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Abstract: Cardiovascular diseases remain the leading cause of death in the developed world,
accounting for more than 30% of all deaths. In a large proportion of these patients, acute myocardial
infarction is usually the first manifestation, which might further progress to heart failure. In addition,
the human heart displays a low regenerative capacity, leading to a loss of cardiomyocytes and
persistent tissue scaring, which entails a morbid pathologic sequela. Novel therapeutic approaches
are urgently needed. Stem cells, such as induced pluripotent stem cells or embryonic stem cells,
exhibit great potential for cell-replacement therapy and an excellent tool for disease modeling, as well
as pharmaceutical screening of novel drugs and their cardiac side effects. This review article covers
not only the origin of stem cells but tries to summarize their translational potential, as well as potential
risks and clinical translation.
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1. Introduction

Cardiovascular diseases (CVDs) remain a plight to modern-day humans, accounting for over
one-third of all deaths worldwide, according to recent World Health Organization (WHO) estimates [1].
In the US alone, one person dies of CVD-related complications every 40 s, mostly ischemic attacks [2].
To this day, catheter-based or surgical interventions, e.g., coronary bypass and implantation of assist devices,
are by far the most widely applied clinical measures—albeit with several complications [3,4]. Despite great
improvements, most surgical interventions available are mere preservatives, i.e., attempts to sustain
the functionally intact heart tissue for as long as possible without structural compensation. Howbeit,
due to the progressive nature of CVDs, heart failure (HF) is, in most cases, inevitable [5]. Regardless of
etiology and severity, many end-stage HF patients will eventually need cardiac transplantation [6].
With very few treatment options, not to mention the paucity of available donor hearts, the need for
alternative therapeutic measures is indispensable.

In recent decades, stem cell (SC) technologies have emerged with a great promise that could be
envisaged for almost all human ailments, most importantly for noncommunicable diseases characterized
by organ dysfunction and/or degeneration. In this regard, CVDs are certainly the most attractive target
for SC-based therapeutic approaches [7–10]. From a mere improvement of cardiac microenvironment,
to partial regeneration and/or compensation of lost functional tissue, and ending with a complete
fabrication of a surrogate heart, SCs have set the hopes high. Moreover, SC-based technologies have
enabled great in-depth understanding of the pathogenesis of CVD entities and served as a platform to
test novel therapeutic approaches at minimal risk of adverse events to patients and much lower costs.
This article aims at reviewing the available knowledge on SCs and their applications for cardiovascular
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research, highlighting milestone achievements in both basic and translational research, and expanding
in particular on pluripotent SCs.

2. Adult Stem Cells

The body’s regenerative capacity is a well-ingrained piece of knowledge from ancient times.
Modern science attributes this phenomenon to the presence of resident SC niches in different organs
and tissue, i.e., adult SCs. These cells are undifferentiated, but they are capable of self-renewal and
differentiation to one or more cell type, which sets them apart on a potency spectrum, e.g., multipotent
SCs. Adult SCs’ regenerative potential becomes even more conspicuous in organs and/or tissues with
high turnover rates, but, more importantly, as a response to tissue injury. A wealth of knowledge is
now available on different adult SC populations, and efforts have been made to reap the benefits of
these cells to treat CVDs. We highlight below a few examples of adult SCs, which declared themselves
as powerful research targets for cardiovascular medicine and made their way to the clinic.

2.1. Skeletal Myoblasts

Intuitively, due to embryonic and morphologic commonalities between skeletal and cardiac muscle
tissues, skeletal myoblasts have been among the early attractive research targets for cardiac regeneration.
Skeletal myoblasts (SM) constitute a group of satellite cell-derivatives residing within skeletal muscle
fibers, which are activated upon injurious insults to migrate, proliferate, and differentiate, forming new
muscle fibers, i.e., myogenesis [11]. Facilitated by their being readily accessible from autologous muscle
biopsies, rapid in vitro expansion, ischemic tolerability, and low risk of tumorigenicity, the cardiac
regenerative potential of SMs has been the subject of several preclinical investigations in both small and
large animal models of CVDs [12–17]. Indeed, results from these studies have demonstrated positive
outcomes by reducing infarct size, as well as myocardial fibrosis, thwarting ventricular remodeling
and improving overall cardiac function. Consequently, several clinical trials were initiated to verify
their efficacy [18–22]. Despite initially reported improvements in cardiac parameters of patients
transplanted with SMs, many have experienced ventricular arrhythmias, which were later attributed to
the lack of electromechanical coupling between the transplanted SM-derived myotubules and resident
cardiomyocytes where they failed to form gap junctions [23–26]. Furthermore, larger randomized,
placebo-controlled, double-blinded clinical studies not only failed to show any therapeutic benefits of
SMs in patients with severe ischemic heart disease at both short- and/or long-term follow-up, but also
reported postoperative arrhythmic events even upon prophylactic pharmacological treatment [27–31].
As a result, SMs have lost their popularity as SCs for cardiac applications.

2.2. Bone-Marrow-Derived SCs

Since the mid-20th century, the BM has long been praised for its SC abundance. BM transplantation
has been a clinical practice since the mid to late 1960s, intended for correction hematologic, as well as
immune disorders. However, reports from the late 1990s first demonstrating the ability of BM-derived
cells to migrate to injured tissues and support regeneration have instigated a wave of research on their
therapeutic potentials for CVDs [32,33]. Indeed, early studies in animal models of MI corroborated the
aforementioned expectations. The first tentative clinical translation of this finding was reported in 2001
in Düsseldorf, Germany, where a MI patient received autologous BM-derived nucleated cells upon
catheter angioplasty and reported positive outcomes [34]. This was followed by several controlled
clinical studies, albeit with inconsistent findings [35,36].
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Generally speaking, BM-derived SCs can be sub-grouped into two large cell populations;
hematopoietic (HSCs) and nonhematopoietic SCs. HSCs give rise to all blood-cell types and include
a subpopulation of pro-vasculogenic endothelial progenitor cells (EPCs), which can be found in
the circulating blood among others [37]. Of the nonhematopoietic BM-derived SCs, mesenchymal
stromal/stem cells (MSCs) are the most studied, due to their greater multipotency, manifested in their
ability to differentiate into osteoblasts, adipocyte, and chondrocytes under defined in vitro conditions,
adding to their reported immune-modulatory and anti-inflammatory properties [38]. With better
characterization of these cells based on surface-marker expression, studies were led, examining the
therapeutic potential of each BM-derived SC type.

