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Abstract

Background: Recent technological developments have enabled the measurement of a plethora of biomolecular
data from various omics domains, and research is ongoing on statistical methods to leverage these omics data to
better model and understand biological pathways and genetic architectures of complex phenotypes. Current reviews
report that the simultaneous analysis of multiple (i.e. three or more) high dimensional omics data sources is still
challenging and suitable statistical methods are unavailable. Often mentioned challenges are the lack of accounting
for the hierarchical structure between omics domains and the difficulty of interpretation of genomewide results. This
study is motivated to address these challenges. We propose multiset sparse Partial Least Squares path modeling
(msPLS), a generalized penalized form of Partial Least Squares path modeling, for the simultaneous modeling of
biological pathways across multiple omics domains. msPLS simultaneously models the effect of multiple molecular
markers, from multiple omics domains, on the variation of multiple phenotypic variables, while accounting for the
relationships between data sources, and provides sparse results. The sparsity in the model helps to provide
interpretable results from analyses of hundreds of thousands of biomolecular variables.

Results: With simulation studies, we quantified the ability of msPLS to discover associated variables among high
dimensional data sources. Furthermore, we analysed high dimensional omics datasets to explore biological pathways
associated with Marfan syndrome and with Chronic Lymphocytic Leukaemia. Additionally, we compared the results of
msPLS to the results of Multi-Omics Factor Analysis (MOFA), which is an alternative method to analyse this type of data.

Conclusions: msPLS is an multiset multivariate method for the integrative analysis of multiple high dimensional
omics data sources. It accounts for the relationship between multiple high dimensional data sources while it provides
interpretable results through its sparse solutions. The biomarkers found by msPLS in the omics datasets can be
interpreted in terms of biological pathways associated with the pathophysiology of Marfan syndrome and of Chronic
Lymphocytic Leukaemia. Additionally, msPLS outperforms MOFA in terms of variation explained in the chronic
lymphocytic leukaemia dataset while it identifies the two most important clinical markers for Chronic Lymphocytic
Leukaemia
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Background
Technological developments have enabled the measure-
ment and storage of a plethora of biomolecular data
extracted from various omics domains, such as data from
the genome, epigenome, proteome or metabolome. It has
become common to measure hundreds of thousands of
biomolecular variables. To explore biological pathways
across multiple omics domains, which might be asso-
ciated with phenotypic (e.g. disease) outcomes, a natu-
ral research direction is to simultaneously analyse these
omics domains. Complex diseases, such as obesity, dia-
betes, and schizophrenia have genetic architectures that
involve many biological pathways, since they are a result
of interactions between genomic, epigenomic and envi-
ronmental variables [1, 2]. Therefore, modeling biological
pathways across multiple omics domains might help to
better understand the underlying genetic architecture and
biological processes of complex phenotypes, which in turn
leads to improved diagnosis, prognosis and therapy [1].
There is ongoing research for suitable statistical meth-

ods that could help leverage the available omics data
to better model and understand biological pathways
and genetic architectures of complex phenotypes on the
biomolecular level [3].
Some of the first statistical methods developed for the

integrated (i.e. simultaneous) analysis of multiple high
dimensional omics datasets are generalizations of well
known multivariate methods; e.g. sparse Canonical Cor-
relation Analysis (CCA) [4–8], sparse Redundancy Anal-
ysis (RDA) [9, 10], and Multi-Omics Factor Analysis
(MOFA) [11]. Detailed reviews and discussions on multi-
variate methods for omics data analysis can be found in
[3, 12–18]. Although there are various statistical methods
available to analyse omics data, recent reports argue that
the simultaneous analysis of multiple (i.e. three or more)
omics data sources is still challenging and current statisti-
cal methods are suboptimal. Among the challenges are the
lack of accounting for the hierarchical structure between
omics domains (i.e. relationship between data sources)
and the difficulty of interpretation of genomewide results
[2, 3, 19, 20].
To address those challenges, we propose a multiset

multivariate statistical method, called multiset sparse Par-
tial Least Squares path modeling (msPLS). msPLS is the
penalised extension of multi-block Partial Least Squares
path modeling (PLS-PM). Given the situation where
biomolecular variables from multiple omics domains are
measured on the same patients with shared phenotypes of
interest, msPLS models biological pathways by identifying
biomarkers (i.e. biomolecular variables that are associated
with the phenotypes of interest) in each omics domain.
The omics domains are assumed to have a hierarchical
structure between each other, and their relationship is
modelled in terms of dependencies through explanatory

and response domain pairs. The explanatory and response
omics data source pairs can be determined through the
hypothesised information transfer between data sources
as follows [21]. In an asymmetric relationship, a response
data source is dependent on a explanatory data source
if the prevalent way of information transfer is from the
explanatory to the response data source. In a symmet-
ric relationship, there is a recursive information transfer
between data sources, and both data sources are depen-
dent on each other. In PLS-PM, latent variables (LVs)
are used to model the relationships between explanatory
and response manifest variables (MVs) [22, 23]. Similarly
to PLS-PM, the LVs in msPLS are linear combinations
of the MVs, and are estimated in an iterative regression
framework [24]. The LVs are constructed so that the com-
bination of the explanatory MVs account for the most
variance either directly in the response MVs (in an asym-
metric relationship), or in the LVs of the response MVs
(in a symmetric relationship). In general, Partial Least
Squares path modeling distinguishes between these two
types of relationships between data sources (i.e. symmet-
ric or asymmetric relationships) the same way as the
two well known multivariate statistical methods Canoni-
cal Correlation Analysis [8] and Redundancy Analysis [10]
do. In the “Methods” section, we describe msPLS’s direct
correspondence with those two well known multivariate
methods. We give a detailed description of msPLS in the
“Methods” section.
To illustrate such an explanatory and response depen-

