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The functions of the glycine receptor (GlyR) and GABAA
receptor (GABAAR) are both impaired in hyperekplexia, a neu-
rological disorder usually caused by GlyR mutations. Although
emerging evidence indicates that cannabinoids can directly
restore normal GlyR function, whether they affect GABAAR
in hyperekplexia remains unknown. Here we show that
dehydroxylcannabidiol (DH-CBD), a synthetic nonpsychoac-
tive cannabinoid, restores the GABA- and glycine-activated
currents (IGABA and IGly, respectively) in HEK293 cells coex-
pressing a major GABAAR isoform (�1�2�2) and GlyR�1 carrying a
human hyperekplexia-associated mutation (GlyR�1

R271Q). Using
coimmunoprecipitation and FRET assays, we found that DH-
CBD disrupts the protein interaction between GABAAR and
GlyR�1

R271Q. Furthermore, a point mutation of GlyR�1, changing
Ser-296 to Ala-296, which is critical for cannabinoid binding on
GlyR, significantly blocked DH-CBD-induced restoration of IGABA

and IGly currents. This S296A substitution also considerably atten-
uated DH-CBD-induced disruption of the interaction between
GlyR�1

R271Q and GABAAR. These findings suggest that, because it
restores the functions of both GlyR�1 and GABAAR, DH-CBD may
represent a potentially valuable candidate drug to manage hyper-
ekplexia.

Hyperekplexia, also called startle disease, is a rare hereditary
neurological disorder characterized by exaggerated startle
reflex and muscular stiffness to an unexpected stimulus, such as
a tactile or sound stimulus (1). Mutations in genes coding for �

and � subunits of inhibitory glycine receptor (GlyR)2 (GLRA1
and GLRB) and glycine transporter GlyT2 (SLC6A5) are the
primary cause of hyperekplexia disease (2–8). GlyR, as a ligand-
gated chloride channel, mainly mediates inhibitory neurotrans-
mission in the spinal cord and brain stem (9, 10). So far, four �
subunits (�1– 4) and one � subunit of GlyR have been identified
(11–13). The � subunits are mainly located at the spinal cord,
brain stem, cortex, hippocampus, amygdala, and striatum and
mediate physiological functions such as motor function, pain, and
breathing (11, 14–17). Of all human hyperekplexic mutations of
GlyR (2, 18–20), R271Q is one of the most common types of muta-
tions (21–23). This mutation significantly impairs GlyR�1 func-
tion, reflected by reduced amplitude of glycine-activated currents
(IGly) and increased EC50 values of GlyR�1 (24, 25).

GABAAR, another widely distributed inhibitory ligand-
gated ion channel in the central nervous system (26, 27), has
widely been proved to be colocalized with GlyR in spinal
cord and brain stem neurons (28 –33). For instance, GlyR is
colocalized with �1 and �2 subunits of GABAAR in the hypo-
glossal nucleus of mice (32). Double-immunofluorescence
staining also showed that GABAA receptor–positive cells ex-
hibit prominent glycine receptor immunoreactivity in spinal
cord neurons (33). Emerging evidence indicates that GABAAR
is functionally impaired in hyperekplexia disease (34, 35). For
instance, electrically evoked GABAergic inhibitory postsynap-
tic currents are decreased in the spinal cord of GlyR�1

R271Q

mutant mice (34). Consistent with this, we recently verified
decreased activity of GABAAR in hyperekplexic transgenic
mice carrying the R271Q or S267Q mutation (36). Such func-
tional impairment can ultimately be attributed to the direct
protein interaction between GABAAR and mutant GlyR�1.
Benzodiazepines, first-line medications for treating hyperek-
plexia disease in the clinic (37–39), restored the function of
GABAAR but not GlyR (40, 41). However, medicines that target
both receptors have not yet been developed.

