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Abstract: Autophagy, originally found in liver experiments, is a cellular process that degrades
damaged organelle or protein aggregation. This process frees cells from various stress states is a cell
survival mechanism under stress stimulation. It is now known that dysregulation of autophagy can
cause many liver diseases. Therefore, how to properly regulate autophagy is the key to the treatment
of liver injury. mechanistic target of rapamycin (mTOR)is the core hub regulating autophagy,
which is subject to different upstream signaling pathways to regulate autophagy. This review
summarizes three upstream pathways of mTOR: the phosphoinositide 3-kinase (PI3K)/protein kinase
(AKT) signaling pathway, the adenosine monophosphate-activated protein kinase (AMPK) signaling
pathway, and the rat sarcoma (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-extracellular
activated protein kinase kinase (MEK)/ extracellular-signal-regulated kinase (ERK) signaling pathway,
specifically explored their role in liver fibrosis, hepatitis B, non-alcoholic fatty liver, liver cancer,
hepatic ischemia reperfusion and other liver diseases through the regulation of mTOR-mediated
autophagy. Moreover, we also analyzed the crosstalk between these three pathways, aiming to find
new targets for the treatment of human liver disease based on autophagy.
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1. Introduction

The liver is the largest solid organ of the human body, which plays a key pivotal role in many
physiological processes such as nutrient storage and metabolism, synthesis of new molecules and
purification of toxic chemicals [1]. A variety of factors, such as chemical contaminants, viruses, drugs,
and alcohol, can disrupt the above-mentioned normal functions of the liver and cause hepatic steatosis,
hepatitis, fibrosis, cirrhosis, liver cancer, and other liver diseases, which are seriously harmful to
human health. Autophagy is a process of lysosomal degradation that regulates the homeostasis of
organelles and proteins. As a cellular housekeeper, the function of autophagy is mainly divided into
two types: the turnover of old molecules or damaged molecules and the supplement of nutrient storage
during starvation.

Accumulated studies have demonstrated that autophagy plays a crucial role in regulating liver
physiology and balancing liver metabolism [2]. Additionally, autophagy is also involved in the
occurrence and development of liver diseases mentioned above. In one aspect, autophagy protects
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liver cells from damage and cell death by eliminating damaged organelles and proteins introduced
in liver-related diseases [2]. On the other hand, under different conditions, autophagy can promote
further deterioration of liver injury (e.g. excessive autophagy can cause autophagic cell death of
hepatocytes; increasing autophagy of hepatic stellate cells can promote its activation and aggravate
hepatic fibrosis) [2,3]. Therefore, how to properly regulate autophagy in different situations becomes
very important in the treatment of liver injury.

Of note, it is well documented that mechanistic target of rapamycin (mTOR) plays a pivotal role
in autophagy regulation. mTOR plays a negative role in autophagy by regulating autophagy related
proteins and lysosome biosynthesis. Importantly, mTOR is subject to a variety of different upstream
signaling pathways, which can correspondingly inhibit or enhance autophagy levels by regulating
mTOR. Thus, the regulation of different upstream signaling pathways of mTOR may be a new research
idea for the treatment of liver injury. In this review, we analyzed the role of several different upstream
pathways mediated autophagy of mTOR in different liver injuries, and summarized the crosstalk
between several upstream pathways of mTOR. It will provide some new therapeutic targets for treating
liver injury by regulating autophagy.

2. Autophagy

Autophagy is a process by which cells degrade and metabolize their own components, which
is divided into non-selective autophagy and selective autophagy. Non-selective autophagy is
used for the turnover of bulk cytoplasm under starvation conditions while selective autophagy
specifically targets damaged or excess organelles, including damaged mitochondria, unneeded
peroxisomes, excess ribosomes and lipid droplets, as well as invasive microorganisms [4]. Under basic
conditions, all cells have lower levels of autophagy, and can be further induced by different
forms of stress such as nutrient or energy starvation, growth factor depletion, infection and
hypoxia [5]. Based on the method of target substance capture and delivery to lysosome, this
evolutionarily highly conserved process can be separated into macroautophagy, microautophagy and
chaperone-mediated autophagy (CMA). CMA uses chaperones to identify cargo proteins containing
specific pentapeptide motifs and then translocated directly across the lysosomal membrane [6].
By contrast, macroautophagy and microautophagy involve dynamic membrane rearrangement in
capturing cargo. Microautophagy directly ingests cargo through lysosomal limiting membrane
invagination, protrusion and separation [7]. Macroautophagy uses a special cytoplasmic vesicle to
capture cargo and eventually degrade with lysosomes [5] (Figure 1). At present, most of our knowledge
focuses on macroautophagy (hereinafter referred to as autophagy), selective macroautophagy in
mammalian cells is the focus of this review.

2.1. Membrane Rearrangement of Autophagy Process

Upon induction, a membrane structure called phagophore will extend and isolate cytoplasmic
organelles, including the endoplasmic reticulum, ribosomes, and mitochondria [3] (Figure 1). As the
phagophore expands, the membrane bends and eventually the edges of the membrane fuse to
form a bilayer membrane structure, autophagosome, which is the key event in autophagy [3].
However, the source of membranes involved in the formation of phagophore and autophagosome
remains unclear. It is possibly the endoplasmic reticulum, mitochondria, Golgi apparatus and plasma
membrane, although it is now widely believed that the endoplasmic reticulum is the main source
of the membrane [8-10]. Once the autophagosome is formed, it must transport its cargo to the
lysosome [5]. When it reaches its destination, the outer membrane of the autophagosome will
fuse with the lysosomal membrane [5]. Subsequently, the lysosomal hydrolase degrades the inner
membrane of the autophagosome to form a monolayer membrane structure, autolysosome. At the same
time, the cytoplasmic organelles contained in the autophagosome are also degraded by hydrolases.
The amino acids and other small molecules produced by the degradation are transported back to the
cytoplasm for recycling or for energy production [11].
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2.2. Molecular Machinery of Autophagy

The above autophagy process can usually be subdivided into different stages: initiation, nucleation
of the autophagosome, expansion and elongation of the autophagosome membrane, closure and
fusion with the lysosome, and the degradation of intravesicular products [12] (Figure 1). The different
steps of autophagy involve different evolutionary conserved autophagy-related genes (ATGs) and the
mechanisms behind them are complex.
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Figure 1. The process and mechanism of autophagy signals that activate the autophagic process
(initiation) typically originate from various conditions of stress, such as starvation, hypoxia, oxidative
stress, protein aggregation, endoplasmic reticulum (ER) stress and others. The common target
of these signaling pathways is the uncoordinated 51-like kinase (ULK) complex (consisting of
ULK1/2, ATG13, FIP200 and ATG101) and cause ULK complex translocate to a domain of ER.
Upon entry into the ER, the ULK complex initiates nucleation of the phagophore by phosphorylating
the class IIT PI3K complex I (consisting of Beclin-1, PIK3C3/VPS34, PIK3R4/p150, AMBRA1 and
ATG14/Barkor). At present, the source of membranes involved in the formation of phagophore
remains unclear, possibly ER, mitochondria, Golgi and plasma membrane. After phagophore
formation, it will expand and separate damaged organelles (including ER, ribosomes and mitochondria,
etc.) and misfolded proteins. As the phagophore expands, the membrane bends, eventually
forming a bilayer membrane structure-autophagosome. The ATG12-ATG5-ATg16L1 complex and the
LC3-phosphatidylethanolamine (PE) conjugate play an important role during phagophore elongation
and closure. Finally, autophagosomes fuse with lysosomes to form autophagosomes and the cargo in
autophagosomes is degraded by acid hydrolases in lysosomes. In addition, the nutrients produced by
the degradation are released back to the cytoplasm and reused by the cells.

Briefly, the initiation phase begins with the activation of the uncoordinated 51-like kinase (ULK)
complex (comprising ULK1, ULK2, ATG13, Focal adhesion kinase family interacting protein of 200 Kd
(FIP200) and ATG101) [12-16]. When ULK1/2 is phosphorylated, it interacts with ATG13, which directly
binds to FIP200 and mediates the interaction of FIP200 with ULK1/2 [13,17]. Furthermore, ATG101 can
stabilize the function of ULK complex by directly binding to ATG13 [15,18]. Next, the activated ULK
complex recruits a class III phosphatidylinositol 3 Kinase (PI3K) complex I that includes Beclin-1,
vacuolar protein sorting 34 (VPS34) that converts PI into PI-3-phosphate (PI3P), general vesicular
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transport factor (p115), ATG14 and activating molecule in Beclin-1-regulated autophagy protein 1
(AMBRAT1) to the autophagosome forming site during the nucleation phase [19,20]. The important
role of Beclin-1 in regulating class III PI3K complex I is essential for autophagy, which can activate
or inhibit autophagy by binding to some proteins [21]. For example, the anti-apoptotic protein
B-cell lymphoma 2 (Bcl-2) or B-cell lymphoma extra-large (Bcl-X1,) can bind to the BH3 domain in
Beclin-1, inhibiting its interaction with VPS34, thereby inhibiting autophagy [22-24]. On the other
hand, activating molecule in Beclin-1-regulated autophagy protein 1 (AMBRA1) can bind to Beclin-1,
enhancing the interaction between Beclin-1 and VPS34, thus activating autophagy [25]. When the
class III PI3K complex I is activated, which in turn activates local phosphatidylinositol-3-phosphate
(PI3P) production at a characteristic ER structure called the omegasome [20]. From its inception at
the omegasome, the phagophore elongates into a cup-shaped structure and begins to engulf cellular
material. Subsequently, PI3P recruits the PI3P effector proteins tryptophan-aspartic acid (WD) repeat
domain phosphoinositide-interacting proteins (WIPI2) and zinc-finger FYVE domain-containing
protein 1 (DFCP1) to the omegasome. Recently WIPI2 has been shown to bind directly to ATG16L1 and
promote the formation of ubiquitin-like protein binding systems [26]. These events are accompanied
by the recruitment of ATG9-containing vesicles generated, which may deliver additional lipids and
proteins contributing to membrane expansion [27,28].