dency structure, consider that we have biomolecular vari-
ables (i.e. genomewide epigenomic, transcriptomic and
proteomic variables) measured in patients with Marfan
syndrome. The goal of this analysis is to use msPLS to
explore biological pathways associated with Marfan syn-
drome, through the simultaneous analysis of the data
sources. For this setting, we assume that the proteomic
variables are responses for both the epigenomic and tran-
scriptomic variables. Thus the proteome data source has
an asymmetric relationship with both the epigenome and
the transcriptome data sources. Additionally, there is a
symmetric relationship between the epigenome and the
transcriptome data sources, assuming a recursive infor-
mation transfer between the epigenome and transcrip-
tome. These assumptions are based on the special biolog-
ical sequential information transfers of the central dogma
of molecular biology and its elaborated versions [25, 26].
Given the above relationship between omics domains,
msPLS identifies the combination of epigenomic and tran-
scriptomic biomarkers that explain the most variance in
the proteomic variables, while the combination of the
epigenomic and transcriptomic biomarkers have maxi-
mum possible correlation with each other. This example
is elaborated in more detail in the “Results” section of this
paper.
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To provide interpretable results from analyses of hun-
dreds of thousands of MVs is addressed through sparse
variable selection. msPLS enforces sparse variable selec-
tion through penalization methods, such as through
the Least Absolute Shrinkage and Selection Operator
(LASSO), Ridge, and Elastic Net (ENet) penalization
methods [27]. These penalization methods are introduced
to PLS-PM by regularising the multivariate regression
steps in the iterative regression framework. Introducing
regularisation allowsmsPLS to deal with the characteristic
high dimensionality of omics datasets, where the number
of variables are much higher than the number of samples.
In addition, regularisation improves the interpretability of
the final model in the form of sparse variable selection.
Once the final model is obtained, the identified biomark-
ers can be interpreted in terms of biological pathways
that are associated with the interest of phenotypes. In the
“Methods” section, we quantify msPLS’s ability to iden-
tify a handful of associated variables from multiple data
sources among thousands of irrelevant variables.
The rest of the paper is structured as follows. In the next

section, the results of the real data analyses are described,
where msPLS was applied to geneomewide biomolecular
variables measured in Marfan patients in order to explain
the variance in the phenotypic proteomic variables with
the combination of biomarkers from the epigenome and
transcriptome,while accounting for a hypothesised relation-
ship in omics domains. Additionally, msPLS was applied
to a second omics dataset containing data from patients
with Chronic lymphocytic leukaemia, and its results were
compared to the results of MOFA. We discuss these find-
ings in the “Discussion” section. In the “Methods” section,
we describe msPLS and its implementation in an itera-
tive regression framework, along with a working example
of the analysis of three related data sources. In addition,
we describe how msPLS, and PLS in general, relate to
two well known multivariate methods, CCA and RDA.
Finally, we show the results from a simulation study that
was performed to assess the ability of msPLS to deal with
high dimensional data and its ability to extract explana-
tory MVs that explain the most variance in the response
MVs and LVs.

Results
We applied msPLS to genomewide epigenomic, transcrip-
tomic and proteomic data sources measured in Marfan
patients [28]. In addition, we applied msPLS to genomic,
epigenomic, transcriptomic, and drug response data
sources measured in Chronic Lymphocytic Leukaemia
(CLL) patients [29].

Marfan data
Thegoal of this analysis was to explore biological pathways
associated with Marfan disease based on epigenomic,

transcriptomic and proteomic data measured in 37 Mar-
fan patients [30]. The 364,134 epigenomic methylation
variables were obtained by Illumina Infinium Human-
Methylation450 BeadChip from blood leukocytes, the
18,424 transcriptomic gene expression variables were
obtained by Affymetrix Human Exon 1.0ST Arrays from
skin biopsy, and the 47 proteomic cytokine variables were
measured in blood plasma.
The model was constructed by extracting the combi-

nation of LVs from the epigenome and transcriptome
that explain the most variance in the phenotypic pro-
teome MVs (Fig. 1). We hypothesised a symmetric rela-
tionship between the epigenome and transcriptome and
asymmetric relationships from the proteome to both the
epigenome and the transcriptome, so that the proteomic
variables were set as response MVs for both the epige-
nomic and transcriptomic MVs. We used Univariate Soft
Thresholding (UST) penalisation with 10-fold cross val-
idation (see “Methods” section) to find the penalisation
parameter that optimised the sum of squared correla-
tions between the combination of LVs from the epigenome
and transcriptome with respect to the proteome variables
(see Eq. (5) in Methods). The final model extracted 40
methylation markers and 52 gene expression markers that
optimised the sum of squared correlation of the explana-
tory LVs of the epigenome and transcriptome with the
MVs from the proteome (Fig. 2). The sum of squared cor-
relations was 9.32. Through bootstrapping, we obtained a
95% confidence interval of [9.03, 9.56] and a p-value<0.01
after permutation (see “Methods” section). The best fit-
ting model resulted in a set of LVs that captured 49% of
variance in both the epigenome and transcriptome vari-
ables and 65% of variance in the proteome variables. The
extracted biomarkers with their corresponding individual
contribution towards the overall explained variance in the
proteomic variables (i.e. illustrated by themethylation and
gene expression weights) and the proteomic variables with
their corresponding individual correlation strength with
the combination of the explanatory LVs (i.e. illustrated by
the cytokine weights) are listed in Table 1.
Subsequent set of LVs can be extracted by applying

msPLS to the residual data of the epigenome and tran-
scriptome data sources and to the original proteome data
source (see “Methods” section). Doing so, we obtained a
second set of LVs that explain a different portion of vari-
ance in the MVs than the first set of LVs (Fig. 3). After
optimizing the model on the residual data, we obtained
the second set of LVs that captured 67% of the remain-
ing variance in both the epigenome and transcriptome
variables and 91% of the remaining variance in the pro-
teome variables. Thus the first two sets of LVs captured
a total of 83% variance in the epigenome and transcrip-
tome variables and a total of 97% variance in the proteome
variables. The list of the second set of epigenomic and
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Fig. 1msPLS identified a combination of 40 epigenomic markers (denoted as ξ1) and 52 transcriptomic markers (denoted as ξ2) that explain the
most variance in the proteome variables. The color scale represents the strength ofw regression weights

transcriptomic biomarkers and the proteomic variables
with their corresponding weights can be found in Table 2.
A gene set enrichment analysis (available at https://

reactome.org) was used to test the association of the
resulting gene expression markers (see Table 1) with
already known biological pathways. The gene set enrich-
ment analysis identified 208 pathways (see Additional
file 2). We ordered the pathways on their respective p-
values from an over-representation analysis (see https://
reactome.org). For the sake of interpretability, we assessed
the pathways with p-values only lower than 5×10−2. From
the 208 pathways, 58 (28%) had a p-value < 5 × 10−2

(see Table 3). From these pathways, 44 (76%) can be asso-
ciated with Marfan disease. From the 58 pathways there
are 14 (24%) not known to be associated with Marfan dis-
ease, and from these 14 there are 12 pathways that can be
associated with the Influenza Virus. This might suggest
that Influenza as co-morbidity was present in the patients
during data gathering.

