that lead to dysregulated PERK signal-
ing, sustained induction of ATF4, CHOP, and miR-483 could
inexorably worsen imbalances in cellular energetics and ulti-
mately culminate in an inviable metabolic environment where
apoptosis is triggered. This imbalance in cellular energetics cre-
ated by dysregulated PERK signaling is an important determi-
nant in the decision to undergo cell death in response to
chronic ER stress.

miR-483 joins the growing list of small RNAs regulated by
PERK signaling (24 –26, 30, 31, 68). Interestingly, many of these
PERK-modulated miRs also influenced cell survival in response
to ER stress. For instance, miR-211 is induced rapidly after ER
stress by the PERK arm of the UPR, but miR-211 levels decline
with extended ER stress (24). miR-211’s targets include Chop
and circadian cycle regulators, and silencing of these genes pro-
motes cell survival (24, 68). Induction of miR-211 could con-
tribute to the protective effects of PERK activation in response
to acute ER stress. By contrast, the PERK-regulated miR-
106b-25 cluster targets the Bim Bcl-2 family pro-apoptosis fac-
tor, and extended experimental PERK signaling (	24 h) down-
regulated miR-106b-25, leading to increased Bim protein (26).
Loss of miR-106b-25 and ensuing increase in BIM is another
maladaptive consequence of extended PERK signaling. In our
studies, we identified miR-483 induction in cells exposed to
extended experimental ER stress or PERK activation (	24 h).
miR-483–mediated silencing of CKB operates at similar time
points as the loss of miR-106b-25 silencing of Bim. Together,
these distinct maladaptive effects of extended PERK signal-
ing—loss of CKB and rise of BIM—influence the final cellular
decision to undergo cell death. These studies suggest that miRs
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are dynamically regulated in response to acute and extended
PERK signaling and help shape the protective or maladaptive
effects on the cell.

miR-483 has been readily detected in blood, ascites, and
pleural fluid samples from patients with a wide variety of can-
cers. miR-483-5p was significantly overexpressed in plasma
from both hepatocellular carcinoma and chronic lymphocytic
leukemia/lymphoma patients (69, 70). miR-483-5p was also up-
regulated in circulating blood samples from patients with adre-
nocortical carcinoma, and miR-483-5p overexpression corre-
lated with significantly worse survival and recurrence in this
cancer (71–73). Multiple myeloma patients with increased cir-
culating miR-483-5p had significantly worse progression-free
survival compared with patients with low plasma levels of miR-
483-5p (74). Based on these cancer epidemiologic associations,
clinical tests for miR-483-5p are under development for
potential use as a minimally invasive biomarker for cancer
diagnosis and prognosis (75). A role for ER stress and PERK
signaling in up-regulating circulating miR-483-5p in these
different cancers has not been examined. However, cancers
thrive under many adverse environmental conditions linked
to ER stress and UPR activation, including hypoxia, starva-
tion, and oxidative stress (76). Based on our findings, the
increased miR-483-5p levels found in these patients could
plausibly arise from increased ER stress and PERK activation
in these cancers. If future studies of these cancers validate
this conjecture, plasma testing of miR-483-5p could be used
as a biomarker to quantify the amount of ER stress or the
strength of UPR activation in tumors. In turn, these miR-
483-5p–positive cancers could be particularly responsive to
the growing number of small molecules that modulate the
UPR (77–80). In particular, our studies predict that pharma-
cologic inhibition of the PERK branch of the UPR or the
integrated stress response will be potent in driving down
ATF4-CHOP-miR-483 levels, whereas agents that enhance
phosphorylation of eIF2� will have the opposite effect.