For example, BM-derived CD133- and/or CD34-positive HSCs were utilized for phase I and II
clinical trials, where patients of MI received intramyocardial transplantation or intracoronary injections
of these cells. Despite short-term follow-ups showing positive outcomes, characterized by enhanced
left-ventricular ejection fraction (LVEF) along enhanced myocardial perfusion, these studies failed
to show any long-term benefits [39,40]. Most recently, results from randomized, placebo-controlled,
double-blinded phase III clinical trials also showed a congruent trajectory [41].

On the other hand, MSCs (CD73-, CD105-, and CD90-positive) have been a subject of greater
scrutiny in both basic and translational research. Adding to their paracrine- and exosome-mediated
immunosuppressive properties, MSCs are unique in their ability to evade the immune system [42].
This is largely due to their moderate levels of HLA class I expression, while lacking the expression
of HLA class II, B7, and CD40 ligand conferring privilege to the immune system of their host, thus
enabling allogenic transplantation without the need of concomitant immunosuppression [42,43].
Indeed, studies in large animals have shown improvements in LVEF upon MSC therapy in the setting
of myocardial ischemia. Nevertheless, results from translational attempts of these findings in clinical
studies fall into a wide spectrum of significance with regard to their benefits, notwithstanding their
mode of transplantation (i.e., autologous vs. allogenic) [44]. Despite some showing significant
improvements in patients with acute MI, other randomized controlled studies concluded no significant
differences [45–48]. Nonetheless, two randomized pilot studies were conducted in 2012 and 2017 in
patients with ischemic cardiomyopathy (ICM) and nonischemic dilated cardiomyopathy (NIDCM),
respectively, comparing autologous to allogenic MSC therapy [49,50]. Results from these studies, also
known as POSEIDON, alluded to the efficacy of MSC therapy in these patient cohorts, with superiority
given to allogenic transplantation. However, these studies were limited to the small sample size and
lack of a placebo control group.

2.3. Cardiac Progenitor Cells and Stem Cell Niches

Indeed, the heart’s endogenous regenerative capacity has been an area of extensive research
over the past decades. Contrary to the long-held dogma of being a postmitotic organ, studies have
challenged this notion, claiming that the mammalian heart is indeed capable of self-regeneration, albeit
exiguously. Studies using mitotic index, as well as DNA labeling, have conveyed the finding that
cardiomyocytes can self-renew during adulthood. However, debates have flared as to what extent this
self-renewal takes place, and even to the reliability of the methods used to quantify it. Herein, nuclear
labeling is not reliable, due to the characteristic polyploidy that human CMs undergo during growth or
disease [51–54]. Radiocarbon (14C) dating, on the other hand, has provided more accurate estimates of
cardiomyocyte turnover in the adult heart [55]. Interestingly, studies have shown a significant increase
in cardiomyocyte count and/or ploidy in neonatal and preadolescent life in both rodents and humans,
which contributed to heart growth [56,57].

Furthermore, the existence of SC niches harboring cardiac progenitor cells (CPCs) has also been
reported and highlighted by research as evidence of the heart’s regenerative capacity, notwithstanding
another yet-unresolved debate [51,58]. CPCs are multipotent as was shown by their ability to
differentiate to cardiac cell lineages, including cardiomyocytes; they were claimed to confer cardiac
tissue repair and regeneration. As a heterogeneous population of cells, they are each identified
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by expression of distinct markers. Of these cells, c-kit-, Isl1-, or epicardial Tbx18-positive (also
WT1-positive) cells are three heavily studied cell populations due to their cardiomyogenic differentiation
potential attributed during development, neonatal life, and even in adult hearts.

The c-kit-expressing cells are the most studied CPCs, however, with contradicting reports regarding
their significance for cardiac cell repair the in adult postinjury [59–61]. Despite their demonstrated
contribution to cardiac regeneration in the neonatal hearts, c-kit-positive CPCs’ role in the adult
setting of myocardial injury is largely debated [60,62,63]. A recent report alluded to the role of
c-kit-positive cells in cardiac adaptation to injury, where c-kit was shown to be upregulated in response
to pathological stress [64]. Furthermore, a RNA-sequencing study recently showed that c-kit-positive
cells transiently adopt a cardiomyocyte-like pattern of gene expression upon myocardial infarction
in vivo [65]. Contrary to these findings, more recent studies by Li and colleagues refuted the myogenic
potential of these cells in the adult by using a new genetic-lineage tracing system [66]. Furthermore,
the same group has shown that early segregation of myocytes and nonmyocytes during embryonic
development (E10.5 to E11.5) is the cut-off line beyond which no contribution to new cardiomyocyte
formation occurs, even during neonatal life [67]. Moreover, a study published earlier this year
by Elhelaly and colleagues argued that c-kit-positive cells do not contribute to cardiomyogenesis,
even during neonatal life [68]. Howbeit, the commonly agreed-upon consensus in the field is that
CPCs are remnant SCs from developmental stages whose role in the adult heart, if any, confines
to maintaining cardiac tissue homeostasis, and their cardiomyogenic potential in the context of
injury is inexistent [69,70]. Importantly, however, the repercussions of the aforementioned findings
instigated a wave of research endeavors to exploit the heart’s endogenous regenerative capacity
for novel therapeutic interventions. In summary, the field of cardiac progenitor cells is controversy
discussed, and the regenerative potential (and existence) of the cells in the adult human heart need
further investigations.

3. Pluripotent Stem Cells

Despite the efforts that have been made with adult SCs, none of these cells could meet the
expectations as a reliable treatment for CVDs. That is because not even the most potent adult SC could
provide an appreciable source for myocardial tissue regeneration and/or functional compensation for
the lost contractile element of the heart, e.g., as a result of infarction, let alone cardiomyopathies or
congenital heart disease [71]. In this regard, the pursuit after functional CMs calls for a different type
of SCs, i.e., pluripotent SCs (PSCs).