Among the pathways that were identified, already known
pathophysiological pathways associated with Marfan dis-
ease [31] were found, such as the “Extracellular matrix
organization” (p-value 4.8 × 10−3), the “Crosslinking of
collagen fibrils” (p-value 1.2×10−3), the “TGF-beta recep-
tor signaling in EMT (epithelial to mesenchymal transi-
tion)” (p-value 3.92 × 10−2), and the “Loss of Function of
TGFBR2” (p-value 8.39 × 10−3) pathway. The identified
pathways can be further appraised in the context of known
interactions of genes and genetic phenotypes. We queried
the curated database of Online Mendelian Inheritance in
Man (OMIM, available at https://www.omim.org). The
OMIM query yielded 372 results (the full list can be found
in Additional file 3). Among others, OMIM identified the
TGF-beta, Collagen IV, Interleukin-6 loci. The identified
pathways from these analysis suggest that some patients
suffered from Marfan syndrome type 2, which is based
on mutations in the TGFBR2 gene (associated pathway
“Loss of Function of TGFBR2”). The mutation in the FBN1

https://reactome.org
https://reactome.org
https://reactome.org
https://reactome.org
https://www.omim.org
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Fig. 2msPLS identified 40 methylation markers and 52 gene expression markers that optimised the sum of squared correlation of the explanatory
LVs of the epigenome and transcriptome with the MVs from the proteome

associated with the classic type of Marfan syndrome.
AlthoughMFS2 is phenotypically not separable from clas-
sic Marfan syndrome, both disease types include thoracic
aortic aneurysm, and more generally aortic risk as the
main common feature of the disease [31, 43]. This aortic
risk is reportedly caused by the loss of function of extracel-
lular matrix proteins (associated pathway “Extracellular
matrix organization”), such as collagens and elastin of the
vascular wall (associated pathway “Crosslinking of collagen
fibrils”), that leads to the loss of solidity and elasticity of
the blood vessels, including the aorta, ultimately causing
thoracic aortic aneurysm. In addition, it has been reported
that the activity of transforming growth factor beta (TGF-
beta, associated pathway “TGF-beta receptor signaling in
EMT”), is increased in aneurysmal vascular walls [31, 44–
46]. Finally, we examined the physical interaction and co-
expression patterns of the list of all genes identified by
the first set of LVs (see Table 1) with the online tool Gen-
eMania (available at https://genemania.org). We queried
the list of genes based on their biological functions. The
analysis resulted in a rich interaction and co-expression
pattern (see Fig. 4) with 403 reference studies describ-
ing these relationships. The full results of the GeneMania
query is available in Additional file 4.

Chronic lymphocytic leukaemia data
We used msPLS for the simultaneous analysis of 69 geno-
mic, 4248 epigenomic, 5000 transcriptomic and 310 drug
response variables measured in 200 chronic lymphocytic
leukaemia (CLL) patients. This data is publicly available

through the Multi-Omics Factor Analysis (MOFA) R
package [11]. We used MOFA to impute the missing
variables as described in [11]. A detailed description of
this dataset can be found in [29]. The goal of this anal-
ysis was to compare msPLS performance in terms of
explained variance to the performance of MOFA, a state-
of-art unsupervised statistical method for the integrative
analysis of multiple omics data sources.
To construct the hierarchical structure between the data

sources for the msPLS analysis, we hypothesised the fol-
lowing relationship structure between the data source
pairs. We assumed symmetric relationships between the
genomic, epigenomic and transcriptomic MVs, and the
drug response variables were set as response to both the
epigenomic and transcriptomicMVs.We usedUST penal-
isation and we compared our results to the results of
MOFA. MOFA’s model selected 5 non-zero biomolecu-
lar variables in each LVs. To compare the results to the
msPLS, we enforced the model to extract 5 genomic, 30
epigenomic and 30 transcriptomic MVs from the omics
sources. Also, we extracted multiple set of LVs per data
source, and compared the total captured variation of
msPLS’s LVs to MOFA’s LVs. The final model of msPLS
resulted in 3 set of LVs that together explained 92% of
variance in the genomic variables, 97% of variance in
the epigenomic variables, 98% of variance in the tran-
scriptomic variables and 85% of variance in the drug
response variables. In comparison, MOFA’s first 10 LVs
(i.e. referred to as factors in the MOFA model) together
explained 23% of variance in the genomic variables, 24%

https://genemania.org
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Table 1 The weights of the epigenomic, transcriptomic and proteomic variables extracted by msPLS from the Marfan data