In the elongation/enclosure phase of the phagophore membrane, two ubiquitin-like protein
binding systems are involved: the ATG12-ATG5-ATG16L1 complex and the microtubule-associated
protein 1 light chain 3 (LC3) —phosphatidylethanolamine (PE) conjugate [29]. In the first ubiquitin-like
reaction, the ubiquitin-like protein ATG12 was first activated by ATG7 (E1 ubiquitin-activating
enzyme-like), then transferred to ATG10 (E2 ubiquitin-binding enzyme-like), and finally covalently
connected to the internal lysine of the ATGS5 to form the ATGI12-ATGS5 conjugate [30,31].
Subsequently, the ATG12-ATG5 conjugate interacts with a coiled-coil protein ATG16L1, which binds
the ATG12-ATG5-ATG16L1 complex into a tetramer by self-oligomerization and is eventually recruited
into the phagophore by the WIPI2 protein. [32-34]. The second ubiquitin-like reaction involves the
LC3 (ATG 8 homolog) which can mediate membrane tethering and hemifusion plays a key role in
the process of phagophore membrane expansion and eventual closure as autophagosomes [30,35].
First, LC3 is cleaved at the C-terminus by a cysteine protease ATG4, exposing a glycine residue, forming
the cytoplasmic isomer LC3-I [5,30,36,37]. Subsequently, LC3-1 is activated by the El-like enzyme
ATGY7 and transferred to the E2-like enzyme ATG3 [38,39]. Finally, the C-terminal glycine of LC3-1 is
covalently bound to PE (ATG12-ATG5-ATG16L1 complex may be used as E3-like ligase to facilitate this
last step) [38,40]. In the manner described above, LC3 was transformed from free diffusion form (LC3-I)
to membrane anchored lipidated form (LC3-1I) [20,41]. Remarkably, LC3-1I is specifically designed
for elongated autophagosome membranes and is located on the inner and outer membranes [30].
When autophagosomes are fused to lysosomes, LC3-II located on the autophagosomal inner membrane
is degraded within the autolysosome, whereas LC3-II located on the cytoplasmic face of autolysosome
is destroyed by ATG4 and recycled [42]. LC3-II is widely considered to be a good marker for studying
autophagy due to this specific binding of LC3-II to autophagosome membranes [30,43].

In the final stages of the autophagy process: fusion and degradation. A large number of factors
regulate this key process [44]. For example, in mammalian cells, fusion regulators include Ras-related
proteins in brain small GTPases (such as Rab7 and Rab11), soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNARES, such as syntaxin-17, SNAP-29, and VAMPS), homotypic
fusion and vacuole protein sorting (HOPS) complex components (such as Vps16, Vps33A, and Vps39),
endosomal sorting complexes required for transport (ESCRT) components (such as SKD1, CHMP2B,
and CHMP4B), FYVE and coiled-coil domain-containing protein (FYCO1), lysosome-associated
membrane protein type 2 (LAMP-2), and lysosomal acid hydrolases include cathepsin B, D, L [44-48].
However, with regard to the respective roles of these factors, we need further research.
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3. Overview of mTOR Signaling Pathway
3.1. mTOR Structure

mTOR is a highly conserved serine/threonine protein kinase in the PI3K-related kinase (PIKK)
family that consists of 2549 amino acids and comprises multiple functional as well as regulatory
domains [49,50] (Figure 2A). The N-terminal contains 20 tandem Huntingtin-Elongation factor
3-regulatory subunit A of PP2A-TOR1 (HEAT) repeats involved in protein-protein interactions [51].
The C-terminal contains the protein kinase (KIN) domain, and its upstream is followed by the
FKBPI2-Rapamycin Binding (FRB) domain and the focal adhesion targeting (FAT) domain, which forms
a spatial structure with the FATC (another FAT domain located at the C-terminal end) and exposes
the mTOR molecular catalytic domain by a FAT/FATC method combined with each other [49,52-54].
In addition, mTOR also contains a negative regulatory domain (NRD) between the catalytic domain
and the FATC domain, which is essential for the regulation of mTOR activity [54].
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Figure 2. Overview of mTOR signaling pathway (A) The primary structure of mTOR. See text for details.
(B) Molecular composition and upstream and downstream pathways of mTORC1/2: mTOR kinase forms
two distinct protein complexes, called mTORC1 and mTORC2, respectively. (Left) mTORC1 consists
of three core components (mTOR, Raptor, mLST8) and two inhibitory subunits (PRAS40, Deptor).
(Right) mTORC2 consists of four core components (mTOR, Rictor, mLST8, mSIN1) and one inhibitory
subunit Deptor. mTORC1 is regulated by growth factors, energy, oxygen and amino acids and is
very sensitive to rapamycin. On the one hand, it promotes anabolism by phosphorylation of its
substrates S6K1, 4EBP1 and SREBP to accelerate the synthesis of proteins and lipids, on the other
hand, it inhibits catabolism by phosphorylation of ULK complex or other ways to prevent autophagy.
mTORC2 responds to growth factors; it regulates cell migration, cytoskeletal remodeling, cell growth
and proliferation, ion transport, and cell survival through its downstream substrates PKC, AKT,

and SGK1. Moreover, nTORC?2 is not sensitive to acute rapamycin treatment, but prolonged exposure
to the drug can destroys its structure.
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3.2. Molecular Composition of mMTORC1 and mTORC2

mTOR can recruit multiple chaperones through the above different relatively independent
domains to form two distinct signaling complexes: mTOR complex 1 (mTORC1) and mTOR complex
2 (mTORC?2) (Figure 2B). mTORC1 consists of three core components: mTOR, regulatory protein
associated with mTOR (Raptor), mammalian lethal with Sec13 protein 8 (mLST8), and two inhibitory
subunits: proline-rich Akt substrate of 40 kDa (PRAS40), DEP domain containing mTOR interacting
protein (Deptor) [55-60]. Among them, mTOR is the catalytic subunit of the entire complex. Raptor is
a mTOR regulatory related protein that binds to the mTOR signaling motif to promote substrate
recruitment of mTORC1 [61,62]. mLST8 is associated with the mTORC1 catalytic domain and stabilizes
kinase activation [63]. PRAS40 and Deptor are the two negative regulatory subunits of mMTORC1.When
the activity of mTORCT is decreased, PRAS40 and Deptor will be recruited by mTOR, further inhibiting
mTORCI1 expression; when mTORC1 is activated, phosphorylation of PRAS40 and Deptor directly
reduces their inhibition and further activates mTORC]1 signaling [59,64—66]. Rapamycin, a macrolide
antibiotic originally purified from Streptomyces hygroscopicus [67], can inhibit mMTORC1 activity by
interacting with the intracellular receptor FK506-Binding Protein (FKBP12) to form a drugprotein
complex that binds to the FRB domain of mTOR [53,63,68]. However, mTORC?2 is characterized by
insensitivity to acute rapamycin therapy [60]. Like mTORC1, mTORC2 also contains the mTOR catalytic
subunit, mLST8 and Deptor [60,69]. In addition to these protein components, mMTORC2 also contains
rapamycin insensitive companion of mTOR (Rictor) [70,71], mammalian stress-activated protein
kinase interacting protein (mSIN1) [72,73] and protein observed with rictorl and 2 (Protor1/2) [74-76].
Although the rapamycin-FKBP12 complex does not directly inhibit mTORC?2, prolonged rapamycin
treatment also reduces the integrity and activity of mTORC2, probably because the interaction between
Rictor and mTOR is prevented during the formation of new mTORC?2 [60,77].

3.3. Cellular Processes Downstream of mTORC1 and mTORC2

These two kinase complexes have specific substrate preferences, so they can trigger different
downstream signaling events to regulate cell function [78] (Figure 2B). The main function of mTORC1 is
to regulate cell growth and metabolism. It integrates a variety of stimulation and signaling networks to
promote anabolism. For example, mTORC1 can promote protein synthesis by directly phosphorylating
two key substrates, phosphorylating 70 kDa ribosomal protein S6 kinase 1 (p70S6K1) and the eukaryotic
translation initiation factor 4E binding protein (4EBP) [60]. mTORC1 can promote novel lipid synthesis
through the sterol response element binding protein (SREBP) transcription factor to satisfy membrane
formation during cell growth [79]. Furthermore, mTORC1 also promotes the synthesis of nucleotides
required for DNA replication and ribosome synthesis in cell growth and proliferation [60,80,81].
In addition to promoting the above anabolic processes, mTORC1 also negatively regulates the catabolic
process-autophagy, which promotes cell growth by inhibiting protein catabolism. The specific regulatory
mechanism will be discussed in the next section. Compared to mTORC1, mTORC2 controls cell
proliferation, survival, ion transport and cytoskeletal remodeling primarily through phosphorylation
of several members of the protein kinase A, G and C (AGC) family [82]. For example, mTORC2 can
phosphorylate protein kinase C (PKC)«x [70,71], PKC$ [83], PKC( [84], PKCy and PKCe [85] to
regulate cytoskeletal remodeling and cell migration. Furthermore, mTORC2 also phosphorylates AKT.
Activated AKT promotes cell survival, proliferation and growth by acting on several key substrates,
including Forkhead box O1/3 (FoxO1/3a) transcription factor, glycogen synthase kinase 33 (GSK33) and
tuberous sclerosis 2 (TSC2) protein [72,82,86]. Moreover, mTORC?2 also phosphorylates and activates
serum/glucocorticoid-regulated kinase 1 (SGK1), which regulates ion transport and cell survival [87].