Experimental procedures

Cell culture

HEK293 cells, HeLa cells, Huh7 cells, Raji cells, and their
transfectants were maintained in DMEM (Corning Cellgro,
Manassas, VA), 4.5 g/liter glucose, supplemented with 10% fetal
bovine serum (Corning Cellgro), 100 units of penicillin, 100
�g/ml streptomycin (Invitrogen), and nonessential amino acids
(Invitrogen) at 37 °C under 5% CO2. For glucose starvation
experiments, cells were cultured in DMEM with 10% fetal
bovine serum, 100 units of penicillin, 100 �g/ml streptomycin,
and no glucose, sodium pyruvate, or L-glutamine.

TaqMan array miRNA profiling

Total RNA from HEK293 cells treated with and without 5
�g/ml tunicamycin for 24 h was extracted using the mirVana
miRNA isolation kit (Ambion, Foster City, CA) according to
the manufacturer’s instructions. 1 �g of RNA was reverse-tran-
scribed using Megaplex RT Primers (human pool A and B ver-
sion 2.1, Applied Biosystems) and the TaqMan miRNA reverse
transcription kit (Applied Biosystems). Real-time qRT-PCR
with human TaqMan array cards (A and B) was performed

on Applied Biosystems 7900HT system. Data analysis was
performed using DataAssist Software version 2.0 (Applied
Biosystems).

qRT-PCR, RT-PCR, and qPCR analyses

For qRT-PCR analysis, total RNA was collected by the
RNeasy mini kit (Qiagen, Hilden, Germany), and 1 �g of RNA
was used for cDNA synthesis by iScript (Bio-Rad). Diluted
cDNA samples were used for real-time PCR in SYBR Green
qPCR supermix (Bio-Rad) on a CFX96 thermal cycler (Bio-
Rad). For quantitative measurement of BiP transcripts, the
following primer pair was used: 5�-CGGGCAAAGATGTCA-
GGAAAG-3� (forward) and 3�-TTCTGGACGGGCTTCA-
TAGTAGAC-5� (reverse). For quantitative measurement of
CHOP transcripts, the following primer pair was used: 5�-ACC-
AAGGGAGAACCAGGAAACG-3� (forward) and 3�-TCACC-
ATTCGGTCAATCAGAGC-5�(reverse).Forquantitativemea-
surement of ERdj4 transcripts, the following primer pair was
used: 5�-CATCAGAGCGCCAAATCAAG-3� (forward) and
5�-CATCAGAGCGCCAAATCAAG-3� (reverse). For quanti-
tative measurement of ASNS transcripts, the following primer
pair was used: 5�-ATCAGATGAACTTACGCAGGG-3� and
3�-AGTTCAAGACCATGGGCAG-5� (reverse). For RT-PCR
detection of Xbp-1 mRNA splicing, the following primer pair
was used: 5�-TTACGAGAGAAAACTCATGGC-3� (forward)
and 3�-GGGTCCAAGTTGTCCAGAATGC-5� (reverse).

For qPCR analysis, total RNA, including the miRNA fraction,
was prepared using the miRNeasy mini kit (Qiagen), and 1 �g of
RNA was subjected to an RT reaction with the miScript II RT
kit (Qiagen) and proprietary miR-483-5p, miR-616*, and miR-
215 primers (Qiagen miScript Primer Assay). Real-time qPCR
for mature miRNAs was carried out by an miScript SYBR Green
PCR kit using specific miRNA assay primers obtained from
Qiagen on a CFX96 thermal cycler. Expression of the U6 small
RNA was used as an internal control (Qiagen miScript primer
assay).

Conditional activation of individual UPR pathways

Stable transfectants of HeLa cells with chemical-genetic con-
structs to regulate the PERK pathway (HeLa/Fv2E-PERK) or
ATF6 (HeLa/TO-ATF6(373)) were established previously (39).
PERK signaling in HeLa/Fv2E-PERK cells and ATF6 signaling
in HeLa/TO-ATF6(373) were specifically activated by AP20187
(ARIAD) or by withdrawing Dox from the culture medium,
respectively. To selectively activate the IRE1-XBP1 pathway,
enforced expression of spliced XBP1 was introduced by lentivi-
ral transduction of human XBP1s. Lentivirus packaging was
performed with the integration-defective lentiviral system to
avoid random integration of the transgene (LENTI-Smart NIL,
Invivogen, San Diego, CA).