As positive GlyR allosteric modulators, cannabinoids can
directly potentiate GlyR function in a cannabinoid receptor 1 or 2
(CB1/2R)–independent manner (42–47). Dehydroxylcannabidiol
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(DH-CBD), a synthetic nonpsychoactive cannabinoid, signifi-
cantly alleviates the abnormal startle reflex and muscle stiffness in
hyperekplexic transgenic mutant mice (25). Such effects were
blocked by a point mutation (Ser3Ala) of GlyR�1 Ser-296, which
is essential for DH-CBD binding. Considering the restorative
effects of cannabinoids on GlyR�1, we wondered whether it can
restore the function of GABAAR in hyperekplexia disease. In this
study, we coexpressed GABAAR (�1�2�2) and R271Q mutant
GlyR�1 in a HEK293 cell model and combined various ap-
proaches, such as electrophysiological recording, FRET assays,
and coimmunoprecipitation, to explore possible effects of DH-
CBD on the function of GlyR�1 and GABAAR in hyperekplexia
disease.

Results

DH-CBD restores the function of hyperekplexic mutant GlyR�1

We first examined the effect of the R271Q mutation on
GlyR�1 function using single-cell patch clamp recording (Fig.
1A). The R271Q mutation significantly reduced the IGly in
HEK293 cells expressing GlyR�1

R271Q in the presence and
absence of GABAAR (Fig. 1B). DH-CBD is a synthetic nonpsy-
choactive cannabinoid modified from �9-tetrahydrocannabi-
nol (48), a major component of cannabis (Fig. 1C). We then
evaluated the effect of DH-CBD on IGly in HEK293 cells coex-
pressing GlyR�1

R271Q and GABAAR. Consistent with a previ-
ous report (25), DH-CBD at 1, 3, and 10 �M dose-dependently
caused a 10- to 30-fold increase in IGly (Fig. 1D). Furthermore,
DH-CBD also considerably restored the dose–response curve (Fig.
1E) and decreased the EC50 values of GlyR�1

R271Q (Fig. 1F).

DH-CBD restores the function of GABAAR in the presence of
GlyR�1

R271Q

Compared with WT GlyR�1, coexpression of GlyR�1
R271Q

significantly decreased the GABA-activated current (IGABA) in

HEK293 cells (Fig. 2A). DH-CBD at 3 �M and 10 �M, but not
1 �M, remarkably restored IGABA (Fig. 2B). Additionally,
GlyR�1

R271Q obviously shifted the dose–response curve of
IGABA to the right and increased the EC50 values of GABAAR
(Fig. 2, C and D). Such effects were eliminated by preincubation
of DH-CBD (Fig. 2, C and D). DH-CBD-induced restoring
effect on GABAAR seem to depend on GlyR�1 because DH-
CBD at 10 �M could not affect IGABA in HEK293 cells expressing
GABAAR alone (Fig. 2E). Previous reports showed that can-
nabidiol (CBD), another nonpsychoactive cannabinoid,
could also potentiate GlyR function (46, 47). We then incu-
bated HEK293 cells with CBD. CBD at 10 �M significantly
restored GlyR�1

R271Q-decreased IGABA in HEK293 cells
(Fig. S1).

DH-CBD interrupts the protein interaction between GABAAR
and GlyR�1

R271Q

We have reported previously that the decreased activity of
GABAAR in hyperekplexia was due to the protein interaction
between GABAAR and mutant GlyR�1 (36). Such effects may
specifically depend on the type of GlyR�1 mutations because
GlyR�1 carrying a nonhyperekplexic K385A mutation showed
very weak binding with GABAAR and had no effect on IGABA
(Fig. S2), which was similar to WT GlyR�1. Next we performed
a coimmunoprecipitation assay to measure the effects of DH-
CBD on the protein interaction between both receptors using
HEK293 cells coexpressing GlyR�1

R271Q and GABAAR. Prein-
cubation of DH-CBD significantly reduced the amount of
GlyR�1

R271Q protein coimmunoprecipitated with GABAAR
(Fig. 3A).