3.4. Upstream Regulation of mTORC1 and mTORC2

Importantly, the above effects of mTORC1/2 are subject to a variety of upstream signals (Figure 2B).
The mTORC1 pathway integrates at least four major intracellular and extracellular signals: growth
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factors, energy status, oxygen content and amino acids [60]. The most important protein involved in
the regulation of mMTORCT activity is the Tuberous Sclerosis Complex (TSC), a heterotrimeric complex
composed of TSC1, TSC2 and Tre2-Bub2-Cdcl6 (TBC) 1 domain family, member 7 (TBC1D7) [88],
and functions as a GTPase activating protein (GAP) for the small GTPase Rheb [60]. Since only the
GTP-bound form of Rheb can directly bind and activate mTORC1. Therefore, as a Rheb GAP, TSC
suppresses mTORC1 by converting Rheb from an active GTP-bound form to an inactive GDP-bound
state [69,89,90]. Growth factor regulates mTORC1 activity mainly through activation of two classical
upstream pathways of mTORC1: PI3K/AKT/mTORC1 and Ras/Raf/MEK/ERK/mTORC1 signaling
pathways [60] (specific regulatory mechanisms are described in more detail below). Oxygen level
affects mTORC1 activity in many ways. Hypoxia can activate TSC through transcriptional regulation
of regulated in DNA damage and development 1 (REDD1) to block mTORC1 signal transduction [91].
In addition, under mild hypoxic conditions, the decrease of ATP level activated AMPK, also promoted
TSC activation and inhibited mTORC]1 signal transduction. Similarly, the energy state of the cells
also activates the AMPK/mTORCI signaling pathway by altering ATP levels, thereby modulating
mTORCI activity (see below). Furthermore, amino acids, particularly leucine and arginine, also
activate mTORCI. Recently, there are two different ways in which amino acids regulate mTORC1: one
is that leucine and arginine depend on Rag GTPase to activate mTORCI, the other is glutamine to
activate mTORC1 independently of the Rag GTPases [82]. Compared to mTORC1, much less is known
about the mTORC2 pathway. The only known upstream activating factor is the growth factor/PI3K
signal axis [78]. One study suggested that PI3K signaling may activate mTORC2 by promoting the
binding of mTORC?2 to ribosomes [92]. However, the mechanism of how ribosome binding activates
mTORC?2 needs further investigation.

3.5. The Role of mTOR in Liver Metabolism and Liver Disease

Consistent with the role of mTOR signaling in coordinating anabolism and catabolism at the
cellular level, studies have shown that mTOR signaling is also necessary for metabolic regulation in the
organisms [60]. Theliver is an important organ of systemic metabolism that plays a key role in regulating
ketones, lipid metabolism, systemic glucose and insulin homeostasis [93-95]. Evidence suggests that
mTOR plays an important regulatory role in these processes. Upon fasting, the liver performs
multiple functions to maintain a systemic balance, including increasing the production of ketone
bodies, which provide energy to peripheral tissues [96]. Sengupta et al. [96] found that mTORC1 is
activated in the liver of mice with liver-specific loss of TSC1 (L-TSC1 KO), resulting in significant
defects in ketone body production and ketogenic gene expression during fasting, whereas the deletion
of Raptor (a core component of mMTORC1) can reverse these effects. It suggested that mTORC1 can
control ketogenesis in mice in response to fasting. Lipogenesis is activated by transcription factor
SREBP [97,98]. In the liver, mTORC1 can activate the expression and maturation of SREBP through
two independent pathways. One is the S6K1-dependent manner that mediates the maturation of
SREBP-1 [79,99]. Another one is independent of S6K1. Under the action of nutrients and growth
factors, mTORC1 directly phosphorylates mTORC1 substrate phosphatidic acid phosphatase lipin-1
(a negative regulator of SREBP-1 activity) to prevent lipid-1 translocation from entering the nucleus,
which makes SREBP transcriptionally active, ultimately stimulating neonatal lipid synthesis [100,101].
In addition, mTORC1 in the liver also plays a key regulatory role in systemic glucose and insulin
homeostasis. In the L-TSC1 KO mice, chronic activation of the mTORC1 signal produces a strong
inhibitory feedback on insulin receptor substrate 1 (IRS1), which causes a decrease in the AKT signaling
pathway, leading to glucose intolerance [96,102,103]. In contrast, liver-specific Raptor-deficient mice
showed higher systemic glucose tolerance, probably due to enhanced AKT signaling pathway and
insulin-induced hepatic glucose uptake [100,104].

Similarly, the liver also needs mTORC?2 to maintain the balance of lipid and glucose. For example,
liver-specific knockout Ricto (a core component of mTORC2) mice exhibit hypolipidemic and
hyperglycemia, and mechanistic studies suggest that AKT plays an important role in the regulation
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of homeostasis by mTORC2 [101,105-107]. In summary, all the above evidences demonstrate the
important role of mTOR in the regulation of liver metabolism. In addition, mTOR also plays an
important role in liver injury, and cumulative evidence has shown that mTOR-mediated autophagy to
treat liver injury is a potential mechanism. For example, in hepatic ischemia-reperfusion injury,
mTOR-mediated activation of hepatocyte autophagy can promote hepatocyte survival, inhibit
hepatocyte death/apoptosis, and thereby repair hepatic ischemia-reperfusion injury [108]. Inliver cancer,
inhibition of mMTOR-mediated hepatoma cell protective autophagy can accelerate the death of liver cancer
cells, and thus alleviate the malignant development of liver cancer [109]. Therefore, mTOR-mediated
autophagy may be a therapeutic target for liver injury.

4. Regulation of Autophagy by mTOR

mTORC1 is a key regulator of cell catabolism, especially in autophagy. Accumulating evidences
have shown that mTORC1 can negatively regulate autophagy. However, its mechanism of regulating
autophagy is complex, and the specific ways of action have only been gradually clarified in recent
years. In general, the regulation of autophagy-related proteins and lysosomal biogenesis is the key to
the whole process. In mammalian cells, mMTORC1 regulates autophagy in at least four ways (Figure 3).
Firstly, under nutrient-rich conditions, mTORCI1 inhibits the initiation of autophagy by inhibiting ULK
complexes. In one aspect, mMTORC1 phosphorylates ULK1 at Ser758, prevents the interaction between
ULK1 and AMPK, and thus inhibits ULK1 activity [110]. AMPK is necessary for regulation of autophagy,
during glucose starvation AMPK phosphorylates ULK1 at Ser317/Ser777 and activates it [110].
On the other hand, mTORC]1 also directly phosphorylates ATG13 to inhibit the activity of the ULK
complex, whereas the mMTORC1 phosphorylation site in ATG13 remains to be determined [13,17,111].
Secondly, mTORCI inhibits autophagy by directly phosphorylating AMBRA1[112]. AMBRA1 promotes
nucleation of autophagosomes by promoting the interaction of Beclin-1 with lipid kinase VPS34 [113].
In addition, AMBRA1 also plays a key role in stabilizing ULK1 and activating ULK1 kinase activity [112].
Interestingly, under nutrient-rich conditions, mTORC1 directly phosphorylates AMBRA1 and inhibits
its function of activating ULK1, thereby inhibiting autophagy [68]. Thirdly, mTORC1 inhibits
autophagy by directly phosphorylating ATG14 in the class III PI3K complex I at multiple sites (Ser3,
Ser223, Thr233, Ser383, and Ser440) [114]. Phosphorylation of ATG14 inhibits the production of
phosphatidylinositol-3-phosphate (PtdIns3P) by the related kinase VPS34, which is critical for the
formation of autophagosomes [115]. Fourthly, mTORC1 can also indirectly inhibit autophagy by
regulating the transcription of genes required for lysosomal biogenesis [116]. The transcription
factor EB (TFEB) is a major transcriptional regulator of lysosomal biogenesis and autophagy
genes [117]. Upon entry into the nucleus, TFEB promotes transcription of genes encoding proteins
required for lysosomal biogenesis and autophagy, thereby indirectly activating autophagy [114].
mTORC1 directly phosphorylates the Ser142 and Ser211 sites of TFEB to retain it in the cytoplasm
to inhibit autophagy [116,118,119]. In addition to the above four ways, mTORC1 can also inhibit
the late phase of autophagy. For example, Kim et al. [120] reported that mTORC1 prevents the
maturation of autophagosomes by phosphorylating the Ser498 site of ultraviolent irradiation resistance-
associated gene (UVRAG). Cheng et al. [121] demonstrate that under nutrient-rich conditions,
mTORC1 phosphorylates Pacer at serinel57 to disrupt the association of Pacer with Stx17 and the HOPS
complex and thus abolishes Pacer-mediated autophagosome maturation. Recently, Wan et al. [122]
discovered a new target of mTORC1, acetyltransferase p300. Activated mTORC1 interacts with
p300 and phosphorylates p300 at four serine residues in the C-terminal region to inhibit autophagy.
WIPI2 as a critical protein in isolation membrane growth and elongation has also recently been
identified as a key downstream substrate for mTOR regulation of autophagy. Wan et al. [123] reported
that mTORC1 can phosphorylates Ser395 of WIPI2, directing WIPI2 to interact specifically with the
E3 ubiquitin ligase HUWE1 for ubiquitination and proteasomal degradation. Thereby inhibiting the
formation of autophagosome blocks the autophagy flux. The above illustrates the detailed mechanism
by which mTORCI1 regulates autophagy, however, it is not fully understood how mTORC2 regulates
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autophagy. Studies have shown that mTORC2 can phosphorylate AKT at the hydrophobic motif site
Serd73, activating the AKT/mTORC1 signal axis [78]. Therefore, perhaps mTORC2 may indirectly
inhibit autophagy by activating mTORC1. Whether mTORC?2 can directly regulate autophagy remains

to be further studied.