Methylation markers Gene expression markers Cytokine markers

Site w Gene code w Marker code w

cg02394578 0.93 AKAP4 0.65 b NGF 46 0.43

cg20332866 0.96 ANXA2P3 0.63 CTACK 72 0.34

cg00906428 0.91 ASMT_A 0.83 GRO a 61 0.31

cg05024291 0.93 ATHL1 0.73 HGF 62 0.21

cg05093318 0.95 B9D2 0.66 Hu Eotaxin 43 -0.34

cg18850112 0.97 C15orf52 0.76 Hu FGF basic 44 0.46

cg07475117 0.95 C17orf54 0.44 Hu G CSF 57 0.61

cg07588614 0.94 C1orf170 0.8 Hu GM CSF 34 0.43

cg10372701 0.94 C9orf98 0.4 Hu IFN g 21 0.28

cg01718788 -0.9 CALHM1 0.84 Hu IL 10. 56 0.82

cg17061156 0.87 CHTF18 0.81 Hu IL 12 p70. 75 0.51

cg24000259 0.95 CLEC4C 0.39 Hu IL 13 51 0.44

cg25914270 0.92 COL4A6 0.69 Hu IL 15 73 0.19

cg14203970 0.91 CXorf50B 0.84 Hu IL 17 76 0.65

cg22859054 0.94 CYP1A2 0.64 Hu IL 1b 39 0.48

cg02927485 0.96 DKFZp779 0.85 Hu IL 1ra 25 0.58

cg22389215 0.88 FKRP 0.85 Hu IL 2 38 0.49

cg09570676 0.96 FUZ 0.71 Hu IL 4 52 0.26

cg14751679 0.93 GTF2IRD1 0.29 Hu IL 5 33 0.29

cg24477102 0.94 HIGD1B 0.53 Hu IL 6 19 0.04

cg24882220 0.93 ICAM5 0.85 Hu IL 7 74 0.44

cg25626012 0.95 JPH3 0.88 Hu IL 8 54 -0.26

cg26502549 0.94 LBP 0.53 Hu IL 9 77 0.42

cg00015699 0.93 LOC64322 -0.44 Hu IP 10. 48 0.72

cg01281611 0.93 LRRC50 0.66 Hu MCP 1 -0.04

cg07685390 0.95 MGC4294 0.73 Hu MIP 1a 55 0.23

cg26550872 0.97 MT1DP 0.43 Hu MIP 1b 18 0.47

cg09236780 0.92 MT1L 0.51 Hu PDGF bb 47 -0.29

cg20618527 0.92 NDUFAF2 -0.47 Hu RANTES 37 0.52

cg01546046 0.89 OR11A1 -0.53 Hu VEGF 45 0.59

cg20999565 0.96 PEX11G 0.77 IFN a2 20 0.15

cg11152012 0.87 PIF1 0.88 Il 12 p40 28 0.52

cg22958262 0.96 PIN4 0.65 Il 16 27 0.38

cg26820811 0.9 POTEF -0.72 Il 18 42 0.64

cg06731730 0.95 PRIC285 0.83 Il 1a 63 0.14

cg08531998 0.94 PSPN 0.63 Il 2Ra 13 0.56

cg19696891 0.92 PTGR1 -0.65 Il 3 64 0.24

cg27495444 0.93 REC8 0.72 LIF 29 0.57

cg17840843 0.93 RINL 0.85 M CSF 67 0.4

cg05062854 0.95 ROM1 0.69 MCP 3 26 0.42

SLC16A3 0.78 MIF 35 0.27

SLPI -0.63 MIG 14 0.63

SNORA39 0.81 SCF 65 0.23

SPATA2L 0.57 SCGF b 78 0.42

TMEM179 0.79 SDF 1a 22 0.24

TNFRSF6B 0.79 TNF b 30 0.26

TRBV12_3 0.46 TRAIL 66 -0.2

UBQLNL 0.65

UNQ6494 0.55

ZNF215 -0.76

ZNF574 0.74

ZNF688 0.65
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Fig. 3 The resulting model from Section 3.2 extended to two LVs per dataset. The first set of LVs ξ1(1) and ξ2(1) partition out a different portion of
variance in the proteome MVs than the second set of LVs ξ1(2) and ξ2(2) . The colour scale represents the strength ofw regression weights

of variance in the epigenomic variables, 38% of vari-
ance in the transcriptomic variables and 40% of vari-
ance in the drug response variables (Table 4). We com-
pared the correlations of Table 5 the selected MVs
with their corresponding LVs (i.e. these correlations are
referred to as loadings in the MOFAmodel) frommsPLS’s
and MOFA’s models. The biomarkers extracted with
msPLS are listed with their corresponding loadings in
Table 6.
We also compared the results of MOFA and msPLS

in terms of clinical assessment of the outputs of both
models (the full clinical assessment of MOFA’s results
can be found in [11]). For this, we used the gene set
enrichment analysis in MOFA’s environment. This query
resulted in total more than 10,000 pathways, from which
241 pathways with p-values < 0.05 were identified with
the gene sets obtained on the CLL data with MOFA,
and 298 pathways with p-values < 0.05 were identified
with the gene sets obtained on the CLL data with msPLS.

The first 1000 pathways (ordered by their corresponding
p-values) for the gene sets from MOFA and msPLS can
be found in Additional file 5 and 6. Out of these 1000
pathways, 811 (81%) were identified by both methods,
and there are 158 (66% and 53%) overlapping pathways
with p-values < 0.05 (see Additional file 7). Similarly to
MOFA, msPLS extracted biomarkers from the genomic
variables that can be associated with the pathphysio-
logical pathways of CLL. After querying the gene sets
from msPLS, the gene set enrichment analysis identi-
fied associations with biological pathways such as the
“Transcriptional regulation of white adipocyte differenti-
ation” (p-value 3.72 × 10−4), the “Glycerophospholipid
biosynthesis” (p-value 5.92 × 10−5), and the “TP53 Reg-
ulates Metabolic Genes” (p-value 4.39 × 10−4) pathway
in the first LV. In the second LV, the pathways “Ker-
atan sulfate/keratin metabolism” (p-value 5.16 × 10−5),
“Post NMDA receptor activation events” (p-value 1.15 ×
10−4), and “Activation of NMDA receptor upon glutamate
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Table 2 The second set of weights of the epigenomic, transcriptomic and proteomic variables extracted bymsPLS from theMarfan data

Methylation markers Gene expression markers Cytokine markers

Site w Gene code w Marker code w

cg23054189 0.93 AGTR2 -0.59 b NGF 46 0.57

cg18347642 0.93 C2orf43 0.87 CTACK 72 0.52

cg16489610 0.85 CCDC112 0.87 GRO a 61 0.16

cg27013696 0.91 DKFZP434 -0.58 HGF 62 -0.08

cg20457796 0.93 GMCL1 0.88 Hu Eotaxin 43 0.12

cg03181582 0.91 LPO -0.77 Hu FGF basic 44 0.23

cg10521851 0.9 MAD2L1 0.74 Hu G.CSF 57 -0.57

cg19968840 0.92 MGC4473 -0.81 Hu GM CSF 34 -0.03

cg27648075 0.92 NFAM1 -0.7 Hu IFN g 21 -0.03

cg22891500 0.92 NMI 0.8 Hu Il 10 56 0.17

cg05158197 0.92 PF4 -0.83 Hu IL 12 p70 75 0.43

cg20119106 0.93 PRDM14 -0.71 Hu IL 13 51 0.26

cg02675353 0.91 PSMA8 -0.63 Hu IL 15 73 0.67

cg26991025 0.93 RDM1 0.47 Hu IL 17 76 -0.14

cg20643012 0.92 RNF8 0.69 Hu IL 1b 39 -0.03

TTC30A 0.8 Hu IL 1ra 25 -0.03

TTC30B 0.68 Hu IL 2 38 0.36

TTC4 0.81 Hu IL 4 52 0.67

UNQ6126 -0.79 Hu IL 5 33 0.23

ZNF677 0.86 Hu IL 6 19 -0.04

Hu IL 7 74 0.44

Hu IL 8 54 -0.69

Hu IL 9 77 0.13

Hu IP 10 48 0.73

Hu MCP 1 MCAF 53 -0.09

Hu MIP 1a 55 -0.24

Hu MIP 1b 18. 0.26

Hu PDGF bb 47 0.3

Hu RANTES 37 0.84

Hu VEGF 45 0.69

IFN a2 20 -0.29

Il 12 p40 28 0.59

Il 16 27 0.35

Il 18 42 0.4

Il 1a 63 0.04

Il 2Ra 13 0.57

Il 3 64 0.18

LIF 29 -0.04

M CSF 67 0.24

MCP 3 26 0.19

MIF 35 -0.48

MIG 14 0.24

SCF 65 -0.11

SCGF b 78 0.65

SDF 1a 22 0.39

TNF b 30 -0.19

TRAIL 66 0.38
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Table 3 Over representation analysis results of the msPLS analysis on Marfan data

Pathway name p-value Associated with Marfan disease through pathway

Influenza Virus Induced Apoptosis 3.41 ×10−5 Not known*

Non-integrin membrane-ECM interactions 2.92 ×10−4 Collagene formation [31]