Next we verified this effect of DH-CBD in HEK293 cells by
FRET, a powerful technique for studying protein interac-
tions in living cells with advanced spatial and temporal res-
olution (49). To perform the FRET assay, cyan fluorescent

Figure 1. Effects of DH-CBD on mutant GlyR�1 in HEK293 cells. A, schematic of patch clamp recording on HEK293 cells. B, representative trace records and average
values of IGly activated by 1 mM glycine in HEK293 cells expressing GABAAR (�1�2�2) and/or R271Q mutant �1 GlyR (n � 9). C, chemical structure of �9-tetrahydrocan-
nabinol (THC) and DH-CBD. D, representative trace records and average values of IGly activated by 1 mM glycine in HEK293 cells coexpressing GABAAR (�1�2�2) and
R271Q mutant �1 GlyR with or without 1 �M, 3 �M, and 10 �M DH-CBD preincubation (n � 7). E, dose–response curves of IGly in HEK293 cells coexpressing GABAAR
(�1�2�2) and R271Q mutant �1 GlyR with or without 10 �M DH-CBD preincubation. The data were normalized to Imax of the WT GlyR group (n � 6). F, EC50 values of IGly
induced by increasing glycine concentrations in HEK293 cells coexpressing GABAAR (�1�2�2) and R271Q mutant�1 GlyR with or without 10�M DH-CBD preincubation
(n � 6). Data are represented as mean � S.D. **, p � 0.01; ***, p � 0.001; based on unpaired t tests; ns, not significant (p � 0.05).
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protein (CFP, the donor) and yellow fluorescent protein
(YFP, the acceptor) were conjugated to the N-termini of the
GlyR�1

R271Q and GABAAR�1 subunits separately (Fig. 3B).
CFP-tagged GlyR�1

R271Q and YFP-tagged GABAAR were
functionally expressed in HEK293 cells (Fig. 3, C and D) and
could be detected by a dual-channel spinning disk confocal
microscope (Fig. S3). DH-CBD did not change the YFP/CFP
emission ratio in HEK293 cells coexpressing CFP-tagged
GlyR�1

WT and YFP-tagged GABAAR (Fig. 3F). However,
after 30 – 60 min of incubation, DH-CBD significantly
increased the YFP/CFP emission ratio in HEK293 cells coex-
pressing CFP-tagged GlyR�1

R271Q and YFP-tagged GABAAR
(Fig. 3E), suggesting a changed protein interaction pattern
between GlyR�1

R271Q and GABAAR induced by DH-CBD
treatment.

The S296A mutation diminishes DH-CBD–induced restoration
of GlyR�1 and GABAAR function in hyperekplexia

Ser-296 in the third transmembrane domain of the GlyR�1
subunit has been suggested to be essential for DH-CBD–
GlyR�1 interaction (46, 48, 50). The S296A mutation in GlyR�1
blocked the rescuing effects of DH-CBD on both IGly and IGABA
in HEK293 cells coexpressing GABAAR and GlyR�1 carrying
the R271Q and S296A mutations (Fig. 4, A and B). The S296A
mutation also significantly inhibited the restoring effects of
DH-CBD on the protein interaction between GlyR�1

R271Q and
GABAAR (Fig. 4C). Benzodiazepines are routine drugs for
treating hyperekplexia in the clinic, targeting GABAAR (37, 38,
51–53). However, unlike DH-CBD, diazepam could not affect
the protein interaction between GABAAR and GlyR�1

R271Q

(Fig. 4D).

Discussion

Benzodiazepines are the most commonly used drugs for the
treatment of hyperekplexia disease in the clinic (37, 38, 51–53).