ATP measurements

The ATeam1.03 cDNA (containing the ATeam reporter), a
kind gift from Dr. Imamura (47), was cloned into pLVX-
AcGFP-Blast vector (Clontech/Takara BioScience, San Diego),
where AcGFP cDNA was removed and linearized with XhoI
and NotI digestion, and pLVX-ATeam-Blast was constructed.
For measurement of intracellular ATP concentration,
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pATeam-Blast was lentivirally transduced into HeLa/Fv2E-
PERK cells, and HeLa/ATeam cells were established. Flow
cytometry analysis was performed on a BD FACSCanto at the
Flow Cytometry Core at the San Diego Center for AIDS
Research; compensation was performed using UltraComp
eBeads (Fisher, 501129038) bound to antibodies of the corre-
sponding wavelengths. Dead cells were excluded using LIVE/
DEAD Fixable Far Red Stain (Thermo Fisher Scientific,
L34973), and singlet discrimination was performed using
FSC-H versus FSC-W gating. The CFP, YFP, and YFP acceptor
(excited by 435 nm) fluorescent signals from the ATeam
reporter were quantified from 10,000 events. Data analysis was
done using Flowing Software.

ADP/ATP ratio values in cell lysates were determined using
an ADP/ATP ratio assay kit (Sigma-Aldrich, MAK135) as
directed.

CRISPR/Cas9 gene editing

To create miR-483– deleted cells, two sgRNAs were de-
signed. Two sets of synthesized DNA oligonucleotides (sense-
left, caccgGCATTGCTGTGGGGGAGAGG; antisense-left,
aaacCCTCTCCCCCACAGCAATGCc; sense-right, caccgGG-
CACCACCTAGGAGGCTGG; antisense-right, aaacCCAGC-
CTCCTAGGTGGTGCCc) were obtained from Valuegene
(San Diego, CA). Each set of oligonucleotides was phosphory-
lated with T4 PNK (New England Biolabs) by incubation for
30 min at 37 °C, annealed in ligation buffer (New England
Biolabs) by incubation for 5 min at 95 °C, and declined in
temperature to 25 °C at 0.1 °C/s on a thermal cycler. The
oligonucleotide reaction mixture was diluted 100
 in water
and inserted into linearized PX330 (a gift from Feng Zhang)
by BbsI with a quick DNA ligation kit (New England Biolabs),
and PX330-miR483-Left and PX330-miR483-Right plasmids
were constructed. 1 �g of each plasmid was mixed with 0.2
�g of pBabe-puro-empty vector. The plasmid mixture was
transfected into HeLa-Fv2E-PERK cells. At 48 h after trans-
fection, culture medium was replaced with fresh DMEM
containing 2.5 �g/ml puromycin to select for cells express-
ing transgene. After puromycin selection, single cells were
isolated in 96-well plates. Clones were expanded, and dele-
tion of miR-483 was confirmed by PCR amplification of the
genomic DNA flanking the miR-483 gene with the following
primer set (forward, GGTGCCAGCCAGTCCTTG; reverse,
CCACAACCAGAGGGACACC), and PCR products were
resolved on 2.5% agarose gel in 1
 TBE buffer.