Anchoring fibril formation 4.73 ×10−4 Collagene formation [31]

ECM proteoglycans 6.19 ×10−4 Extracellular matrix organization [31]

Integrin cell surface interactions 7.90 ×10−4 Extracellular matrix organization [31]

Transcriptional activation of mitochondrial biogenesis 8.17 ×10−4 Possibly through reduced mitochondrial respiration [32]

Crosslinking of collagen fibrils 1.20 ×10−3 Collagene formation [31]

Laminin interactions 1.98 ×10−3 Extracellular matrix organization [31]

Mitochondrial biogenesis 2.40 ×10−3 Possibly through reduced mitochondrial respiration [32]

NCAM1 interactions 3.92 ×10−3 NCAM signaling for neurite out-growth [33]

Collagen chain trimerization 3.92 ×10−3 Collagene biosynthesis and modifying enzymes [31]

TGFBR2 MSI Frameshift Mutants in Cancer 4.20 ×10−3 Signaling by TGF-beta receptor complex [31]

Extracellular matrix organization 4.82 ×10−3 Extracellular matrix organization [31]

Host Interactions with Influenza Factors 5.02 ×10−3 Not known*

Organelle biogenesis and maintenance 5.14 ×10−3 Possibly through reduced mitochondrial respiration [32]

Transfer of LPS from LBP carrier to CD14 6.30 ×10−3 Possibly through toll-like receptor-4 signaling [34]

Transport of HA trimer, NA tetramer and M2 tetramer from the
endoplasmic reticulum to the Golgi Apparatus

6.30 ×10−3 Not known*

Loss of Function of TGFBR2 in Cancer 8.39 ×10−3 Signaling by TGF-beta receptor complex [31]

TGFBR1 LBD Mutants in Cancer 8.39 ×10−3 Signaling by TGF-beta receptor complex [31]

TGFBR2 Kinase Domain Mutants in Cancer 8.39 ×10−3 Signaling by TGF-beta receptor complex [31]

Assembly of collagen fibrils and other multimeric structures 8.81 ×10−3 Collagene formation [31]

Collagen degradation 9.32 ×10−3 Degradation of the extracellular matrix [31]

NCAM signaling for neurite out-growth 9.58 ×10−3 NCAM signaling for neurite out-growth [33]

Interleukin-4 and Interleukin-13 signaling 9.78 ×10−3 Vascular inflammation through interleukins [35, 36]

Collagen biosynthesis and modifying enzymes 1.12 ×10−2 Collagene formation [31]

TGFBR1 KD Mutants in Cancer 1.26 ×10−2 Signaling by TGF-beta receptor complex [31]

Loss of Function of TGFBR1 in Cancer 1.46 ×10−2 Signaling by TGF-beta receptor complex [31]

SMAD2/3 Phosphorylation Motif Mutants in Cancer 1.46 ×10−2 Signaling by TGF-beta receptor complex [31]

Assembly of Viral Components at the Budding Site 1.46 ×10−2 Not known*

Loss of Function of SMAD2/3 in Cancer 1.67 ×10−2 Signaling by TGF-beta receptor complex [31]

RUNX3 regulates CDKN1A transcription 1.67 ×10−2 Signaling by TGF-beta receptor complex [37]

Signaling by TGF-beta Receptor Complex in Cancer 1.88 ×10−2 Signaling by TGF-beta receptor complex [31]

Collagen formation 2.02 ×10−2 Extracellular matrix organization [31]

Transcriptional regulation of white adipocyte differentiation 2.17 ×10−2 Possibly by depleted or abnormal adipose tissue [38]

Aromatic amines can be N-hydroxylated

or N-dealkylated by CYP1A2 2.29 ×10−2 Not known

Formation of annular gap junctions 2.29 ×10−2 Endothelial dysfunction [39]

Gap junction degradation 2.50 ×10−2 Endothelial dysfunction [39]

Proton-coupled monocarboxylate transport 2.50 ×10−2 Not known

RUNX3 regulates p14-ARF 3.31 ×10−2 Signaling by TGF-beta receptor complex [37]

Fusion of the Influenza Virion to the Host Cell Endosome 3.52 ×10−2 Not known*

Packaging of Eight RNA Segments 3.52 ×10−2 Not known*

Fusion and Uncoating of the Influenza Virion 3.72 ×10−2 Not known*

Uncoating of the Influenza Virion 3.72 ×10−2 Not known*
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Table 3 Over representation analysis results of the msPLS analysis on Marfan data (Continued)

Pathway name p-value Associated with Marfan disease through pathway

Budding 3.72 ×10−2 Not known*

Release 3.72 ×10−2 Not known*

Biosynthesis of protectins 3.72 ×10−2 Possibly by proresolving lipid mediators [40]

Degradation of the extracellular matrix 3.87 ×10−2 Extracellular matrix organization [31]

RHO GTPases Activate Formins 3.92 ×10−2 Extracellular matrix organization [41]

TGF-beta receptor signaling in EMT (epithelial to mesenchymal
transition)

3.92 ×10−2 Signaling by TGF-beta receptor complex [31]

Cell-extracellular matrix interactions 3.92 ×10−2 Extracellular matrix organization [31]

Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE) 4.13 ×10−2 Arachidonic acid metabolism [42]

Entry of Influenza Virion into Host Cell via Endocytosis 4.13 ×10−2 Not known*

Virus Assembly and Release 4.13 ×10−2 Not known*

Biosynthesis of maresin-like SPMs 4.33 ×10−2 Possibly by proresolving lipid mediators [40]

Biosynthesis of specialized proresolving mediators (SPMs) 4.41 ×10−2 Possibly by proresolving lipid mediators [40]

Cytokine Signaling in Immune system 4.49 ×10−2 Cytokine signaling [31]

Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids
(DHET)

4.73 ×10−2 Arachidonic acid metabolism [42]

Arachidonic acid metabolism 4.76 ×10−2 Arachidonic acid metabolism [42]