Our recent study also reported that diazepam can restore the
function of pre- and extrasynaptic GABAAR in hyperekplexia
disease (36). Benzodiazepines are effective and relatively safe to
treat this disease, especially at low doses (37–39). However,
benzodiazepines may cause sedative effects even at low doses
(54), which is far from ideal for long-term treatment and chil-
dren. In addition, there is a chance of tolerance after months of
benzodiazepine use, even at low doses (55). Therefore, there is
a need to develop new therapeutic avenues targeting both
GlyR�1 and GABAAR with minimal side effects for the treat-
ment of hyperekplexia disease. The data presented in this study
provide evidence that DH-CBD may be a more appropriate
candidate medicine for treating hyperekplexia disease under
certain conditions, such as the GlyR�1 R271Q mutation. DH-
CBD restores the function of hyperekplexic mutant GlyR�1 and
GABAAR by interrupting the protein interaction between these
two receptors, whereas benzodiazepines only restore GABAAR
function (53).

Emerging evidence shows that Ser-296 of the GlyR �1 sub-
unit is a critical site for cannabinoid action (46, 48, 50). In this
study, the S296A site mutation blocked DH-CBD–induced dis-
ruption of the protein interaction between GlyR�1

R271Q and
GABAAR. Such an effect likely leads to restoration of GABAAR
function in HEK293 cells. Considering the fact that DH-CBD
had no effect on GABAAR alone expressed in HEK293 cells, we
suppose that DH-CBD–induced functional restoration of
GABAAR must be achieved by first acting on GlyR�1. However,
the detailed mechanism of how DH-CBD diminishes the
hijacking effect of mutant GlyR�1 on GABAAR needs further
investigation. Several techniques may help to illustrate the
potential mechanism, such as molecular dynamics simulation
and protein crystal structure analysis, and may provide the
detailed protein structure of the GlyR�1–GABAAR complex
and the potential binding sites of DH-CBD on the GlyR�1–
GABAAR protein complex.

Figure 2. Effects of DH-CBD on GABAAR in HEK293 cells coexpressing GlyR�1
R271Q and GABAAR. A, representative trace records and average values of

IGABA activated by 1 mM GABA in HEK293 cells coexpressing GABAAR (�1�2�2) and WT or R271Q mutant �1 GlyR (n � 13). B, representative trace records and
average values of IGABA activated by 1 mM GABA in HEK293 cells coexpressing GABAAR (�1�2�2) and R271Q mutant �1 GlyR with or without 1 �M, 3 �M, and 10
�M DH-CBD preincubation (n � 8). C and D, dose–response curves (C) and EC50 values (D) of IGABA in HEK293 cells coexpressing GABAAR (�1�2�2) (n � 6) and
R271Q mutant �1 GlyR with or without 10 �M DH-CBD preincubation (n � 7). The data were normalized to Imax of the GABAAR � GlyR�1

WT group. E,
representative trace records and average values of IGABA induced by 1 �M, 30 �M, and 1000 �M GABA in HEK293 cells expressing GABAAR (�1�2�2) alone (n �
7) with or without 10 �M DH-CBD preincubation (n � 6). Data are represented as mean � S.D. **, p � 0.01; ***, p � 0.001; based on unpaired t tests; ns, not
significant (p � 0.05).
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This study showed that DH-CBD had no direct effects on
GABAAR in HEK293 cells. However, a previous report revealed
that CBD and 2-arachidonoyl glycerol, an endogenous canna-
binoid, can enhance the function of GABAAR in Xenopus
oocytes (56). There may be two possible reasons for this con-
tradiction. One may be the use of two distinct cell models in the
two studies, amphibian oocytes and mammalian cell lines,
which may carry quite different genomes, proteomes, and
plasma membrane components (57, 58). Another possible rea-
son is that, although CBD and DH-CBD are very similar in
structure, the subtle structural differences between them still
lead to differences in their direct action on GABAAR.