3.1. Embryonic Stem Cells

The ability of a cell to give rise of all three germ layers of the developing embryo, i.e., pluripotency,
is the most vivid and sought-after character of SCs, not only in the context of regenerative medicine,
but also for basic research purposes. Pluripotency of embryonic blastocyst inner mass cells was first
shown in the mouse as early as 1981 by Evans et al. [72]. In 1998, Thomson et al. first reported
the generation of pluripotent embryonic stem cells (ESCs, Figure 1) from human blastocysts, which
are capable of self-renewal and differentiation to all three germ layers [73]. Nevertheless, ethical
considerations have long hovered over human ESCs (hESCs), as their derivation entails destruction of
an embryo. This has prompted legislative issues, in that many countries have imposed bans on their
use and/or research funding [74,75]. To add insult to injury, ESCs’ ability to form teratomas (tumors of
mixed germ layers) when transplanted undifferentiated has further flared the argument against their
clinical application, despite efforts to enhance differentiations and purifications protocols [76].
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Figure 1. Differentiation of cardiomyocytes derived from pluripotent stem cells.

3.2. Induced Pluripotent Stem Cells

It was not long until the not-so-bright picture of SC research changed. Inspired by the preexisting
knowledge of master regulator genes capable of imparting cellular identities, Takahashi and Yamanaka
developed the first technique of somatic cell reprogramming in 2006 [77,78]. In their Nobel Prize
experiment, induced pluripotent stem cells (iPSCs, Figure 1) could be generated from somatic cells,
such as skin fibroblasts, by expression of four transcription factors that were found to be crucial
for cellular reprograming to ESC-like inner mass cells, namely Oct3/4, Sox2, c-Myc, and Klf4 [78].
Ever since, scientist have raced to improve the reprogramming efficiencies of iPSCs by manipulating
the transcription-factor cocktail and selecting for expression of other transcription factors, such as
Nanog and Lin28 [79–81]. Generation of viable and tumor-free whole organisms with iPSCs that were
capable of germ-line transmission was also made possible [82]. Unsurprisingly, human iPSCs (hiPSCs)
were generated as soon as one year after their first generation in a mouse, and by the same pioneering
group of scientists, as well as others [83,84].

3.3. Embryonic Stem Cells Versus Induced Pluripotent Stem Cells

The primary intended purpose of reprogramming of somatic cells and generation of iPSCs was to
wipe the initial cellular identity and drive them back to the embryonic inner mass state, and hence serve
as a surrogate for embryonically derived cells, i.e., ESCs. Indeed, iPSCs greatly resemble conventional
ESCs in terms of growth characteristics, gene-expression profiles, epigenetic status, and developmental
potential, which were shown in earlier studies by Yamanaka and colleagues, as well as others [79,84–86].
However, upon comparison of various undifferentiated cell lines, reports argued that iPSCs may
not be perfectly identical to conventional ESCs. This is largely attributed to the unique epigenetic
signatures of their parent somatic cells. Despite previous studies showing that somatic cells undergo
epigenetic remodeling upon reprogramming, studies have shown that iPSCs indeed retain epigenetic
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patterns of their donor cells, e.g., CpG island methylation [86–90]. Furthermore, gene and miRNA
expression signature were also shown to trail along with iPSCs (reviewed in [91]). Upon differentiation
to CMs, further comparison of mature CMs differentiated from ESCs and iPSCs can be insightful.
In this regard, CMs of either origin were reported to display similar ultrastructural phenotypes, upon
electron microscopic examination [92]. In line with these findings, a study by Gupta et al. revealed
that global transcriptional profiles of mature CMs derived from either human iPSCs or ESCs are highly
similar [93]. However, iPSC-CMs were more likely to share some somatic cell signature with their
undifferentiated iPSC-parents. Thus, identification of these variations between iPSC- and ESC-CMs,
as well as the interline variability of either type of PSCs, is essential before they are utilized for disease
modeling or clinical application.

Unlike ESCs, iPSCs derivation does not involve destruction of embryos, and hence does not fall
into the same ethical pitfalls. However, other ethical considerations arose with hiPSCs, especially
with regard to the possibility of reproductive cloning, the risk of generating genetically engineered
human embryos, and, more extremely, human–animal chimeras [94]. Furthermore, and like ESCs,
iPSCs are subject to safety concerns due to their ability to form tumors, even with rigorous protocols of
differentiation and selection [95].

In recent years, substantial developments in stem cell technology in terms of reprogramming
efficiency and enhancing their clinical applicability have prompted scientist to utilize pluripotent stem
cells (PSCs), not only to regenerate, but also to model the human heart for basic research purposes.
Furthermore, some countries have tentatively started to loosen their tight regulations, especially on
hESCs; a step that coincided with the establishment of stem-cell registries in the US and Europe [96–98].
This has led to several initiatives on stem cell therapy for many disease conditions, including CVDs [99].
As promising as this may sound, several challenges, however, preclude the full realization of PSC-based
therapy. In the following, we shall focus on PSCs by addressing efforts made over the past decades
to optimize their generation, differentiation, and maturation for CVD research, as well as efficient
delivery methods for late clinical and/or translational purposes.

4. Cardiac Stem-Ness

Embryology is the fundament for generation of cardiac cells from PSCs in the laboratory. The heart
is the first organ to develop and function during embryogenesis [100]. In the lateral mesoderm, cardiac
specification takes place, a process initiated by two T-box transcription factors, Eomesodermin and
Brachyury(T), which have been shown to induce the expression of yet another critical factor, namely
mesoderm posterior 1(MesP1) [101,102]. MesP1 is a basic helix-loop-helix (bHLH) transcription factor
considered to be the master regulator orchestrating the differentiation and commitment of cardiac
precursors [101,102]. Cardiac precursors then assume a crescent-shaped structure known as the cardiac
crescent, at which cells are irreversibly committed to the cardiac lineage. This is marked by the
expression of key transcription factors, namely Nkx2.5, GATA4 and Tbx5 [103]. Two waves of Nkx2.5
expression ensue, depicting the formation of two regions known as the first and second heart fields,
which subsequently give rise to different heart chambers, as well as the cardiac outflow tract [76,103].