RTKs GPCRs

Ras = R3S Guis She o 5 PIEN SHIP Gu
oIr G 5 [ i
PI-3A.5-P) = Pl-45-P; = Pl-d 5Py S5 PS5 d 5P, Pl-34-Ps G
PIIG P8RS @® # & @ D85 PLIO 44 Plols T
o 7 P11y pa4:PR7DPIKAP
Raf Class T4 PISK Complex o T Sean Class 113 PI3K Complex
(B-RafRal-1,A-Ral) T e l ]
\ ol SerdT3 1308 i
Rictlor —{ mIOR '— mLST§ —» @ AKTPKB @ -——  PDKI e r
‘ - ATP
Deplor | mTORC2
MEK 112
r82  — )
Ca
TS
ERKI/ TBCIDT
KRl CAMKK?2
figh Yt
GIP GDP
PRASH) -
R P " e Thri 72 4!
L » Ropor —{ mIOR — mLSTs P, B
— ¥

T
Deplor © mTORCI

IN

Class 111 PI3K Complex [

Ser?at v| fma 17
 — )
ULKI  ULK2
Serl42 g Se2 11
——
W Y- -----+
FIP2on ATGIOL !
I
ULK Complex !
Serd o273 Ser3Ea ‘ i
Serddi; r Bel-2 |
4B A2 P15 AMDRAT | Bel-X, |
i
> VPS34 - i
X I
|
I
I
I
I}
I
|
i
v

Autophagy ———————————— T.ysosome and autophagy gene
expression

Figure 3. The upstream pathway of mTOR regulates autophagy. The arrows represent the promotion
and the blunt arrows represent the inhibition. P represents phosphorylation. See text for details.

5. Effect of Autophagy on Liver Injury by Targeting Upstream Pathway of mTOR

As previously mentioned, mTOR is a major modulator of autophagy and it receives inputs from
different signaling pathways, especially from those that sense the energetic state of the cell to trigger or
halt the synthesis of proteins [124]. Different upstream pathways of mTOR play an important role
in the regulation of autophagy, and a lot of them are associated with liver damage. So, the upstream
pathway of mTOR is an appealing target of autophagy regulation in the treatment of liver injury. In this
section we discuss several important upstream pathways of mTOR regulating autophagy and their
significance in the treatment of liver injury (Figure 3).

5.1. PI3K/AKT/mTOR/Autophagy Signaling Pathway

The PI3K/AKT signaling pathway is involved in the regulation of multiple cellular functions
such as proliferation, apoptosis and autophagy. PI3Ks are members of the intracellular lipid kinase
family that phosphorylate the hydroxyl groups of 3’-phosphatidylinositol and phosphoinositides.
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They have different structures, functions and substrate preferences, so PI3Ks can be divided into three
categories, class I, class I and class III [125,126]. Among these classes, class I PI3Ks play vital roles
in regulating cell growth and survival [127]. So here we exclusively discuss signaling downstream
of class I PI3Ks. The class I PI3Ks is a heterodimeric enzyme consisting of a regulatory subunit and
a catalytic subunit. Class I PI3Ks can be activated by a variety of upstream pathways that link a
wide range of cell surface receptors to specific PI3Ks isoforms, according to the characteristics of its
connection, class I PI3Ks is classified into class IA PI3Ks and class IB PI3Ks [128]. Class IA PI3Ks are
activated by receptor tyrosine kinases (RTKs), its catalytic subunit is p110 including three subtypes
of p110c, p110f and p1105, and the regulatory subunit is P85 including five subtypes of p85«x, p55«,
p50c, p85B and p55y [128]. When the cell is stimulated by growth factors, the upstream receptor
of the class IA PI3Ks will be activated and initiating a series of signaling cascades. The activated
intracellular portion of the receptor may interact directly with the Src-homology 2 (SH2) domain of the
regulatory subunit p85 or indirectly with P85 via adaptor molecules (such as IRS1) [129]. Then this
interaction allows the activation of the catalytic subunit of class IA PI3Ks. While class IB PI3Ks are
activated by G-protein-coupled receptors (GPCRs) and consists of a heterodimer of the catalytic subunit
p110y and the regulatory subunit p101 or its homolog p84 and p87PIKAP (PI3Ky adaptor protein of
87kDa) [128,130-132]. Compared to class IA PI3Ks, when the cells are stimulated, the regulatory subunit
of class IB PI3Ks directly interacts with the Gy subunit of the trimeric G protein, and then the catalytic
subunit of class IB PI3Ks are activated [128,133,134]. All these changes in class I PI3Ks eventually
phosphorylates the inositol ring of the membrane phospholipid, phosphatidylinositol-4,5-bisphosphate
(PI-4,5-P5), to generate phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) at the cytoplasmic face of
the plasma membrane [135]. However this activity of class I PI3Ks can be offset by phosphatase and
tensin homologue deleted on chromosome 10 (PTEN), which converts PI-3,4,5-P3 back to PI-4,5-P,,
and inositol-5-phosphatases including SH2-domain containing inositol phosphatase (SHIP), which
convert PI-3,4,5-P3 to phosphatidylinositol-3,4-bisphosphate (PI-3,4-P;) [136]. As the major negative
regulator of the PI3K/AKT pathway, studies have shown that conditions of PTEN-deficient mice
manifest as steatosis, hepatomegaly, fibrosis, and hepatocellular carcinoma [137,138]. Then the
generated PI-3,4,5-P3 acts as a second messenger, recruits AKT (also known as protein kinase B)
and phosphoinositide dependent protein kinase 1 (PDK1) to the cell membrane through their PH
domains, where the amino acid residues of Ser473 and Thr308 of AKT are phosphorylated by the
mTORC2 complex and protein PDK1, respectively, to complete its activation [139,140].

AKT belongs to the family of serine/threonine protein kinase conserved in mammals and consists
of three distinct subunits, AKT1, AKT2 and AKT3. In the liver, AKT1 and AKT?2 are the only expression
forms in healthy state, of which AKT2 is most expressed in hepatocytes, accounting for 85% of total liver
AKT [141]. AKT serves as a key downstream target for PI3K, and a central mediator of the PI3K pathway,
which exerts multiple downstream effects by phosphorylating many substrates involved in cell survival,
proliferation, metabolism, and movement [142]. Cumulative evidence suggests that the PI3K/AKT
signaling pathway plays a role in liver injury. For instance, Kim et al. [143] found that carbon monoxide
pretreatment can inhibit the activity of GSK3§3, a downstream substrate of AKT, by inducing activation of
the PI3K/AKT pathway in the liver, thereby reducing the expression of inflammatory factors, enhancing
anti-inflammatory ability, and reducing the degree of hepatocyte damage. Recent studies have shown
that hypothermia preconditioning can inhibit apoptosis and inflammatory damage by activating the
PI3K/AKT/FoxO3a pathway, providing an effective means of protecting the liver [144]. In addition to
GSK3 and the FoxO transcription factors, mTOR is also a key downstream signal node of AKT. The main
mechanism by which AKT activates mTORC1 is through direct phosphorylation and inhibition of
TSC2 (a potent inhibitor of mMTORC1) [145]. The AKT-mediated phosphorylation of TSC2 abolished
its inhibitory effect on mTORCI1 thus indirectly activated mTORC1 [142]. Additionally, AKT can
also directly activate mTORC1 by phosphorylating and inhibiting PRAS40 (an mTORC1 component
mentioned above that negatively regulates complex’s kinase activity) [58,64,75,78,146]. After mTORCl is
activated, a series of cascade effects will be activated to inhibit autophagy. In contrast to mTORC1,
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Mammucari et al. [147] found that inhibition of mTOR?2 in starved mouse skeletal muscle leads to
induction of autophagy, which is mediated by the downstream target-FoxO3 transcription factor
negatively regulated by AKT. Thus, mTORC2 may also negatively regulate autophagy due to its role
in fully activating AKT.

As discussed above, the PI3K/AKT signaling pathway is a well-established upstream regulator
of mTOR, which acts to inhibit autophagy by activating mTOR. Previous studies have shown
that autophagy not only maintains the balance of liver energy and nutrition, but also plays an
important role in regulating liver pathophysiology. Recently, there is increasing evidence that
PI3K/AKT/mTOR-mediated autophagy plays a key role in different liver damage and may represents a
promising target for novel therapeutic approaches to liver injury.

5.1.1. Liver Fibrosis

As is known to all, liver fibrosis is an important pathophysiological consequence of chronic
liver injury [148]. Its main feature is the continuous accumulation of extracellular matrix (ECM),
which often leads to the fracture of liver parenchyma through the formation of scar tissue [148].
The harmful effects of fibrosis can be profound and ultimately lead to organ failure. Efforts to prevent
fibrotic diseases hinge on the ability to clear excess ECM, overwhelming evidence indicates that
hepatic stellate cells (HSCs) are the main source of ECM and its activation is a critical event in the
development of liver fibrosis [149]. Therefore, inhibition of HSCs activation is considered to be
an important strategy for reversing liver fibrosis [149]. Autophagy plays a double-edged role in
liver fibrosis. Most studies have demonstrated that increased autophagy in HSCs can activate HSCs
by degrading lipid droplets to provide energy [150-152]. For example, Huang et al. found that
IGFBPrP1 promotes the activation of HSCs by promoting autophagy mediated by the PI3K/AKT/mTOR
signaling pathway [153]. However, Zhang et al. [154] came to different conclusions. They treated
HSC-T6 cells with different concentrations of Methyl Helicterate (MH) and found that MH inhibited the
activation of HSCs and significantly increased the autophagy level of HSCs. Interestingly, when they
used autophagy inhibitors 3-MA or ATG5 knockout to inhibit autophagy in HSC-T6 cells, they found
that the ability of MH to inhibit HSC-T6 cells activation was somewhat weaker than before. In contrast,
the induction of autophagy with rapamycin increased the apoptosis of HSC-T6 cells. This result
suggests that increasing autophagy in HSCs inhibits the activation of HSCs. Further investigation
revealed that the PI3K/AKT/mTOR pathway is the main mechanism of MH-induced autophagy in
HSCs. MH induces autophagy by inhibiting this pathway. Interestingly, some natural compounds can
also play a role in alleviating liver fibrosis through similar pathways as described above. Among them,
rutin and curcumin can stimulate the fatty acid-induced autophagy of NHSCs (nonchemical-induced
HSC) by regulating the PI3K/AKT/mTOR pathway, and finally found that the activation of NHSCs was
inhibited [155]. The above results are all suggest the importance of PI3K/AKT/mTOR-mediated autophagy
in reversing liver fibrosis. The reasons for the different results, however, are unclear, probably due to the
unique role of the PIBK/AKT/mTOR pathway in the activation of HSCs, or because of the different degrees
of autophagy activation in HSCs: moderate activation of HSCs autophagy can provide energy for the
activation of HSCs, and excessive activation of HSCs autophagy may cause autophagic cell death of HSCs,
thereby inhibiting the activation of HSCs. Further research is still needed.