The pathway names and p-values are obtained from https://reactome.org. Not known associations marked with asterisk (*) are all biomolecular pathways associated with
reactions to Influenza virus

binding and postsynaptic events” (p-value 2.03×10−4) are
among the identified ones. Finally, some of the pathways
identified in the thirds LV are “Downstream TCR signal-
ing” (p-value 7.27 × 10−71), “Translocation of ZAP-70 to
Immunological synapse” (p-value 1.52× 10−59), “TCR sig-
naling” (p-value 3.14 × 10−41), and “Immunoregulatory
interactions between a Lymphoid and a non-Lymphoid
cell” (p-value 8.68×10−14). The two most important clin-
ical markers for CLL, namely the immunoglobulin heavy
chain gene (IGHV) and the trisomy of chromosome 12
(trisomy12) were extracted as the first and second LV,
respectively (Table 6) [11]. Thus similarly to MOFA, the
first two set of LVs from msPLS are aligned among IGHV
and trisomy12 (the absolute loading of IGHV is 0.66 in the
first LV and the absolute loading of trisomy12 is 0.65 in the
second LV), and these can be seen as axis of disease het-
erogeneity. The samples can be clearly clustered based on
their IGHV and trisomy 12 status (Fig. 5). Also, there were
140 pathways with p-values < 0.05 discovered by the gene
sets from msPLS that are not overlapping with the path-
ways discovered by the gene sets from MOFA. Notable
pathways that might signal new knowledge discovery are
“Regulation of TP53 Activity through Phosphorylation”
(p-value 1.93 × 10−4), “TP53 Regulates Transcription of
Cell Death Genes” (p-value 8.1 × 10−4) [47], “HDACs
deacetylate histones” (p-value 8.73×10−25) [48], “HS-GAG
degradation” (p-value 1.22 × 10−4), “HS-GAG biosynthe-
sis” (p-value 7.6 × 10−4), and “Heparan sulfate/heparin
(HS-GAG) metabolism” (p-value 5.66 × 10−3) [49].

Discussion
In this paper, we propose a penalised extension of mul-
tiset Partial Least Squares path modeling in response to
recent reports pointing out the lack of appropriate statisti-
cal methods for the simultaneous analysis of multiple high
dimensional omics data sources.
msPLS addresses two challenges of integrated high

dimensional omics data analysis; namely, it accounts for
the relationships between multiple data sources and it
provides interpretable results from analyses of hundreds
of thousands of biomolecular variables.
Firstly, msPLS accounts for the hierarchical relation-

ship between multiple high dimensional data sources in
terms of a explanatory-response dependency structure. It
can model dependencies between data sources, such as a
hypothesised sequential information transfer in biomolec-
ular domains, through explanatory-response data source
pairs. This relationship structure can be easily redefined
prior to the analysis, based on most recent biological
knowledge. When the relationship is set according to bio-
logical knowledge, the biologically relevant biomarkers
are identified instead of the variables that explain the
most variance in the (combination of) phenotypic vari-
ables. Secondly, msPLS provides interpretable results in
the form of combinations of biomarkers that have the
highest explanatory power for the variance in the pheno-
typic variables. The biomarkers are extracted along with
their weights that indicate their strength of contribution
to the overall explained variance. These biomarkers can

https://reactome.org
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Fig. 4 The co-expression pattern of the resulting Marfan genes queried on their biological process based functions. The figure was produced with
GeneMania (available at https://genemania.org)

be further appraised in the context of known biological
pathways, for example via gene set enrichment analysis.
Through simulation studies and analyses of omics

datasets, we show that msPLS is able to find the combi-
nation of biomarkers with the highest explanatory power
for the variance in the phenotypic variables, and it can

capture a higher proportions of variance in data sources
than MOFA, a state-of-art LV based method for mul-
tiset omics data analysis. True positive rates of msPLS
are reported from the simulation studies (see “Methods”
section) to quantify the ability of finding the combina-
tion of explanatory variables from the data sources that
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Table 4 The percentage variation in the chronic lymphocytic leukemia (CLL) data sources explained by the subsequent LVs of msPLS
and MOFA

Genomic variables Epigenomic variables Transcriptomic variables Drug response variables

msPLS MOFA msPLS MOFA msPLS MOFA msPLS MOFA

LV 1 72% 15% 92% 17% 92% 7.5% 57% 15%

LV 2 18% 8.2% 4% 0.5% 5% 4.7% 21% 3.5%

LV 3 2% <0.1% 1% <0.1% 1% 1.4% 7% 11.2%

LV 4 <0.1% <0.1% 9% <0.1%

LV 5 <0.1% <0.1% 2.8% 6.1%

LV 6 <0.1% <0.1% 4.8% 3.4%

LV 7 0.9% 2.4% 1.9% 1%

LV 8 <0.1% 0.5% 3.8% 0.5%

LV 9 <0.1% 2.6% 0.9% 0.4%

LV 10 <0.1% <0.1% 2.2% <0.1%

Total 92% 24% 97% 24% 98% 38% 85% 41%

Table 5 The weights of the genomic, epigenomic, and transcriptomic variables extracted by msPLS from CLL data sources

Genomic variables Epigenomic variables Transcriptomic variables

Name w Site w Gene code w

del11q22.3 0.31 cg06369076 0.036 ADAM29 0.046

del17p13 0.16 cg22449085 0.036 AGPAT4 0.043

BRAF 0.17 cg12208353 0.036 ANK2 0.047

TP53 0.21 cg04694619 0.037 CRY1 0.049

IGHV -0.66 cg20782816 0.038 DNAH3 0.046

cg00832703 0.037 ENO4 -0.041

cg01399475 -0.036 ESPNL 0.043

cg21398469 0.037 GFI1 0.045

cg11181763 0.036 GLDN 0.044

cg01360627 0.036 ITPRIPL2 0.040

cg09087901 0.036 KANK2 0.047

cg04848693 0.037 L3MBTL4 0.049

cg12522599 0.038 LDOC1 0.041

cg11090458 0.037 LPL 0.041

cg00148025 0.038 MAPK4 -0.040

cg12032915 0.036 MRO 0.043

cg07629149 0.039 MSI2 0.046

cg23844018 0.037 NDUFA4L2 0.042

cg05213414 0.037 NUGGC 0.041

cg01928411 0.037 PLD1 0.043

cg07699978 0.036 PON1 0.042

cg03035162 0.036 PRR18 -0.044

cg03462096 0.039 SEPT10 -0.040

cg08171667 0.036 SOWAHC 0.041

cg26441291 0.038 TP63 0.043

cg21400896 0.037 USP6NL -0.040

cg15236196 0.036 VSIG10 0.042

cg21394039 0.038 ZNF135 -0.040

cg04613057 0.036 ZNF471 -0.042

cg08496123 0.036 ZNF667 0.041
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Table 6 The loadings of the three subsequent LVs extracted by msPLS from the genomic variables of the CLL data set