After all, heart development is a dynamic three-dimensional process governed by an intricate
network of signals and gene transcription [104,105]. Howbeit, three major signaling pathways
converge to drive the process, from early cardiac tissue specification of mesoderm progenitors to
subsequent differentiation into cardiac progenitors, namely BMP (bone morphogenic protein) and
Nodal/Activin, both being members of the TGF-β (transforming growth factor beta) cytokine family,
and the Wnt/β-catenin [106,107]. Paracrine signals responsible for the fine-tuning of those pathways
is crucial for heart development. For example, signals activating the Wnt/β-catenin pathways are
essential for early mesoderm induction, whereas inhibitors of the same pathway are subsequently
required for precardiac specification [76].
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4.1. Generation/Differentiation of Pluripotent Stem Cells

Protocols for in vitro generation of cardiac stem cells (CSCs) from PSCs, either from ESCs or iPSCs,
rely primarily on simulating the signaling microenvironment, which induces the aforementioned
rudimental pathways, starting by initial epithelial to mesenchymal transition, mesodermal specification,
and subsequent cardiogenic differentiation, followed by selection for cardiac markers [108–110].
The initially reported protocols relied simply on serum in culture medium as a source of inducing
factors, observing spontaneous formation of aggregates called embryoid bodies (EBs) when cells are
plated in suspension [111]. These EBs would later show contractions and positive staining for cardiac
markers. This method was first reported in ESCs, however, with very low efficiency [111]. Nevertheless,
the EB-based differentiation remained a standard protocol and was also the first differentiation method
applied to generate CMs from mouse iPSCs only a couple of years after their first introduction in
2006 [112,113]. The first CMs generated from iPSCs were reported by a team of researchers from Leibniz
institute in Germany, with few refinements introduced to the protocol, which led to the differentiation
of typical CMs comparable to those generated from ESCs [112]. Interestingly, precisely at the same
time and in the same journal issue, the iPSCs-founding team from Kyoto also published a systematic
differentiation protocol of mouse iPSCs into cardiac lineages [113]. Nevertheless, and as mentioned
before, the efficiency of the EB-based protocols was low, mainly due to the uncontrolled differentiation
cues in the supporting media. One of the earliest and most cited protocols to differentiate ESCs to
beating CMs was reported by Mummery et al. in 2003, where they delegated the differentiation cues
to paracrine signaling of murine visceral endoderm-like cells (END-2) [114]. They compared their
generated CMs to primary human fetal CMs, as well as primary human adult CMs, and reported
comparable structural and functional properties. Improvements to differentiation protocols by temporal
application of cytokines, as well as small molecule inhibitors (e.g., inhibitors of the Wnt pathway) to
simulate the developmental processes have also been successful introduced to generate CMs from
PSCs [108–110,115–117]. Furthermore, several groups have sought to simplify the differentiation
protocols by using chemically defined culture media consisting of only a few components [115–117].

Nevertheless, differentiation of PSCs by using standard protocols usually yields a mixed
population [118]. Thus, identification of selection markers is crucial for the purification of cardiomyocyte
progenitors. Pioneering studies by Moretti and colleagues have greatly contributed to the refinement
of selection protocols for cardiac organogenesis from PSCs [119]. From an embryological standpoint,
myocyte progenitors are distinguished from nonmyocytes (vascular progenitors) by consistent
expression of Isl1-1 transcription factor, along with Nkx2.5, whereas co-expression of Isl-1 and
CD31 is a marker for endothelial progenitors [119]. Among myocytes, cardiomyocytes can be
further distinguished from smooth muscle cells (SMCs) by expression of vascular cell adhesion
molecule 1 (VCAM 1) and signal regulator protein alpha (SIRPα), both of which were reported to
be reliable selection markers in culture conditions, yielding as much as 98% pure-cardiomyocyte
populations by antibody-based sorting from PSCs [120,121]. Successful differentiation can be
further confirmed by expression of other cardiomyocyte markers, such as cardiac troponins, e.g.,
TNNI1 [121,122]. Using lentiviral vectors, expression of selection markers, e.g., antibiotic-resistant
genes or fluorescent proteins, under control of cardiomyocyte-specific promoter, has also been reported
to purify cardiomyocytes [123,124]. Importantly, documented biochemical disparity between CMs
and non-CMs in energy metabolism was also exploited for the so-called “metabolic purification” of
CMs. In this regard, manipulation of culture conditions by altering the composition of the culture
medium (e.g., glucose depletion, lactate, and glutamine supplementation) was found to be crucial for
such nongenetic purification of CMs [125].

Finally, studies have pointed out the important role of MicroRNAs (small, noncoding RNAs that
regulate gene expression by degradation of messenger RNAs) in CM phenotype differentiation [126–128].
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4.2. Maturation of Pluripotent Stem Cells

To be utilized for disease modeling or regenerative medicine, one might expect PSC-CMs to
recapitulate the structural and functional characteristics of adult CMs (Figure 1). Nevertheless,
CM differentiation of PSCs usually yields immature cells, resembling the embryonic or fetal
state [129]. This manifests in their morphology, gene expression, and electrophysiology. More recently,
single-cell-transcriptomic analyses have proven to be a powerful tool to understand the transcriptional
roadmap of in vitro CM differentiation, and therefore enable a better design of differentiation and
maturation protocols [130,131]. The following highlights the major differences between immature
PSC-derived CMs and mature and/or adult ones.