5.1.2. Hepatitis B Virus

Hepatitis B virus (HBV) is a small DNA virus with a circovirus that can cause severe liver diseases
such as hepatitis, cirrhosis and liver cancer by chronically infecting liver cells. It is reported that about
350 million people worldwide are chronically infected with HBV [156]. Therefore, the mechanism
by which hepatitis B virus affects host cells to promote viral replication has been a hot topic of
research [156]. Emerging evidence suggests thatautophagy is involved in the replication of HBV. For instance,
the microRNA-99 family can promote replication of HBV by inducing autophagy [157]. More importantly,
the IGF-1R/PI3K/AKT/mTOR/ULK1 signaling pathway was found to be the major mechanism by which
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the microRNA-99 family regulates autophagy [157]. Additionally, Wang et al. [158] found that hepatitis
B virus-x (HBXx) transfected Hepg-2 cells (a widely used human hepatoma cell) significantly increased
their levels of autophagy through the PI3K/AKT/mTOR pathway. And studies have shown that increasing
autophagy in tumor cells can increase their anti-stress ability and promote tumor cell survival [152].
Therefore, PI3K/AKT/mTOR-mediated autophagy may be an important mechanism of liver cancer induced
after HBV infection. The above studies indicated that inhibition of PI3K/AKT/mTOR-mediated autophagy
may be an emerging target for the treatment of chronic HBV infection.

5.1.3. Hepatocellular Carcinoma

Hepatocellular Carcinoma (HCC) is a highly malignant and fatal neoplasia. It has been
well-documented that autophagy and the PI3K/AKT/mTOR pathway play pivotal regulatory roles
in tumorigenesis and cancer therapy, as well as becoming therapeutic targets for many anticancer
drugs. Autophagy plays a double-sided role in different stages of HCC development. On the one
hand, autophagy can prevent neoplastic transformation by removing damaged organelles and specific
proteins in normal cells, and can also limit inflammation and genome instability in cancer cells to
exert a cancer suppressing effect [159-161]. On the other hand, proper autophagy in established tumor
cells can promote the survival and malignant behavior of tumor cells by meeting their metabolic
demands, thereby aggravating the deterioration of cancer [162]. Therefore, the significance of balanced
autophagy activity in the treatment of cancer has become highly important. At present, autophagy
inhibitors chloroquine (CQ) and hydroxychloroquine (HCQ) or autophagy inducer rapamycin
and its homologues can play a corresponding role in autophagy regulation at different stages of
HCC development [163]. Great progress in the clinical treatment of HCC has been achieved [163].
Moreover, PI3K/AKT/mTOR, an important regulatory pathway upstream of autophagy, also plays
a key regulatory role in the development of cancer. Studies have reported that many cancer cells
abnormally activate AKT and PI3K, leading to the activation of mTOR, which activates protein
synthesis by phosphorylating downstream p705S6K and 4EBP1 to regulate cancer cell proliferation [152].
Therefore, inhibition of the PI3K/AKT/mTOR pathway is a therapeutic target for cancer. For example,
some Chinese herbal medicines such as curcumin and sinomenine can exert important anticancer effects
by blocking the PI3K/AKT/mTOR pathway [164,165]. However, when the PI3K/AKT/mTOR pathway
is inhibited, its key downstream, autophagy, is activated. Activation of autophagy in mature cancer
cells promotes malignant behavior, and conflicts with the effects of inhibition of the PI3K/AKT/mTOR
pathway on cancer cells. Therefore, the combination of autophagy inhibitors and PI3K/AKT/mTOR
pathway inhibitors will make more sense in cancer treatment. For instances, apigenin can inhibit the
proliferation of hepatoma cells and induce autophagy by inhibiting the PI3K/AKT/mTOR pathway [166].
Yang et al. [166] found that the combination of autophagy inhibitor and apigenin was more effective.
Recently, we have found that PI3K/AKT/mTOR-mediated autophagy plays a different role in HCC
than the above. Brusatol activates autophagy of hepatoma cells by inhibiting PI3K/AKT/mTOR
pathway, thereby effectively inducing apoptosis of hepatoma cells, inhibiting proliferation of hepatoma
cells as well as invasion and migration of tumors [167]. Importantly, activation of autophagy does
not promote the malignant behavior of hepatoma cells. The main reason for this result may be
that Brusatol over-activates autophagy of liver cancer cells through the PI3K/AKT/mTOR pathway,
thereby causing autophagic cell death (also known as programmed cell death (PCD) type II) of
liver cancer cells. Moreover, the function of autophagy in carcinogenesis has been controversial.
Therefore, our future research should focus more on the role of PI3K/AKT/mTOR-mediated autophagy
in different stages of HCC development. Provides more reliable basis for the treatment of HCC by
PI3K/AKT/mTOR-mediated autophagy.

5.2. AMPK/mTOR/Autophagy Signaling Pathway

Adenosine monophosphate-activated protein kinase (AMPK), a member of the AMPK-associated
kinase family, is a highly conserved serine/threonine protein kinase consisting of a catalytic subunit (o
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subunit) and two regulatory subunits (3 subunit and vy subunit) [168] (Figure 4). There are multiple
isoforms for each subunit encoded by different genes. In mammals, the catalytic o subunit has two
isoforms («1 and «2), while the 3 and y subunits have two (1 and 2) and three (y1, y2 and vy3)
isoforms, respectively [169]. AMPK can be composed of any subtype, thus there are 12 potential
AMPK combinations under different physiological conditions and these complexes have specific
roles [170]. For example, in the muscle, only «132y1, a232y1, and «232y3 complexes are detected.
However, after exercise, only the «232y3 complex was activated [171]. This result reveals that the
specific subunit composition allows different AMPK complexes to respond to different types of
stress stimuli, emphasizing the unique effects of different complexes. Moreover, each subunit has
its own unique structure and functions (Figure 4). The C-terminus of the «-subunit contains an
autoinhibitory domain (AID) and the N-terminus of the a-subunit contains the kinase domain with a
key residue Thr172 [172]. As an important activation site residues of AMPK, some upstream kinases
such as the tumor suppressor gene liver kinase B1 (LKB1) and the Ca®*/calmodulin-activated protein
kinase kinase-2 (CAMKK2, also known as CAMKK}) can directly activate AMPK by phosphorylating
Thr172 [173-178]. The 3 subunit contains a carbohydrate binding module (CBM) that allows AMPK to
associate with glycogen [179]. The y subunit contains four tandem cystathionine-3-synthase (CBS)
domains that can bind to AMP or ADP to further act on the o subunit Thr172 site to promote AMPK
activation [170,180-182]. As the major energy-sensing kinase, AMPK plays an important role in
regulating cellular energy homeostasis (Figure 4). AMPK is activated by various types of metabolic
stresses or ATP consumption through the mechanisms described above, which involve increases in
cellular AMP, ADP or Ca2* and activation of some upstream kinases [183]. Once activated, AMPK
maintains energy balance through two complementary actions, inhibiting multiple synthetic pathways
in multicellular organisms, such as lipid, protein, and carbohydrate biosynthesis, while activating
various catabolic processes such as glucose metabolism and autophagy [169,184].
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Figure 4. Adenosine monophosphate-activated protein kinase (AMPK) structure and function AMPK
are heterotrimeric proteins comprising a catalytic subunit (x subunit) and two regulatory subunits
(B subunit and y subunit), the domain composition of each subunit being shown. Thr172 is a key
site for the activation of AMPK. The upstream kinases LKB1 and CAMKK?2 are activated by various
metabolic stresses and intracellular calcium, respectively. Activation of LKB1 and CAMKK?2 activates
AMPK by phosphorylation of Thr172. As an energy-sensing kinase, once activated, AMPK inhibits the
energy-consuming synthesis process (that is, adenosine triphosphate (ATP) consumption), such
as the biosynthesis of lipids, proteins, and carbohydrates, while simultaneously activating the
energy-producing process (that is, ATP production), such as glucose metabolism and autophagy
to maintain the balance of energy.
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It is well known that mTOR is a nutrient-sensitive kinase [184]. Under nutrient rich conditions,
mTORCI1 can integrate various stimuli and signaling networks to promote anabolism, such as
stimulating the synthesis of proteins, lipids and nucleotides, while blocking catabolic processes,
such as inhibition of autophagy, thereby promoting the growth and proliferation of cells [78,114,185].
Interestingly, this role is exactly the opposite of the effect of AMPK. Therefore, under energy shortage
conditions, mTOR is an important downstream target of AMPK. Moreover, AMPK can maintain energy
balance by inhibiting the above effects of mTOR and thus playing a vital role in the treatment of some
liver injuries. For instance, Quan et al. [186] found that betulinic acid can alleviate non-alcoholic
fatty liver by activating the CAMKK/AMPK/mTOR/S6K/SREBP1 pathway. Recently, Hu [187] found
that Sestrin 2 can inhibit liver fibrosis by inhibiting rat HSCs activation and proliferation through
an AMPK/mTOR-dependent mechanism. The main mechanism of action of the above studies is the
inhibitory effect of activated AMPK on some downstream effects of mTOR.