To illustrate the therapeutic effects of DH-CBD on hyperek-
plexia disease, the R271Q site mutation was selected as for this
study because, of all reported GlyR�1 gene mutations, R271Q is
the most common mutation causing hyperekplexia disease
(21–23). In addition to R271Q mutant GlyR�1, GlyR�1 carrying
many other mutations, such as R218Q, P250T, V260M, S270T,
and K276E, is also responsive to DH-CBD (25). These muta-
tions, especially R271Q, have a high prevalence among all
hyperekplexic patients. For example, in a clinical study, it was
found that 10 of 17 hyperekplexic patients carried the GlyR�1
R271Q mutation (23). However, several site mutations in the
GlyR � subunit and GlyT2 can also cause hyperekplexia (2–7).

Figure 3. Effects of DH-CBD on protein interaction between GABAAR and GlyR�1
R271Q. A, GlyR�1 protein was purified using GABAAR �1 antibodies

in HEK293 cells coexpressing GABAAR (�1�2�2) and WT/R271Q mutant �1 GlyR with or without 10 �M DH-CBD preincubation. Input represents the same
protein immunoblots (IB) extracted from cell lysates prior to co-IP. Shown is quantification of WT and R271Q mutant GlyR �1 binding to GABAAR �1
subunits with or without 10 �M DH-CBD preincubation (n � 4). The data were normalized to the WT group without DH-CBD preincubation. B, schematic
of plasmid structures and FRET. C, representative trace records and average values of IGly activated by 1 mM glycine in HEK293 cells expressing
GlyR�1

R271Q (n � 7) or CFP-GlyR�1
R271Q alone (n � 7) or YFP-GABAAR (�1�2�2) and GlyR�1

R271Q (n � 8). D, representative trace records and average values
of IGABA activated by 1 mM GABA in HEK-293 cells expressing GABAAR (n � 7) or YFP-GABAAR (�1�2�2) alone (n � 7) or YFP-GABAAR (�1�2�2) and
CFP-GlyR�1

R271Q (n � 6). E, representative images and quantification of HEK293 cells coexpressing CFP-tagged GlyR�1
R271Q and YFP-tagged GABAAR

(n � 12). These images were collected separately via CFP and YFP channels 0, 30, and 60 min after 10 �M DH-CBD preincubation. Scale bars � 5 �m. F,
representative images and quantification of HEK293 cells coexpressing CFP-tagged GlyR�1

WT and YFP-tagged GABAAR (n � 9). These images were
collected separately via CFP and YFP channels 0, 30, and 60 min after 10 �M DH-CBD preincubation. Scale bar � 5 �m. Data are represented as mean �
S.D. *, p � 0.05; **, p � 0.01; based on unpaired t tests; ns, not significant (p � 0.05).
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Whether these hyperekplexia-causing mutations can affect the
function of GABAAR remains unknown and needs to be inves-
tigated further. In addition, considering the fact revealed by
this study that DH-CBD–induced functional restoration of
GABAAR is based on GlyR�1, DH-CBD may not influence
GABAAR under conditions involving mutations of the GlyR �
subunit and GlyT2 mutations. Thus, the therapeutic effect of
DH-CBD may be based on gene sequencing results of individual
hyperekplexic patients. For instance, DH-CBD or other canna-
binoids may be an effective and precise medical treatment
option for patients carrying GlyR�1 mutations, especially Arg-
271 mutations. However, for patients carrying GlyR � subunit–
or GlyT2-related mutations, benzodiazepines may still be a
preferential choice.

Experimental procedures

Ethics approval

All procedures were approved by the Institutional Animal
Use and Care Committee of the School of Life Sciences, Uni-
versity of Science and Technology of China.