Morphologically, PSC-CMs are significantly smaller in size, compared to their adult or matured
counterparts. Upon maturation, cells assume an elongated shape, reminiscent of adult CMs [132].
Sarcomeres are much less organized in immature PSC-CMs and become much more organized
upon maturation, which usually correlates with isoform switch of sarcomeric proteins. A good
example is troponin I, wherein different isoforms distinguish embryonic CMs from adult ones [133,134].
Stoichiometric replacement of the fetal troponin TNNI1, encoding slow skeletal troponin I (TnIs), gene
with the adult TNNI3, encoding adult cardiac troponin I (TnIc), gene was reported in a study by Bedada
et al. as a quantifiable marker for maturation in PSC-CMs [135]. Another well-characterized hallmark
of mature CMs is the isoform switch of myosin heavy chain (MHC). Two isoforms exist, the alpha
isoform (encoded by MYH6), also known as the faster isoform, and the beta isoform (encoded by
MYH7), also known as the slower isoform [136]. Importantly, differences exist between rodents and
humans in this regard. In small rodents (mice and rats) with faster heart rates, alpha-MHC isoform
predominates and increases upon maturation, whereas, in bovine and human hearts, despite the
presence of the alpha-MHC isoform, the beta MHC isoform usually predominates, regardless of the
state of development, and increases with age [136,137]. However, most differentiation protocols of
human PSC yield CM with both isoforms, but studies have shown that long-term cultures, especially
on stiff substrates, lead to a greater shift toward the beta-isoform, reflecting maturation [138]. Titin is
another key component of the sarcomere that undergoes isoform switch during maturation. Fetal
titin isoforms N2BA 1 and 2 are more compliant, but they switch to the N2B isoform in postnatal and
adult cardiomyocytes [139]. Genes encoding structural and force-generating myofibrillar proteins
are much poorly expressed in in vitro maturated PSC-CMs when compared to adult- and fetal-heart
samples [140]. This might be attributed to the absence of biomechanical stresses in vitro, which are
normally present upon heart development in vivo [141].

Electrophysiological, and similar to contractile components, ion-transport related genes, such as
those for voltage-gated potassium channels, e.g., KCNJ2 and Ryanodine receptor RYR2, were poorly
expressed in immature CMs [142]. The lower expression level of the KCNJ2-encoding membrane protein
of the inward-rectifier current, as well as genes encoding beta-subunit members of the voltage-gated
potassium channels, such as KCNIP2, KCNAB1, and KCND3, all affect both the inward-rectifier (Ik1) and
the transient-outward (Ito) currents, respectively, leading to the characteristic “less negative” resting
membrane potential in PSC-CMs (~–60 mV) compared to adult CMs (~–90 mV) [129,132,142,143].
Furthermore, studies have shown that PSC-CMs have few to no T-tubules, which are key components
of excitation–contraction coupling (ECC) and a hallmark of mature and/or adult CMs; this is typified
by unsynchronized Ca2+ transients in immature CMs [144].

Metabolically, immature CMs have few and underdeveloped mitochondria, accounting for a small
fraction of the cell volume. Adult CMs, on the other hand, show highly developed, well-distributed,
and dense mitochondria, accounting for ~20–40% of the adult myocyte volume. During development,
hypoxia is an early trigger for mesoderm cardiac specification [145]. The growing heart, thus, resorts
to glycolysis as a major source (80%) of energy. As CMs mature and become terminally differentiated,
mitochondrial oxidative capacity increases, with fatty acid β-oxidation (80%) becoming a major source
of energy [146]. PSC-CMs recapitulate both mitochondrial structure and glycolytic dependence of
embryonic-state CMs [92,147]. Recent studies have shown that tweaking the culture media composition
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to mimic these metabolic changes, e.g., replacing high-carbohydrate, high-insulin, glucose-based,
with low-carb, low-insulin fatty-acid-based media-enhanced maturation [148]. Table 1 summarizes the
major differences between human-PSC-derived and adult CM.

Table 1. Major structural, electrophysiological and metabolic differences between human PSC-derived
CMs and maturated/adulte CMs.

PSC-Derived CM Mature/Adult CM

Smaller in size, roundish in shape Larger in size, elongated in shape
Disorganized sarcomeres Organized sarcomeres

Slow/skeletal troponin I (TnIs) Adult cardiac troponin I (TnIc)
Titin N2BA isoform Titin N2B isoform

Higher αMHC:βMHC Lower αMHC:βMHC

Poor expression of ion-transport components genes
(e.g., KCNJ2, RYR2) High expression of ion-transport components genes

Less efficient Calcium handling Improved Calcium handling
Less negative resting membrane potential More negative resting membrane potential

No or few T-tubules Abundant T-tubules

Few, underdeveloped mitochondria
Glucose as major energy source

Dense, well-distributed and developed
mitochondria

Fatty acids as major energy source

Over the years, efforts have been made to enhance the maturation of PSC-CMs, and these include
prolonged cultures, using stiff gel micro-patterned substrates, and application of electrical and/or
biochemical stimuli [132,149–152]. The overall goal was to simulate the in vivo environment of the
myocardium, where CMs are under constant physical, topographic, and humoral stimuli leading to
their structural and functional maturation.

4.3. Engineered Heart Tissue

Importantly, the accumulated knowledge of cardiac stem cell biology and maturation has
culminated in the so called “Engineered Heart Tissue” (EHT), a milestone achievement. The nascent
EHT is attributed to work done by Zimmermann and Eschenhagen in the early 2000s [153,154].
Ever since, EHT technology has rapidly progressed through refinements in mechanical loading,
electrical stimulation, medium supplementation, and miniaturization. The result was a 3D cardiac
tissue structure with mature CMs and near-physiological contractile forces [155]. The pioneering work
of these scientists has opened the doors for more revolutionary developments, such as 3D bioprinting,
organ-on-chip platforms, and laser-cut decellularized myocardium, all with ample opportunities for
both basic research and clinical applicability [156–158].