Viral transduction

Adenoviral transduction for GFP, ATF4, or CHOP was
described previously (39).

pLVX-AcGFP-miR-483, -miR-215, and -miR-616 were con-
structed using Gibson assembly. Briefly, genomic regions
harboring each miRNA with �200-bp flanking regions were
amplified from HEK293’s genomic DNA, and purified products
were subsequently cloned into pLVX-AcGFP-N1 digested with
NotI and XbaI using Gibson assembly. Lentivirus plasmid was
premixed with lentivirus-packaging plasmids, psPAX2, and
pMD2G, at a 3:2:1 ratio, and co-transfected into 293FT cells
with PEI-Max (Polysciences Inc., Fisher). Supernatant contain-

ing virus particles was collected at 48 and 72 h after transfec-
tion. The LMP-shRNA nonsilencing (shCont) and LMP-
shRNA human ATF4 (shATF4) were created previously (39),
and retrovirus particles were created in Phoenix-ampho cells as
described previously (39). HeLa/Fv2E-PERK cells were retrovi-
rally transduced with shCont or shATF4 and established as
HeLa/shCont and HeLa/shATF4 by puromycin selection.
pBabe-puro-CKB for enforced expression of human CKB was
provided by Dr. Tavazoie (34) and was used for establishment of
HeLa/CKB cells.

Luciferase 3�-UTR reporters

The psiCheck2 luciferase reporter assays (Promega, Madi-
son, WI) were performed as described previously (34). The WT
and mutant CKB luciferase constructs were provided by Dr.
Tavazoie (34). The Xiap 3�-UTR containing putative miR-483–
binding sites or truncated to omit both miR-483– binding sites
was cloned into the psiCheck2 Dual-Luciferase reporter vector
(34). Cells were co-transfected with miRNA expression con-
structs and luciferase reporter constructs, and Renilla and fire-
fly luciferase activities were determined using a dual-luciferase
assay kit per the psiCheck2 manufacturer’s instructions (Pro-
mega) (34). The psiCheck2 luciferase reporter was used to func-
tionally validate expression of transduced miRs, by cloning syn-
thetic miR-binding sites into the 3�-UTR of Renilla luciferase,
and measuring the ratio of Renilla and firefly luciferase activi-
ties per the manufacturer’s instructions.

Western blot analysis

For Western blot analysis, 10 –20 �g of protein was prepared
in SDS lysis buffer (62.5 mM Tris-HCl, pH 6.8, 2% (w/v) SDS,
10% glycerol), mixed with 100 mM DTT in 1
 LDS buffer
(Invitrogen), and incubated at 70 °C for 5 min prior to loading
onto a 4 –15% gradient SDS-polyacrylamide gel (Bio-Rad).
After SDS-PAGE, samples were transferred to polyvinylidene
difluoride membranes (Bio-Rad) in 1
 Tris/glycine buffer con-
taining 20% methanol and transferred at 250 mA for 1 h. The
membrane was blocked in 5% skim milk in TBS buffer contain-
ing 0.1% Tween 20 (TBST) for 1 h at room temperature and was
subsequently incubated with primary antibody in 5% BSA in
TBST buffer at 4 °C overnight with gentle shaking. After incu-
bation with primary antibody, the membrane was washed in
TBST buffer three times at room temperature and then incu-
bated with secondary antibody conjugated with horseradish
peroxidase (HRP) for 1 h at room temperature. HRP-catalyzed
chemiluminescent signal using SuperSignal West Pico or
Femto solution (Pierce) was detected on ChemiDoc (Bio-Rad).
Primary antibodies used were as follows: cleaved PARP (Cell
Signaling: 9541, 1:1000), ATF4 (Santa Cruz Biotechnology:
(C-20) sc-200, 1:1000), ATF4 (Cell Signaling: 11815S, 1:2000),
CHOP (Santa Cruz Biotechnology, Inc.: sc-575, 1:1000), CKB
(Santa Cruz Biotechnology: sc-15157, 1:1000), cleaved
caspase-3 (Cell Signaling: 9664, 1:1000), actin (Millipore:
1:10,000), XIAP (BD Biosciences: 610717, 1:1000), and tubulin
(Sigma: T9026, 1:2000). HRP-conjugated anti-mouse and anti-
rabbit secondary antibodies were from Cell Signaling (1:3000)
or Jackson Laboratory (1:2000).
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