Notably, autophagy is not only an important downstream regulatory mechanism of mTOR but it
also plays a key role in the process of AMPK maintaining energy balance. When cells are stimulated by
starvation, autophagy are activated to decompose their own organelles and cytoplasmic components
to ensure energy balance. It has been reported that AMPK has an effect of regulating autophagy in
both yeast [188] and mammalian cells [189,190]. As mentioned above, ULK1 is an important regulator
of the initiation and progression of autophagy and mTOR is the upstream negative regulator of ULK1.
Recent studies have shown that AMPK can activate autophagy by indirectly activating ULK1 via
the AMPK/mTOR pathway. On the one hand, AMPK inhibits the activity of mTOR by activating
the negative regulator of mTORC1, TCS2 [191]. On the other hand, AMPK inhibits the activity of
mTOR by inhibiting the major subunit of mTORC1, Raptor [192]. By the action of the above two,
the inhibition of ULK1 by mTOR is released, and autophagy is ultimately activated. In addition,
AMPK can directly activate ULK1 [110,193] or directly phosphorylate autophagy core components
such as ATGY9, VPS34 and Beclin-1, to promote autophagy [194-196]. There is increasing evidence
that AMPK/mTOR-mediated autophagy plays an important role in physiological and pathological
conditions. In the next section we will focus on the key role of the AMPK/mTOR/Autophagy signaling
pathway in the treatment of various liver diseases.

5.2.1. Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide
and is strongly associated with obesity, hyperlipidemia and diabetes [197]. Histologically, the liver
of patients with NAFLD will exhibit obvious steatosis, liver inflammation and even hepatocyte
necrosis. If uncontrolled, hepatic steatosis will develop into life-threatening diseases such as cirrhosis,
hepatocellular carcinoma and liver failure [198-200]. Recent investigation revealed that activated
autophagy could attenuate liver steatosis. For example, liraglutide (LRG) and Fibronectin type
III domain-containing 5 (FNDC5) protein can improve hepatic steatosis and reduces hepatic lipid
accumulation by inducing autophagy [201,202]. Conversely, a high-fat diet or long-term accumulation
of lipids may reduce autophagy activity [203]. More in-depth research suggests that lipophagy is
the main mechanism by which autophagy is involved in regulating lipid metabolism in the liver.
The main process of lipophagy involves sequestration of excess lipid drops in autophagosomes,
followed by fusion with lysosomes to form autolysosomes, and subsequent degradation by lipidated
in the lysosomes [204]. Moreover, it is well documented that increasing AMPK activity is also
considered as one of the viable treatment strategies for improving NAFLD [11]. Smith summarized
the role of AMPK in influencing NAFLD as the following three main mechanisms. (1) suppression
of de novo lipogenesis in liver, (2) increased fatty acid oxidation in the liver, and (3) promotion
of mitochondrial function/integrity in adipose tissue [11]. Recently, Guha et al. [205,206] showed
that inositol polyphosphate multikinase (IPMK) can interact with AMPK to mediate autophagy
via two signal axes, IPMK-AMPK-Sirt-1 and IPMK-AMPK-ULK1. Importantly, they found that
deletion of IPMK in cell lines and intact mice almost eliminated lipophagy, promoted liver damage,
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and impaired hepatocyte regeneration. Thus, IPMK may be a target for NAFLD and liver regeneration
therapy. In addition to the above mechanisms, we have recently discovered that activation of
AMPK/mTOR regulated autophagy is also an important protective mechanism. For instance, the above
mentioned LRG and FNDCS5, the main mechanism of its function is to activate AMPK/mTOR-mediated
autophagy to improve NAFLD [201,202]. Recently, Shi et al. [207] found that therapeutic dosages
of Acetaminophen can aggravate fat accumulation in NAFLD, the potential mechanism might be
involved in inhibiting autophagy associated with the AMPK/mTOR pathway. Zhang et al. [208] found
that AMPK/mTOR-mediated autophagy levels were significantly inhibited in both high-fat-fed mice
and in LO2 cells treated with free fatty acids. However, when Ghrelin o-acyltransferase (GOAT)
is inhibited, AMPK/mTOR-mediated autophagy levels are significantly increased and thus liver
hepatic toxicity is alleviated. It is suggested that AMPK/mTOR-mediated autophagy activation is an
important protective mechanism of NAFLD. Additionally, the therapeutic effect of Hydrogen sulfide
(H,S) on NAFLD has also been reported. Notably, the main mechanism of action of H,S is through
activation of AMPK/mTOR-mediated autophagy by acting on AMPKa; [204]. Therefore, activation of
AMPK/mTOR-mediated autophagy is an emerging approach to the treatment of NAFLD.

5.2.2. Liver Ischemia and Reperfusion

Ischemia-reperfusion injury is a common complication of patients with partial hepatectomy and
liver transplantation, which is divided into two different stages: ischemia and reperfusion. In the
ischemic phase, oxygen and nutrient deficiencies can directly lead to liver parenchymal cell damage.
During reperfusion, secondary inflammation and oxidative stress aggravate the severity of hepatic
ischemia-reperfusion injury [108]. Recent literature suggests that autophagy is a protective mechanism
that enables cells to cope with nutrient starvation and hypoxia and improves liver ischemia-reperfusion
damage [209-212]. More importantly, it has recently been discovered that AMPK/mTOR
pathway-mediated autophagy plays a key role in the treatment of hepatic ischemia-reperfusion
injury in the numerous upstream pathways of autophagy. For example, Kong et al. [212] found
that inhibition of GSK3{3 can improve hepatic ischemia-reperfusion injury by activating autophagy.
Subsequent further studies revealed that GSK3{ inhibition induces the phosphorylation of AMPK both
in liver ischemia-reperfusion and in primary hepatocytes hypoxia/reoxygenation, as well as suppression
of mTOR activity. Furthermore, inhibition of AMPK phosphorylation increases mTOR activity and
abrogates GSK3f3-mediated autophagy against liver ischemia-reperfusion injury. These findings
indicate that activation of AMPK/mTOR-mediated autophagy is the main mechanism of inhibition
of GSK3 in the treatment of hepatic ischemia-reperfusion injury. Similarly, in liver transplantation
models, Liu et al. [213] also demonstrated the pivotal role of AMPK/mTOR-mediated autophagy in
hepatic ischemia-reperfusion therapy. Another study [108] showed that isoflurane preconditioning
may play a role in the treatment of hepatic ischemia-reperfusion injury by activating hepatocyte
autophagy to promote hepatocyte survival and inhibit hepatocyte death/apoptosis. Subsequent further
research found that activation of AMPK/mTOR pathway-regulated hepatocyte autophagy is the key
to the role of isoflurane. The above findings reflect the important role of AMPK/mTOR-mediated
autophagy in the treatment of hepatic ischemia-reperfusion injury. Therefore, AMPK/mTOR-mediated
autophagy will be an emerging research target.

5.2.3. Liver Cancer

As mentioned above, in the previous section we have highlighted the double-sided effects
of autophagy in liver cancer and demonstrated the important role of PI3K/AKT/mTOR-mediated
autophagy in the treatment of liver cancer. Similarly, we have recently discovered that, as another
important upstream pathway of autophagy, the AMPK/mTOR pathway also plays an increasingly
important role in liver cancer. For instance, as a novel anticancer drug, the main mechanism by
which Britannin (Bri) inhibits the growth and proliferation of hepatoma cells is to over-activate
AMPK/mTOR pathway-mediated autophagy to promote autophagic cell death [214]. Similarly, BCLB
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can also treat liver cancer by inducing autophagy to promote autophagic death of cancer cells [215].
Importantly, Liu et al. [215] found that after transfected with Bcl-2-like protein 10 (Bcl2L10/ BCLB),
the expression of p-AMPKa« (Thr172) and p-Raptor (Ser792) in liver cancer cells was significantly
increased, and mTOR (Ser2481) was significantly decreased. These changes underscore that BCLB exerts
an anticancer effect by activating AMPK/mTOR-mediated autophagy. Conversely, proper autophagy
activation enables cancer cells to survive under stress such as starvation, hypoxia, and drugs [216].
For instance, Glycochenodeoxycholate can promote hepatocellular carcinoma invasion and migration
by AMPK/mTOR dependent autophagy activation [217]. It has also been reported that inhibition of
autophagy may enhance the sensitivity of cancer cells to cytotoxic drugs [218]. Given that, many
autophagy inhibitors have been identified and used in cancer treatment [219]. RA-XII [109], a natural
cyclopeptide, can inhibit the growth and colony formation of HepG2 cells. Mechanistic studies
suggest that the above effects of RA-XII are mainly by inhibiting autophagy of hepatoma cells.
Experiments have confirmed that the AMPK/mTOR/P70S6K pathway plays a central role in RA-XII
regulation of autophagy. In summary, the important role of AMPK/mTOR-mediated autophagy in
the treatment of liver cancer has been reported. Therefore, another upstream pathway of autophagy,
AMPK/mTOR, is also a new target for the treatment of liver cancer.