5. Applications of PSCs in Cardiovascular Research

5.1. Pluripotent Stem Cells in Cardiovascular Disease Modeling

The use of PSCs to model cardiac disease in vitro has become highly attractive, especially after
the introduction of iPSCs [107]. This is mainly because of inadequacies of other models in terms
of sampling, propagation, and maintenance, as for human primary cardiomyocytes, or their ability
to fully recapitulate physiological properties of human CMs, as in rodent models. Considering
the relative difficulty in cloning and genetically modifying human ESCs, most established models
of CVDs are iPSC-based [107]. The feasibility in sampling and propagation of iPSCs, as well as
advances in reprogramming protocols, which later adopted nonintegrating genomic approaches
to deliver the reprogramming factors, has greatly increased their popularity [159]. Patient-specific
iPSC-CMs have enabled the study of genetic variants underlying several CVDs and establish a
phenotype–genotype understanding of not only monogenic, but rather complex and difficult-to-model
genetic variants (e.g., chromosomal deletions or translocations), and, most important, model congenital
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heart disease (CHDs) in newborns [160,161]. As a result, several patient-derived iPSCs lines have
been developed to model CVDs. The first of such was reported by Carvajal-Vergara et al. in 2010 for
LEOPARD syndrome, an autosomal dominant developmental disorder characterized by hypertrophic
cardiomyopathy [162]. Ever since, several other cell lines have been reported, mainly modeling
cardiac channelopathies, (e.g., long QT syndromes), cardiomyopathies of wide etiology spectrum (e.g.,
dilated, hypertrophic, arrhythmogenic, Barth syndrome, and Pompe-disease-associated), and infectious
myocarditis [163–177].

Despite the previously discussed disparities in structural and electrophysiological characters of
iPSC-derived and adult CMs, these studies have shown that patient-specific iPSC-CMs recapitulate
their corresponding disease phenotypes. For example, whole-cell patch-clamp analyses of different
long QT syndrome (LQTS) patient-derived iPSC-CMs showed typically prolonged APs, decreased
rectifier potassium currents IK, increased late sodium currents INaL, and impaired voltage-dependent
inactivation of the L-type channels (LTC), due to malfunctions in corresponding proteins of potassium
(KCNQ1, KCNH2 in LQTS1 and 2), sodium (SCN5A in LQTS3), and calcium (CaV1.2 in LQTS8 or
Timothy syndrome) channels, respectively. Moreover, these patient-specific models demonstrated
great utility for pharmacological screening of several drugs with disease-modifying abilities, leading
to both novel and/or personalized therapeutic strategies (reviewed in [160]).

Finally, patient-specific iPSC-derived non-CMs were also generated, for example, of SMCs or
endothelial cells. A more recent example is an elegant publication by Gu et al., utilizing iPSC-derived
endothelial cells from patients with autosomal-dominant mutations in BMPR2 associated with familial
pulmonary arterial hypertension (FPAH) [178]. In their study, comparing symptomatic patients
with unaffected carriers highlighted important modifiers of the BMP-receptor pathway, as well as
differentially expressed genes, which imparted protection against FPAH. Their findings were of great
importance as to the identification of multiple genetic factors affecting disease penetrance, which could
be therapeutically targeted to modify disease progression and severity.

Importantly, the previous example behooves an important consideration when conducting studies
on patient-specific iPSCs for CVD modeling, which pertains to the identification and/or the availability
of proper control lines. This is because, even among patient-matched donor cohorts, genetic variability
can still confound the analysis of the disease phenotype, especially in the presence of disease modifiers,
or when the genotype–phenotype is less conspicuous [169,179]. In such cases, it is possible to rely on
more than one control cell line—albeit a laborious approach. Alternatively, the patient’s iPSC-CMs can
be compared to those from a healthy sibling, thus limiting genetic variability [171]. However, recently
developed computational in silico models of iPSC-CMs and their optimization by Paci and colleagues
have provided an unprecedented approach to this issue, enabling simulation and calibration of over a
thousand diseased or control iPSC-CM models [180–182]. Finally, in case of monogenetic diseases,
an isogenic cell line created by correction of the disease-causing mutation in the patient iPSCs by
means of gene-editing approaches can serve as the best control cell line (discussed below). An elegant
example was reported in a study by Bellin and colleagues, where they used iPSC-CMs from LQTS2
patients with a distinct mutation in potassium channel KCNH2, and compared it to an isogenic control
upon correction of the genetic mutation [183]. Furthermore, they reproduced the study model in
human ESC-CMs, where they introduced the same mutation, and recapitulated the disease phenotype,
thus generating two genetically distinct isogenic pairs of LQTS2 and control lines.

5.2. Pluripotent Stem Cells in Pharmaceutical Screenings

Since their first introduction, iPSC-CMs have become attractive for drug testing, antiquating the
hERG test, which utilizes cell lines that stably express the human ether-a-go-go-related gene (hERG)
KCNH2 encoding the IKr channel involved in cardiac repolarization. Whole-cell patch-clamp screening
for compounds that block the IKr current serves as a good marker of cardiotoxicity, as such blockade
leads to the prolongation of the QT interval, i.e., ventricular repolarization, resulting in potentially
fatal ventricular tachycardia called Torsade de Pointes [184]. Since the actual risk for cardiac toxicity
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is not confined to a certain channel and/or mechanism, iPSC-CMs are hence more representative in
typifying cardiac toxicity to drugs. Furthermore, recent introduction of automated patch-clamp (APC)
devices, all-optical cardiac electrophysiology with novel optogenetic actuation, and video microscopy
have all revolutionized drug screening in iPSC-CMs and tissue constructs, enabling high-throughput
testing platforms for hundreds of samples and/or drugs, thus creating a wealth of information in
short time [185–188]. Furthermore, comprehensive in vitro proarrhythmic Assay (CIPA) has recently
emerged as a powerful model to predict cardiac toxicity by integrating the knowledge from both
in vitro and recently developed in silico computational models (http://cipaproject.org/about-cipa/) [189].
However, as discussing this is beyond the scope of this review, we refer the reader to the cited work by
Paci et al.