Electrophysiological recording

HEK293 cells were cultured as described previously (36).
Plasmids coding Rattus GABAAR (�1�2�2) in the pUNI vector
(59) and human GlyR�1 (NM_000171) in the pcDNA3.1� vec-

tor were cotransfected into HEK293 cells using Lipofectamine
2000 reagent (Invitrogen). 48 h later, patch clamp recordings
were performed. Trypsin (0.25% (w/v)) was used to digest the
cells 2 h before recording. Then the cells were patched and
recorded with external solution containing 140 mM NaCl, 5 mM

KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, and 10 mM

HEPES (pH 7.4 with NaOH, �320 mosmol with sucrose). The
patch pipettes (3–5 megaohm) used for patching were filled
with intracellular solution containing 140 mM CsCl, 4 mM

MgCl2, 10 mM EGTA, 10 mM HEPES, 0.5 mM Na-GTP, and 2
mM Mg-ATP (pH 7.2 with CsOH, �280 mosmol). The equiva-
lent vehicle and DH-CBD/CBD were added 30 min before
recording. Membrane currents were collected using an Axo-
patch 200B amplifier (Axon). The holding potential was held at
	60 mV. Data were acquired using pClamp 10.4 software
(Molecular Devices, Sunnyvale, CA). Drugs were applied using
a Warner Fast-Step Stepper Motor-driven system when
recordings were performed (SF-77B, Warner).

Site-directed mutagenesis

The R271Q, S296A, and K385A site mutations of �1 GlyR
were introduced using the QuikChange Site-Directed Muta-
genesis Kit (Takara, Inc.). The complementary DNA sequences
were determined through dsDNA sequencing with a genetic
analysis system (Sangon, Inc.).

Figure 4. Effects of GlyR�1
S296A site mutation on DH-CBD–induced restoration on the interaction between GlyR�1 and GABAAR. A, representative trace

records and average values of IGly activated by 1 mM glycine in HEK293 cells coexpressing GABAAR (�1�2�2) and GlyR�1 carrying both R271Q and S296A
mutation with or without 10 �M DH-CBD preincubation (n � 10). B, representative trace records and average values of IGABA activated by 1 mM GABA in HEK293
cells coexpressing GABAAR (�1�2�2) and GlyR�1 carrying the R271Q and S296A mutations with or without 10 �M DH-CBD preincubation (n � 13, 15, 9, 14, and
11). C, GlyR�1 protein was purified using GABAAR �1 antibodies in HEK293 cells coexpressing GABAAR (�1�2�2) and GlyR�1 carrying the R271Q and S296A
mutations with or without 10 �M DH-CBD preincubation. Input represents the same protein immunoblots (IB) extracted from cell lysates prior to co-IP. Shown
is quantification of WT and S296A mutant GlyR�1

R271Q subunits binding to GABAAR �1 subunits with or without 10 �M DH-CBD preincubation (n � 4). The data
were normalized to the WT group without DH-CBD preincubation. D, GlyR�1 protein was purified using GABAAR �1 antibodies in HEK293 cells coexpressing
GABAAR (�1�2�2) and GlyR�1 carrying the R271Q and S296A mutations with or without 10 �M diazepam preincubation. Input represents the same protein
immunoblots extracted from cell lysates prior to co-IP. Shown is quantification of WT and S296A mutant GlyR�1

R271Q subunits binding to GABAAR �1 subunits
with or without 10 �M diazepam preincubation (n � 3). The data were normalized to the WT group without diazepam preincubation. Data are represented as
mean � S.D. *, p � 0.05; ***, p � 0.001; based on unpaired t tests; ns, not significant (p � 0.05).
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Coimmunoprecipitation