5.3. Ras/RaffMEK/ERK/mTOR/Autophagy Signaling Pathway

The Ras/Raf/MEK/ERK signaling pathway is an evolutionarily conserved signaling cascade that is
normally activated by a variety of extracellular stimuli such as growth factors, hormones, cytokines,
and environmental stress [220,221]. Once activated, it triggers a series of phosphorylation events
and protein-protein interactions including Ras, Raf, MEK and ERK, which transmit signals from
cell surface receptors to promote cell proliferation and survival [220-224] (Figure 3). Ras is a small
GTP-binding protein that has been identified in four highly related forms, namely Ha-Ras, N-Ras,
Ki-Ras 4A and Ki-Ras 4B [220]. These proteins are usually located in the inner lobules of the plasma
membrane [225]. They participate in signal transmission through interaction with multiple effectors
and are common upstream molecules of various signal pathways such as Raf/MEK/ERK, PI3K/AKT,
RalGDS, PLCe-PKC and Racl-JNK pathways [225,226]. When cytokines, growth factors or mitogen
activate appropriate receptor, the Src homology 2 domain containing protein (Shc) adaptor protein
may bind to the C-terminus of the activated specific growth factor receptor [220,227]. Which then
binds to the SH2 domain of adaptor protein growth factor receptor binding protein 2 (GRB2) [226].
Notably, GRB2 can recruit Son-of-Sevenless (SOS) into the plasma membrane through its SH3 domain in
combination with SOS, forming a Shc/GRB2/SOS complex [226]. Under the stimulation of Shc/GRB2/50S
complex, GDP was separated from Ras protein and replaced by GTP [220,228]. Eventually the Ras
undergoes a conformational change, switches from the inactive (GDP-bound) to the active (GTP-bound)
form [224].

Raf is a serine/threonine kinase composed of A-Raf, B-Raf and Raf-1 (C-Raf) [220]. Upon Ras
activation, Raf is recruited to the cell membrane and promotes Raf dimerization and activation [224].
Downstream of this, activated Raf phosphorylates and activates mitogen-activated protein kinase/ERK
kinases 1 and 2 (MEK1/2) [226]. Interestingly, all three members of the Raf family can phosphorylate
and activate MEK, but they exhibit different biochemical activities (B-Raf > Raf-1»A-Raf) [220,229].
Following MEK1/2 activation, the only known catalytic substrate, extracellular-signal-regulated kinases
1 and 2 (ERK1/2), was phosphorylated [220,221]. A significant portion of the phosphorylated ERK
1/2 enters the nucleus where it binds and phosphorylates transcriptional regulators to control gene
transcription [228,230]. The ERK1/2 signal, however, is not limited to the nucleus, and ERK1/2 can
also target substrates outside the nucleus to control metabolism, mitochondrial fission and cell
survival [228,231,232]. An increasing number of studies have suggested that Ras/Raf/MEK/ERK
signaling pathway plays a role in modulating autophagy. For example, Kim et al. [233] found that
abnormal activation of Raf/MEK/ERK increased the expression of important autophagy markers
LC3B and SQSTM1/p62 in LNCaP cells, HEK293 cells, BJ cells, and IMR90E1A cells. Growth factor
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stimulation causes the ERK cascade elements Raf, MEK and ERK to enter the cytoplasmic surface of the
autophagosome to interact with the ATG protein [234]. Moreover, Chen et al. [235] also demonstrated
that the Ras/Raf/MEK/ERK signaling pathway plays a key role in inhibiting the expression of Cathepsin
S to promote autophagy in HONE 1 cells. However, the mechanism by which the Ras/Raf/MEK/ERK
pathway is involved in the regulation of autophagy is extremely complex and sometimes seems
contradictory. So, at present, our understanding of the role of the Ras/Raf/MEK/ERK pathway in
the autophagy environment is limited. In the next section, we will summarize some of the possible
mechanisms by which the Ras/Raf/MEK/ERK pathway regulates autophagy.

The key role of Beclin-1 in regulating autophagy has been discussed above. We found that
Beclin-1 may be a potential target for the regulation of autophagy by the Ras/Raf/MEK/ERK pathway.
For example, the Ras/Raf/MEK/ERK pathway activated in breast cancer MCF-7 cells can induce binding
of Noxa (a BH3-only protein) to Mcl-1 (a Bcl-2 family member) such that Beclinl is derived from
Mcl-1 on the dissociation [236]. Similarly, the activated Ras/Raf-1/MEK/ERK pathway in NIH3T3 cells
can induce Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) to induce Bcl-2 release of
Beclinl by increasing the transcriptional expression level of BNIP3 [237]. After Beclin-1 independence,
it may bind to the VPS34 protein to form the active center of the core protein phosphatidylinositol
triphosphate kinase (class III PI3K) complex during autophagy to promote autophagy. All of the above
regulate autophagy through a non-dependent mTOR pathway. Of note, mTOR, the major regulator of
autophagy, may also play an important role in the regulation of autophagy in the Ras/Raf/MEK/ERK
pathway. It has been reported that activated ERK can activate mTOR1 directly or indirectly. In one
aspect, ERK1/2 or its downstream substrate, 90kDa ribosomal S6 kinase (RSK), can positively regulate
mTORC1 by inhibiting the activity of the TSC complex [238,239]. On the other hand, ERK1/2 or RSK
acts directly on the scaffolding protein Raptor in the mTORC1 complex to activate mTOR [240,241].
In the above, we have discussed in detail how mTOR1 regulates autophagy. So, we hypothesized
that the Ras/Raf/MEK/ERK pathway may regulate autophagy by mediating mTOR. Recently, we have
surprisingly found that mTOR-dependent autophagy regulated by Ras/Raf/MEK/ERK pathway plays
an important role in liver injury.

For example, in the treatment of liver cancer, we have found that many compounds, such as
Bicyclol and Azathioprine (AZA), can inhibit the proliferation of hepatoblastoma cells (HepG2) or
promote their senescence [242,243]. Wang et al. [242] explored the main mechanism of Bicyclol
inhibition of HepG2 cell proliferation, found that the Ras/Raf/MEK/ERK pathway was significantly
inhibited, p-mTOR was also inhibited, and LC3-I was converted to LC3-II. These results suggest
that Bicyclol acts mainly through activation of Ras/Raf/MEK/ERK/mTOR-mediated autophagy.
Similarly, the main mechanism of action of Azathioprine (AZA) in the treatment of liver cancer
is through the activation of Ras/Raf/MEK/ERK/TSC2/mTOR-mediated autophagy to promote the
senescence of HepG2 [243]. Furthermore, MEK/ERK/mTOR-mediated autophagy also plays a key
role in hepatic ischemia-reperfusion injury. However, contrary to the above, Tanshinone IIA and
Tri-iodothyronine act to activate autophagy by activating the MEK/ERK pathway to inhibit the activity
of mTOR [243,244]. In summary, Ras/Raf/MEK/ERK/mTOR-mediated autophagy does play a key role
in liver injury and may be a new research direction for liver injury. However, the specific mechanism
of Ras/Raf/MEK/ERK/mTOR regulating autophagy is still unclear, and further research is needed.

5.4. Cross-Talk in the Upstream Pathway of the mTOR-Mediated Autophagy

In the previous section, we have separately discussed the detailed mechanisms by which PI3K/AKT,
AMPK, Ras/Raf/MEK/ERK pathways regulate autophagy by mediating mTOR. However, they are not
three independent parallel pathways. There are multiple crossing points between the three pathways,
which affect each other at different stages of signal propagation, both positive and negative, resulting
in dynamic and complex cross-talk between the pathways (Figure 5). They synergistically regulate the
activity of mTOR to further control autophagy and determine the fate of cells.
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Figure 5. Cross-talk between PI3K/AKT, AMPK and Ras/Raf/MEK/ERK pathway. Black lines indicate
crosstalk between the three pathways, with arrows indicating promotion and blunt arrows indicating
inhibition. The blue lines indicate the relationship of the three paths themselves. P represents
phosphorylation, -P represents dephosphorylation. See text for details.

5.4.1. Cross-Talk between PI3K/AKT and Ras/Raf/MEK/ERK Pathways

There are significant cross-talks between the kinases of these two pathways under physiological or
pathological conditions. PI3K/AKT can affect the Ras/Raf/MEK/ERK pathway at multiple levels [245].
In some circumstances, Ras activation by PI3K has been well characterized. For example, somatostatin
receptor [246], insulin and low dose of epidermal growth factor (EGF) [247] can drive Ras activation
via PI3K, probably because PI-3,4,5-P3 can recruit GAP/Shp2 [248,249]. In addition, the studies have
shown that AKT can directly phosphorylate the Ser259 site on Raf-1 and the Ser364 and Ser428 sites on
B-Raf in their CR2 amino-terminal regulatory domain [250,251]. Subsequently, the phosphorylated
Raf molecule is inactivated by binding to the 14-3-3 adapter protein [250-252]. Interestingly, another
protein kinase, serum and glucocorticoid-inducible kinase (SGK), which is similar to the AKT
catalytic domain, shares a regulatory pathway with AKT [253]. Like AKT, SGK is also directly
phosphorylated and activated by PDK1 and can inhibit B-Raf activity by phosphorylating the Ser364 site
on B-Raf [253-255]. Furthermore, Sato et al. [256] demonstrated that PDK1 not only indirectly regulate
Raf by phosphorylation AKT and SGK, but also directly activate MEK by phosphorylation of Ser222 of
MEK]1 and Ser226 of MEK?2 in vivo and in vitro. In human intestinal cells, scholars have found that
AKT can indirectly activate ERK [257]. Studies have confirmed that GSK3 plays an important role in
this process [257]. Activated GSK3 can inhibit ERK by inhibiting PKCb [257], which is considered to be
an activator of ERK in certain cell lines [258,259]. However, activation of AKT can inhibit activated
GSK3 by phosphorylating Ser21 in GSK3« and Ser9 in GSK33, thus indirectly activating ERK [257,260].