5.3. Genetic Modification of Pluripotent Stem Cells

The advent of genome-editing methods has incited great progress in PSC research. Exploiting the
cell’s inherent DNA-repair mechanisms, such as nonhomologous end-joining (NHEG) or homologous
recombination (HR), has long been used to introduce small but disruptive mutations to target
genes, either by insertion or deletions of base pairs, also known as “Indels”. The discovery and
later advances of nucleases that can more specifically target desired sequences, such as zinc-finger
nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs), have enabled the study
of several disease causing mutations [190–192]. Many PSC-lines have been generated by using this
technology for both disease modeling and even clinical applications [193–196]. Vector-mediated
delivery of sequence-specific nucleases along with a homologous DNA template to patient-derived
iPSCs leads to the excision of targeted locus and, by virtue of cellular homology directed repair
(HDR) system, can be corrected by the homologous template with the desired genetic modification.
A prominent example is the combination of ZFNs and piggyBac technology which could achieve
a biallelic correction of a disease-causing mutation in human iPSCs [197]. In a recent study by
Karakikis et al., they reported the use of TALENs to correct gene mutations in patients with hereditary
heart failure [198]. These patients harbor an amino acid deletion mutation (R14del) in the coding
region of the phospholamban (PLN) gene, which is an important regulator of cardiac calcium cycling
in the sarcoplasmic reticulum (SR). They display a phenotype of dilated cardiomyopathy, hypertrophy,
episodic ventricular arrhythmia, and overt HF by middle age [199,200]. Skin-derived iPSCs from these
patients were isolated, edited, and CM-differentiated, where further analyses showed reversal of the
disease’s phenotype. Nevertheless, engineering of sequence-specific ZFNs or TALENs, as well as
achieving their robust delivery for this purpose, can be laborious and technically challenging, let alone
high in cost [192,194,201].

In recent years, CRISPR/Cas9 has emerged as the new horsepower of genome-editing technology,
overshadowing ZFNs and TALENs [202]. The system, first described in prokaryotes as part of
their adaptive immune system, relies on an RNA-guided endonuclease (Cas9) that localizes to
complementary DNA sequences, where it creates double-strand break amenable for correction by the
cell’s endogenous HR. Provided that a homologous sequence is available, desired gene modifications
can be introduced [202]. Indeed, CRISPR/Cas9 has been zealously received by cell biologists as
an attractive tool for SC research [203]. In cardiovascular biology, CRISPR/Cas9 was successfully
applied to patient-derived iPSC to target disease-causing mutations of CVDs [204–206]. A recent study
demonstrated the utility of CRISPR/Cas9 in phenotypic characterization of iPSC-CMs from patients
with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) [207]. In this patient
cohort, mutations in the SCN5A encoding the Nav1.5 sodium channel protein led to the phenotype,
which could be reversed in this study upon editing with CRISPR/Cas9.

A study published earlier this year by Seeger and colleagues made use of genome-editing
techniques to create isogenic iPSC lines from patients with heterozygous mutations in the
myosin-binding protein C3 (MYBPC3), which is deemed as the underlying cause of hypertrophic
cardiomyopathy (HCM) [208]. Their results refuted previous hypotheses of either MZBPC3

http://cipaproject.org/about-cipa/


Cells 2019, 8, 1530 12 of 27

haploinsufficiency or truncated poison peptide as the underlying cause of HCM. However, they were
able to provide evidence for chronic activation of the nonsense-mediated decay (NMD) as the initial
pathogenic trigger that leads to dysregulated gene expression and aberrant calcium signaling upon
MYBPC3 mutations.

The aforementioned examples give a great promise to SC therapy of CVDs. One might also
envisage the possibility of autologous cell transplantation of iPSC-derived CMs with rectified mutations
to ameliorate or even cure disease conditions. However, great challenges remain as to the validation of
these technologies, let alone deciding on a safe and effective clinical setting for PSCs delivery to treat
CVDs. The next chapter outlines recent advances in preclinical research on SC-based therapy for CVDs.

6. Translational Potential of PSCs in Cardiovascular Regenerative Therapy

Harnessing the multifaceted potential of SCs for effective therapeutic purposes to treat CVDs is
the ultimate goal of the above-introduced laborious efforts of scientists over the past decades. Provided
that SC-derived CMs are sufficiently propagated, differentiated, and maturated, their application to the
diseased myocardium spans a wide spectrum of delivery methods, from intravenous administration
to direct myocardial injection. Nevertheless, several factors are to be considered with regard to
engraftment of transplanted cells and integration, as well as functional contribution to host myocardium,
electromechanical coupling between graft and host CMs, and long-term survival. The aforementioned
limitations have long been challenges to preclinical and translational applications of SC therapy in
general, and in cardiac regenerative therapy in particular. The following summarizes advances made
in the realm of preclinical and translational research with PSCs over the past decades, in light of
examples from small and large animal models and up until the first clinical initiatives.

6.1. Pluripotent Stem Cells in Rodent Models

Earlier studies attempted to engraft human ESC-derived cardiomyocytes in rodent models and
reported transient functional improvement in cardiac parameters [209,210]. However, poor engraftment
and survival of transplanted cells has been a challenge in these settings. Laflamme et al. utilized
pro-survival factor cocktail to limit CM death upon engraftment in infarcted rat heart and reported
positive outcomes [108]. To overcome poor engraftment and survival issues, Masumoto and colleagues
developed a layered-sheet assembly of three cardiovascular cell populations, namely CMs, endothelial
cells, and vascular mural cells, differentiated from mouse ESCs and transplanted into nude-rat model
of MI. The transplanted sheets were reported to ameliorate infarct size and improve cardiac function;
however, such benefits were shown to be attributed to paracrine-mediated neovascularization and not
to actual contribution of transplanted cells [211]. Despite these results, the same group of scientists
from Kyoto continued to optimize the stacked-sheet approach, and they recently reported successful
long-term survival of engrafted cells through insertion of gelatin hydrogel microspheres between
each cardiovascular cell sheet [212]. Analogously, human iPSC-CMs have recently demonstrated
favorable therapeutic outcomes when injected in infarcted myocardia of mice. Interestingly, however,
the engraftability and survival of those cells depended heavily on the maturation stage [142].

Importantly, electromechanical coupling between the graft and host myocytes is a rather crucial
consideration to avoid ventricular arrhythmia. In a Guinea pig model, Shiba et al. reported successful
engraftment of human ESC-derived CMs with a 1:1 electrophysiological coupling and improved
mechanical function of injured hearts [213].