1st set of LVs 2nd set of LVs 3rd set of LVs

Name loading Name loading Name loading

del11q22.3 0.31 del11q22.3 -0.27 NRAS 0.35

del17p13 0.16 trisomy12 0.65 COL6A5 -0.34

BRAF 0.17 del13q14_any -0.37 FAM47A -0.35

TP53 0.21 del14q24.3 0.20 FAT4 -0.39

IGHV -0.66 CREBBP 0.15 PRPF8 -0.52

explain the most variance in response variables. True pos-
itive rates range from 0.61 to 0.99, indicating that the
precision of finding truly associated variables improves
with increasing sample size. Similarly, true negative rates
are reported to quantify msPLS’s ability to exclude irrel-
evant variables from the final model. True negative rates
are above 0.99 for each simulation studies, indicating that
the final model excludes irrelevant variables with high
precision, regardless of sample size.
The analysis of a genomewide omics dataset of 364,134

epigenomic, 18,424 transcriptomic and 47 proteomic

variables resulted in biological relevant pathways. msPLS
identified a combination of 40 epigenomic biomarkers
and 52 transcriptomic biomarkers that has the highest
explanatory power for the variance in the phenotypic pro-
teome variables. Despite the low sample size of 37, msPLS
identified biomarkers that can be found in known biologi-
cal pathways associated with the pathophysiology of Mar-
fan disease. Similarly to other LV basedmultivariatemeth-
ods, it is possible to extract subsequent LVs with msPLS
in a way that they explain a different portion of variance
in the data sources. These subsequent LVs are orthogonal

Fig. 5 The samples of the CLL data clustered around on their IGHV and trisomy 12 status, extracted by the first and second LV of the msPLS model.
The figure was produced by the MOFA R package [11]
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to each other, thus the newly obtained biomarkers can be
interpreted as biological pathways independent from the
ones that were discovered in the previous set of LVs. Com-
paring the results of msPLS and MOFA on the analyses of
the CLL dataset, we found that the three set of LVs from
the msPLS model captured 92%, 97%, 98% and 85% of
the variation in the genomic, epigenomic, transcriptomic
and drug response data sources, respectively, while the
first ten LVs of MOFA captured a total of 24%, 24%, 38%
and 41% of variation in those same data sources, respec-
tively. msPLS, similarly to MOFA, identified the two most
important clinical markers for CLL in its first two LVs, and
in the “Results” section we additionally reportmany highly
associated and possible novel pathways found through
gene enrichment analysis using the MOFA R package.
Note that the present framework of msPLS assumes lin-

ear relationships between data sources and that the omics
data is measured on a single homogeneous population.
As an interesting future direction to extend msPLS is to
incorporate non-linear relations in the model or to extend
the model such that it can identify different subgroups in
the samples.

Conclusions
In summary, msPLS is an appropriate multiset multivariate
method that can account for the relationships between high
dimensional data sources while it provides interpretable
results through its sparse solutions. In the “Methods”
section we also describe the algorithm for msPLS and we
provide an implementation of the algorithm in the open
source R software, which is uploaded with the manuscript
and available upon request from the authors. We provide
open source code that facilitates the use of our msPLS
method on new data with the aim to leverage more
and more biomolecular data to model and better under-
stand the genetic architectures and biological processes
of complex phenotypes, and ultimately to transition the
information synthesised from omics data analyses into
medical knowledge to improve diagnosis, prognosis and
therapy.

Methods
Multiset sparse partial least squares path modeling
Multiset sparse Partial Least Squares path model-
ing (msPLS) is a multivariate approach for model-
ing the relationship between Q related data sources
(X1, ...,Xq, ...,XQ), with the help of latent variables (LVs).
Each data source contains pq number of manifest variables
(MVs), measured on the same n samples (i.e.Xq ∈ R

n×pq ),
each data source is assigned to its corresponding LV
(ζ 1, ..., ζ q, ..., ζQ). The LVs are linear combinations of their
MVs (ζ q = Xqwq, where ζ q ∈ R

n×1 and wq ∈ R
pq×1).

The relationship between the data sources is encoded in
a connectivity matrix, like in Partial Least Squares path

modeling (PLS-PM), and modelled through a multiple
regression model between the LVs;

ζ q =
Mq∑

m=1
θqmζm→q + vq, (1)

where
∑Mq

m=1 ζm→q denotes the sum of Mq LVs that are
explanatory for ζ q, θqm is the coefficient capturing the
effect of themth ζm→q on ζ q, and vq is white noise, follow-
ing the notation of [22, 24] for PLS-PM. A full description
for the PLS-PM algorithm can be found in [24] (Algorithm
6). The weight vectors wq are estimated as

wq =
[
X′
qXq

]−1
X′
qζ q, (2)

or as

wq = (1/n)X′
qζ q, (3)

depending on the mode of the regression. PLS-PM
denotes Eq. (2) as Mode A and Eq. (3) as Mode B regres-
sion. For msPLS, Mode A (i.e. multiple univariate regres-
sion) is used for the weight vectors of MVs that do not
have any response MVs, and Mode B (i.e. multivariate
regression) is used for the weight vectors of MVs that
do have response MVs. The descriptions of the objective
functions of PLS-PM can be found in [22, 24] and the
objective function for msPLS is given by Eq. (5) in the
“General case” section.
In a high dimensional setting (i.e. pq >> n), the covari-

ance matrix of Xq in Eq. (2) is non-invertible. To solve this
problem, we propose to replace Eq. (2) with Elastic Net
(ENet) penalization. Replacing the ordinary least square
estimator in Eq. (2) with ENet penalisation has two advan-
tages; not only we overcome the multicollinearity issue
encountered in a high dimensional setting, but ENet also
enforces sparse variable selection, which ease the inter-
pretability of the final model. Equation (2) then becomes

wq = argmin
wq

w′
q

(
X′
qXq + λ2I
1 + λ2

)
wq − 2ζ̃ ′

qXqwq + λ1wq,

(4)

where λ1 denotes the LASSO penalty and λ2 denotes the
Ridge penalty parameters [27].

An example of msPLS with three data sources
Let us first examine an application of msPLS to three data
sources. Given data sourcesX1,X2, andX3 with p1, p2 and
p3 number of variables, measured on n samples (i.e. X1 ∈
R
n×p1 , X2 ∈ R

n×p2 and X3 ∈ R
n×p3 ), we consider the

following relationships between the data sources: X1 and
X2 have a symmetric relation (i.e. they are responses for
each other). Furthermore, there are asymmetric relations
between X1 and X3, and between X2 and X3, such that X3
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is response for bothX2 andX1 (Fig. 6). These relationships
are encoded in a three dimensional connectivity matrix C
(i.e. C ∈ {0, 1}3×3), where the entry cqq′ is 1 if data source
q is response for data source q′, and 0 otherwise (where
q �= q′ and cqq′ indicates the element from qth row and
q′th column of matrix C). The objective of the analysis
is then to simultaneously extract the MVs from X1 and
X2 with the highest explanatory power for the variance in
MVs of X3.
Three data sources msPLS algorithm Given data

sources X1, X2, and X3, and � = C =
⎡

⎣
0 1 0
1 0 0
1 1 0

⎤

⎦

1. Preliminary steps

(a) Center and scale X1, X2, and X3
(b) Set w(0)