Plasmids coding GlyR�1 and GABAAR were cotransfected
into HEK293 cells using Lipofectamine 2000 reagent (Invitro-
gen). DH-CBD and equivalent vehicle were added separately to
the medium 30 min before the cells were collected. 48 h after
transfection, the cells were collected and treated with buffer
containing 1 M Tris-HCl (pH 7.5), 1% protease inhibitor mix-
ture (Roche), 1 M NaCl, and 5% sodium deoxycholate. To con-
firm the protein expression level, 60 �l of whole-cell lysate was
collected as the input before immunoprecipitation. The input
has always been regarded as a standard in coimmunoprecipita-
tion experiments. Then the primary antibody against GABAAR
�1 protein was incubated with IgG-agarose beads overnight at
4 °C. The mixtures were collected and incubated with the
remaining cell lysates overnight. After five washes with cell lysis
buffer, 100 �l of loading buffer was added, followed by 5 min of
boiling. The samples were then used for Western blotting. Sam-
ples were loaded on SDS-PAGE gels (12%) and then transferred
to a PVDF membrane (NEN, Boston, MA) for 90 min. Then the
membrane was blocked with Tris-buffered saline containing
0.1% Tween 20 and 5% (w/v) nonfat milk for 1 h. Primary anti-
bodies against GABAAR �1 (1:100, 06-868, Merck), GlyR �1
(1:500, NB300-113, Novus), and GAPDH (1:5000, 60004-1-AP,
Proteintech) were used for overnight incubation. After three
5-min washes, the membrane was incubated with secondary
antibodies against rabbit (1:5000, ab6721, Abcam) for 2 h at
room temperature. The membrane was washed three times,
and the protein bands were imaged using ECL reagent (Thermo
Fisher Scientific). The gray values were analyzed using ImageJ
software (National Institutes of Health).

FRET and live imaging

The CFP-GlyR�1
WT, CFP-GlyR�1

R271Q, and YFP-GABAAR�1
plasmids were created by inserting complementary DNA
sequences coding CFP and YFP at the N terminus of GlyR�1 and
GABAAR�1 in vector pcDNA3.1�. For live imaging, cells were
plated on 18 
 18 mm glass coverslips (CITOGLAS) coated with
poly-D-lysine (Sigma-Aldrich). The coverslips were mounted in
custom-designed chambers using L-15 medium without phenol
red (Thermo Fisher). The temperature was maintained at �37 °C
using an air stream incubator. The CFP-GlyR�1

WT, CFP-
GlyR�1

R271Q, and YFP-GABAAR�1 plasmids were then trans-
fected equivalently using Lipofectamine 2000 according to the
manufacturer’s instructions and used for analysis 48 h later.
The equivalent vehicle and DH-CBD were added separately to the
transfected cells 2 h before live imaging. DH-CBD at 10 �M was
used in this experiment. The concentration of vehicle (ethanol)
was less than 0.1%. The cells were observed using a Nikon Ti-
Eclipse inverted microscope equipped with a charge-coupled
device camera (Andor), a spinning disk confocal microscope (Yok-
ogawa), and a laser merge module equipped with 445-, 488-, and
594-nm lasers (ILE, Andor). Fluorescence images were collected
using iQ3 software (Andor). CFP and YFP were excited at 445 and
488 nm, respectively. CFP and YFP emissions were acquired
simultaneously with a beam splitter (OPTOSOLIT II). The YFP/
CFP emission ratio in each image was calculated after background
subtraction by MATLAB and averaged over multiple cells. Exper-

iments were repeated multiple times with similar results. The fluo-
rescence intensity was analyzed using ImageJ software.

Drugs

All chemicals, including diazepam, glycine, and GABA, were
from Sigma-Aldrich. The external solution was prepared the
day before the experiment. Before electrophysiological record-
ings, the agonists, modulators, and antagonists were diluted
with external solution. DH-CBD and CBD were synthesized
according to a procedure described previously (50). DH-CBD
was dissolved with ethanol and diluted by external solution
before recording.

Statistical analysis

Transfected HEK293 cells were picked randomly for elec-
trophysiological experiments. Concentration–response data
analysis was performed using the nonlinear curve fitting
program. Data were fit using the following Hill equation:
I/Imax � bottom � (top 	 bottom)/(1 � 10 (logEC50 	
log[agonist]) 
 Hill slope). Imax is the maximum current.
Data were statistically analyzed by unpaired t tests using
GraphPad Prism 6.0 (GraphPad Software). Data are pre-
sented as mean � S.D. p � 0.05 was considered significant.
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