6.2. Pluripotent Stem Cells in Large-Animal Models

6.2.1. Porcine Models

Swine models were featured in the earliest attempts of cell therapy for heart disease. A number of
features make the pig an attractive translational model. These include a heart weight-to-body ratio
that is equal to a human’s and a similar sinus rate (~90 bpm) [214]. ESC-derived cardiomyocytes have
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been functionally tested in a swine model of complete atrioventricular block as biologic pacemaker
for the treatment of bradycardia [215]. Hereof, Kehat et al. reported survival and functional
integration of the transplanted cells, which were able to pace the porcine ventricle with complete
heart block [215]. In another porcine model of acute MI, Ye and colleagues used a mixture of
cardiovascular cell populations—this time from human iPSCs origin—loaded on a three-dimensional
fibrin patch containing IGF-1 (insulin-like growth factor 1) and reported functional integration and
significant improvements of several cardiovascular parameters [216]. More recently, Kawamura
et al. took a rather unprecedented approach to enhance survival and engraftment of transplanted
human iPSC-CMs by combining cell-sheets with pedicle omentum flap as a source of angiogenic
factors and reported enhanced engraftment, survival, and therapeutic outcome in a porcine model
of ischemic cardiomyopathy [217,218]. The aforementioned tissue sheet technology from Kyoto was
also recently applied to a porcine model of MI, where a heterogeneous mixture of cardiovascular cell
populations differentiated from human iPSCs and reported functional restoration of the infarcted
hearts and attenuated remodeling [219]. Another study from 2018 by Gao and colleagues reported
the application of human iPSC-derived fabricated cardiac muscle patches (hCMPs) composed of
CMs, smooth muscle and endothelial cells, reprogramed from cardiac fibroblasts and maturated
in dynamic culture conditions [220]. They transplanted these patches in infarcted pig hearts and
demonstrated significant improvements upon histological and functional analyses. Altogether, these
results highlight the importance of co-administration of nonmyocyte cardiac cells, which provide
paracrine and angiogenic support equally important to both host and graft tissue. Furthermore,
they highlight the superiority of modern tissue engineered scaffolds over direct application of cells.
Finally, these studies corroborate the utility of swine models for translational cardiovascular research.

6.2.2. Non-Human Primate Models

The utility of non-human primates (NHPs) in regenerative medicine has long been appreciated,
especially in transplantation medicine [221]. In this regard, certain macaque species (e.g., Macaca
fascicularis or Mauritian Cynomolgus macaque) are a valuable preclinical model to study allogenic
transplantation of iPSCs [222]. This is because they exhibit limited diversity in their major
histocompatibility complex (MHC) genes, which are distributed only among seven haplotypes
and are structurally identical to those in humans [223,224]. Indeed, allogenic transplantation of
iPSC-CM among MHC-matched Cynomolgus monkeys was shown in a study by Shiba et al. to
be immune-tolerable, and improved cardiac contractile function upon MI [224]. Matching MHC
antigens between donors and recipients was shown by others to reduce immunogenicity upon allogenic
transplantation of iPSC-CM in the Cynomolgus macaque [225].

NHPs continue to provide unmatched insights to PSC-therapy of CVDs in late-translational
studies. In a recently published elegant work by Chong et al., human ESC-CMs were utilized in the
pigtail macaque (Macaca nemestrina) as a model of ischemia-reperfusion injury [226]. They reported
significant re-muscularization of the infarcted areas, structural and functional integration of the grafted
cells via establishment of adherent junctions, and electromechanical coupling, typified by synchronous
calcium transients. Such promising results were slightly relegated by the presence of arrhythmia in the
grafted animals—albeit nonfatal.

7. Pluripotent Stem Cells in First Human Trials

The aforementioned successes in late-translational studies with large animal models, as well
as the advances made in tissue engineering and grafting techniques, paved the way to the first
clinical application of PSC therapy in cardiac settings, which was recently reported in a case study
by Menasche et al., using ESC-derived cardiac progenitors [227]. They used the ESC I6 line, which
was enriched in vitro by culturing on clinical-grade irradiated human foreskin fibroblasts as feeder
cells. Cardiac commitment was then achieved by bone morphogenic protein-2 (BMP-2) and a specific
tyrosine kinase inhibitor of the fibroblast growth factor receptor (FGFR), and then confirmed by the
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expression of the cardiac specific transcription factor Isl-1, as well as the stage-specific embryonic
antigen-1 (SSEA-1), which was used for cell purification by immunomagnetic sorting. The cells were
embedded in a fibrin scaffold patch and surgically implanted in the infarcted area of a 68-year-old
woman patient with severe heart failure. The three-month follow-up showed functional integration
of the patch, evident by electrocardiography, and overall symptomatic improvement marked by
enhanced left-ventricular ejection fraction (LVEF), with no complications of arrhythmia, tumors,
or immunosuppression-related adverse events. The results were encouraging, and the Parisian group
conducted a larger-scale study, wherein six patients received cellularized patches of ESC-derived
committed cardiac progenitors [228]. Their one-year follow-up demonstrated safety and tolerability of
the grafted cells, with no detected tumors. Moreover, they reported modest symptomatic improvements,
as well as in different cardiac parameters.

As for iPSCs, a group of scientists from Osaka have reported their granted permission to pursue
with their clinical application last year and the results are yet to be reported [229].

8. Conclusions and Remarks

Stem cells are a novel source of cells which might be used as a screening tool for pharmaceutical
developments. Here, single cells on iPSC status, as well as differentiated cardiomyocyte progenitors,
might be used. In addition, engineered heart tissue displays a second model situation for screening of
novel therapeutic options, before applying in animal experiments or clinical trials. Since these systems
are based on human sources of cells, testing in these model situations might enhance safety and side
effect prediction in novel approaches of cardiovascular therapies. Utilization of stem cells in patients
suffering from cardiovascular disease is a second interesting field with great potential. The allogenic
transplantation of stem cells requires only a modest immunosuppression and might improve cardiac
function and thereby survival, as well as quality of life, in patients suffering from cardiac conditions,
e.g., heart failure. However, the clinical potentials, as well as the potential side effects, need to be
investigated in clinical trials before establishing stem-cell-based therapy as a standard of care in
cardiovascular patients. In summary, stem cells, especially induced pluripotent stem cells, have wide
therapeutic potential, but need to be characterized and investigated in more detail in preclinical, as well
as clinical, trials to understand in more detail their potentials and risks.
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