In turn, the Ras/Raf/MEK/ERK pathway can also influence the PI3K/AKT pathway through a
variety of interaction pathways. Ras-GTP can directly bind and allosterically activate PI3K [261-263].
EGF-induced ERK phosphorylates GAB1 on several serine residues near the P85 PI3K binding
site, thereby inhibiting GABl-mediated recruitment of PI3K to EGF receptor (EGFR) [264,265].
Moreover, both ERK and its kinase substrate RSK can regulate PI3K antagonist PTEN by phosphorylating
and inhibiting GSK3 [266,267]. Since GSK3 is a negative regulator of PTEN, so the activation of ERK
can reduce the PI-3,4,5-P; level and thus inhibit the PI3K/AKT pathway [267].
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5.4.2. Cross-Talk between PI3K/AKT and AMPK Pathways

AMPK and AKT directly or indirectly regulate mutual phosphorylation to inhibit each other [268].
AMPK is activated upon phosphorylation of Thr172, which is located on the activation loop of
the catalytic a-subunit of the kinase and can be phosphorylated by the upstream kinase LKB1 or
CaMMK [269]. Phosphorylation of Ser485/491 (equivalent to Ser487/491 in human) inhibits AMPK
activity by blocking phosphorylation of Thr172 by LKB1 or CaMMK [270-273]. Studies have shown
that activated AKT can directly phosphorylate Ser485/491 in different cell types, thereby inhibiting
AMPK [270,274,275]. Nevertheless, AMPK can also reversely blunt AKT activation. King et al. [276]
found that AICAR or phenformin induced the activation of AMPK, which dephosphorylates Ser473 and
Thr308 of AKT, thereby inhibiting its activity. In addition, AMPK can also affect the AKT signaling
pathway by modulating IRS1. AMPK phosphorylates the Ser794 site of IRS1 (equivalent to the
Ser789 site in rats) to inhibit its mediated PI3K/AKT signaling pathway [277-279]. However, there are
studies indicating that activated AMPK can also stimulate AKT by phosphorylating IRS1 [280-282].
It seems that IRS1 has a dual role in the AMPK-mediated AKT signaling pathway, and its function
remains to be determined [282-284]. Overall, AMPK and AKT have mutual complicated antagonism.

5.4.3. Cross-Talk between AMPK and Ras/Raf/MEK/ERK Pathways

Activated MEK/ERK1/2 pathway can positively regulate AMPK. Zheng et al. [285] found that
when the MEK/ERK1/2 pathway was blocked, the phosphorylation of AMPK induced by baicalin was
eliminated, while AMPK inhibitors only had little effect on baicalein-induced ERK1/2 phosphorylation.
This phenomenon suggests that the MEK/ERK1/2 pathway may activate AMPK. However, ERK can
also negatively regulate AMPK. On the one hand, ERK can phosphorylate the Ser485 site of AMPK
to prevent phosphorylation of Thr172 site and directly inhibit AMPK activity [286]. On the other
hand, ERK can also phosphorylate and inhibit the Ser325 site of LKB1 to indirectly inhibit AMPK [287].
Moreover, the downstream kinase RSK of ERK can also exert a similar effect on AMPK, which exerts
an inhibitory effect by phosphorylating the Ser428 site of LKB1 [287].

It is intriguing that AMPK can also affect the Ras/Raf/MEK/ERK pathway. Shen et al. [288]
demonstrated that activated AMPK can phosphorylate the Ser729 site of B-Raf. This phosphorylation
promotes the binding of B-Raf to the 14-3-3 protein and disrupts the interaction of B-Raf with the
KSR1 scaffold protein, ultimately resulting in attenuation of the MEK/ERK signalling [252,288,289].
AMPXK can also phosphorylate the Ser621 site on Raf-1 in vitro [290], but subsequent experiments have
demonstrated that Raf-1 Ser621 is autophosphorylated in vivo rather than AMPK phosphorylated [291].
In addition, ERK and AMPK are mutually regulated, and many experiments show that AMPK can
also reversely activate ERK [292-294]. Collectively, growing experiments have shown that AMPK and
Ras/Raf/MEK/ERK pathways can be regulated by each other in multiple ways.

5.4.4. Cross-Talk between the Upstream Pathways of mTOR-Mediated Autophagy in Liver Injury

The cross-talk between mTOR-mediated upstream pathways of autophagy is very complex.
When we were sorting out the data, we were surprised to find that in some cases, there are
multiple pathways together mediate autophagy to regulate liver damage. For example, Bicyclol
can inhibit HepG2 cell proliferation by simultaneously inhibiting the PI3K/AKT pathway and the
Ras/Raf/MEK/ERK pathway to activate mTOR-mediated autophagy [242]. Moreover, Kaempferol can
also activate autophagy of SK-HEP-1 (human hepatic cancer cells) by inhibiting the PI3K/AKT/mTOR
pathway or activating the AMPK/mTOR pathway. Excessive autophagy eventually causes autophagic
cell death in SK-HEP-1 cell, thereby preventing liver cancer [295]. Although experiments have proved
the good therapeutic effect of multiple pathways in liver cancer, the effect of crosstalk between these
pathways on liver injury has not been discussed. Therefore, it may be important to clarify the role of
crosstalk between mTOR-mediated autophagy upstream pathways on liver injury. These key crosstalk
points are likely to be emerging targets for the treatment of liver injury.
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6. Conclusions and Future Directions

Increasing research indicates that autophagy is a very promising approach to the treatment of
liver injury. In the last decade, we have made tremendous strides in understanding the importance of
autophagy in the liver. The above summarizes the regulatory effects of autophagy mediated by different
drugs through several upstream pathways of mTOR (PI3K/AKT signaling pathway, AMPK signaling
pathway and Ras/Raf/MEK/ERK signaling pathway) in various liver injuries (Figure 6), and also found
complex crosstalk connection between these three signaling pathways, which are interconnected to
collectively regulate mTOR-mediated autophagy. In summary, this review has shown the importance
of mTOR upstream pathway in the treatment of liver injury by autophagy, and provides some new
research ideas for autophagy in the treatment of liver injury in the future (Table 1).

Drugs
PI3K/AKT AMPK Ras/Rat/MEK//ERK

L

Autophagy

| 1

NAFLD Ischemia
Reperfusion

| |

Figure 6. The upstream pathway of mTOR-mediated autophagy in liver injury. PI3K/AKT
regulates liver injury by inhibiting mTOR-mediated autophagy. AMPK regulates liver injury
by activating mTOR-mediated autophagy. Ras/Raf/MEK/ERK regulates liver injury by inhibiting
mTOR-mediated autophagy. PI3K/AKT/mTOR signaling pathway, AMPK/mTOR signaling pathway
and Ras/Raf/MEK/ERK/mTOR signaling pathway are emerging targets for drug-based autophagy in
the treatment of liver injury.

However, there are still some shortcomings in our understanding of mTOR upstream.
Current studies have only proved that autophagy mediated by the upstream pathway of mTOR
is involved in the regulation of liver injury, but it is not clear which part of the pathway is regulated
by drugs. We only prove that drugs can mediate autophagy through multiple upstream pathways of
mTOR in the treatment of liver injury, however, the specific effect of crosstalk between the upstream
pathways of mTOR on liver injury is not clear. Therefore, the following research direction should
further explore the specific mechanism of drugs targeting the upstream pathway of mTOR, and look
for key crosstalk points, which may be a very important target for the treatment of liver injury based
on autophagy.
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Table 1. The role of upstream pathway of mMTOR-mediated autophagy in liver disease.
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Liver Disease

Signaling Pathway

Effect

Target

Reference

Liver Fibrosis

Hepatitis B virus

Non-alcoholic fatty
liver disease

Liver ischemia and
reperfusion

Liver Cancer

PIBK/AKT/mTOR/autophagy

PIBK/AKT/mTOR/autophagy

AMPK/mTOR/autophagy

AMPK/mTOR/autophagy

PI3K/AKT/mTOR/autophagy
AMPK/mTOR/autophagy
Ras/Raf/MEK/ERK/
mTOR/autophagy

IGFBPrP1 promotes the activation of HSCs by activating
PI3K/AKT/mTOR-mediated autophagy.

MH, Rutin and Curcumin inhibit the activation of HSCs by
activating PI3K/AKT/mTOR-mediated autophagy.
microRNA-99 family can promote replication of HBV by
inducing PI3K/AKT/mTOR-mediated autophagy.

LRG, FNDC5 and H,S activate AMPK/mTOR-mediated
autophagy improve NAFLD.
Acetaminophen inhibits AMPK/mTOR-mediated autophagy
aggravating fat accumulation in NAFLD.
Isoflurane activates AMPK/mTOR pathway mediated
autophagy to improve hepatic ischemia-reperfusion injury.
Inhibition of GSK3f3 can ameliorate hepatic
ischemia-reperfusion injury by activating
AMPK/mTOR-mediated autophagy.

Brusatol activates PI3K/AKT/mTOR-mediated autophagy of
hepatoma cells, thereby effectively inducing apoptosis of
hepatoma cells, inhibiting proliferation of hepatoma cells as
well as invasion and migration of tumors.

Bri and BCLB over-activate AMPK/mTOR-mediated
autophagy to inhibit the growth and proliferation of
hepatoma cells.
Glycochenodeoxycholate activates AMPK/mTOR-mediated
autophagy to promote hepatocellular carcinoma invasion
and migration.

RA-XII inhibits AMPK/mTOR-mediated autophagy to inhibit
the growth and colony formation of HepG 2 cells.
Bicyclol and AZA activate Ras/Raf/MEK/ERK/
mTOR-mediated autophagy to inhibit the proliferation of
HepG2 or promote their senescence.

Inhibition of PI3K/AKT/mTOR-
mediated autophagy
Over-activation of PI3K/AKT/
mTOR-mediated autophagy
Inhibition of PI3K/AKT/mTOR-
mediated autophagy

Activation of AMPK/mTOR-
mediated autophagy

Activation of AMPK/mTOR-
mediated autophagy

Over-activation of PI3K/AKT/
mTOR-mediated autophagy
Over-activation of
AMPK/mTOR-
mediated autophagy
Inhibition of AMPK/mTOR-
mediated autophagy
Activation of
Ras/Raf/MEK/ERK/
mTOR-mediated autophagy

[153]
[154,155]

[157]

[201,202]
[204]
[207]

[108]
[212]

[167]
[214,215]
[217]
[109]
[242,243]
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