1 , w(0)
2 and w(0)

3 initial weight vectors to
arbitrary vectors of [ 1, 1, ..., 1]′ with length p1,
p2 and p3, respectively

(c) Define convergence criterion CRT = 1 and a
small positive tolerance γ = 10−6

2. Iterative regression steps
While CRT ≥ γ ;

a. Estimate initial LVs
ζ 1 ∝ X1w(0)

1 ; where ∝ indicates that ζ 1 is
normalised to unit variance

ζ 2 ∝ X2w(0)
2

ζ 3 ∝ X3w(0)
3

b. Model the relationship between data sources
(i) Let vector cq be the q-th row of C that
indicates the data sources that are explanatory
for data source q, i.e.
c1 =[ 0, 1, 0] , c2 =[ 1, 0, 0] , c3 =[ 1, 1, 0];

indicating X1 has one explanatory, X2 has one
explanatory and X3 has two explanatory data
sources
If

∑3
i=1 cqi> 0, i.e. if data source q has any

explanatory data sources:

�cqq =
[
Z′
cqZcq

]−1
Z′
cqζ q,

where Z is the matrix of column bind LVs, i.e.
Z = [

ζ 1, ζ 2, ζ 3
]
, and Zcq is the matrix of

column bind explanatory LVs of data source q.
Then θcqq is calculated as follows:
For c1 we calculate
�c11 = θ21 = [

ζ ′
2ζ 2

]−1
ζ ′
2ζ 1 and the value of

θ11 and θ31 remain 0.
For c2 we calculate
�c22 = θ12 =[ ζ ′

1ζ 1]−1 ζ ′
1ζ 2, and the value of

θ22 and θ32 remain 0,
and for c3 we calculate

�c33 = θ13
θ23

′

=
[
[ ζ 1, ζ 2]′ [ ζ 1, ζ 2]

]−1[ ζ 1, ζ 2]′ ζ 3,
where the entries θ13 and θ23 are obtained
from the multiple regression step[
[ ζ 1, ζ 2]′ [ ζ 1, ζ 2]

]−1 [ ζ 1, ζ 2]′ ζ 3, and [ ζ 1, ζ 2]
is the matrix obtained by column binding ζ 1
and ζ 2. The value of θ33 remains 0.

(ii) Let vector cq′ be the q′-th column of C that
indicates the data sources that are response for
data source q′, i.e.
c1 =[ 0, 1, 1]′ , c2 =[ 1, 0, 1]′ , c3 =[ 0, 0, 0]′;
indicating X1 has two responses, X2 has two
responses and X3 has no response data sources
If

∑3
i=1 ciq′ > 0, i.e. if data source q′ has any

response data sources:

Fig. 6 The proposed relationship between three data sources. X1 and X2 have a symmetric relation (i.e. they are responses for each other) and X3

have asymmetric relation with both X1 and X2 (i.e. X3 is response for both X2 and X1)
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�cq′q′ = cor(ζ q′ , ζ cq′ ),
i.e., for c1 we calculate

�c11 = θ21
θ31

= or(ζ 1, ζ 2)
cor(ζ 1, ζ 3)

and for c2 we calculate

�c22 = θ12
θ32

= cor(ζ 2, ζ 1)
cor(ζ 2, ζ 3)

After Steps (b-i)

and (b-ii), the entries of � are;

� =
⎡

⎣
0 cor(ζ2, ζ1) θ13

cor(ζ 1, ζ 2) 0 θ23
cor(ζ 1, ζ 3) cor(ζ 2, ζ 3) 0

⎤

⎦ ,

Notice that θ21 and θ12 in Step (b-i) are
overwritten in Step (b-ii). This is because ζ 1
and ζ 2 are both responses to each other.
c. Re-estimate the the latent variables

[ ζ̃ 1, ζ̃ 2, ζ̃ 3]=[ ζ 1, ζ 2, ζ 3]�
d. Estimate the new w(1) weights

w(1)
1 = argmin

w(0)
1

w′(0)
1

(
X′
1X1+λ2I
1+λ2

)
w(0)
1 −

2ζ̃ ′
1X1w(0)

1 + λ1w(0)
1

w(1)
2 = argmin

w(0)
2

w′(0)
2

(
X′
2X2+λ2I
1+λ2

)
w(0)
2 −

2ζ̃ ′
2X2w(0)

2 + λ1w(0)
2

w(1)
3 = [

[ ζ̃ ′
3ζ̃ 3]−1 ζ̃

′
3X3

]′

e. Evaluate the convergence criteria and
discard the old w(0) weights
CRT = ∑3

q=1(w
(1)
q − w(0)

q )2

w(0)
1 = w(1)

1 , w(0)
2 = w(1)

2 and w(0)
3 = w(1)

3

3. Upon convergence, return w(0)
1 ,w(0)

2 , and w(0)
3

General case
The general case for msPLS can be described as fol-
lows. Given Q related data sources X1, ...,Xq, ...,XQ with
p1, ..., pq, ...pQ corresponding MVs, measured on n sam-
ples (i.e. X1 ∈ R

n×p1 ,..., Xq ∈ R
n×pq , ...,XQ ∈ R

n×pQ ),
and a Q dimensional connectivity matrix C (i.e. C ∈
{0, 1}Q×Q), where the entry cqq′ is 1 if data source q is a
response data source for data source q′ and 0 otherwise.
The goal of the analysis then is to optimise the following
objective function () in respect to data source q′;

OF=argmax
{∑Rq′

r=1 Cor(ζ q′→r , ζ q′ )2 if
∑Q

i=1 ciq′ > 0
∑pq′

i=1
∑Mq′

m=1 Cor(ζm→q′ , xq′(i))2 otherwise

(5)

where ζ q′ is the LV of Xq′ , cq′ indicates the q′th col-
umn of matrix C (i.e. ||cq′ || > 0 indicates that data

source q′ have at least one response data source), xq′(i)
denotes the ith column of data source Xq′ (i.e. the ith

MV of Xq′ ),
∑Rq′

r=1 ζ q′→r denotes the sum of Rq′ LVs that

are response for ζ q′ , and
∑Mq′

m=1 ζm→q′ denotes the sum
of Mq′ LVs that are explanatory for ζ q′ . In other words,
if data source q′ have at least one response data source,
then the squared correlation between ζ q′ and the com-
bination of its response LVs is maximised, and if data
source q′ does not have any response data sources, the
correlation between the MVs of Xq′ and the combination
of the explanatory LVs for Xq′ is maximised. The sym-
metric relationship between Xq and Xq′ is indicated as
cqq′ = cq′q = 1, in which case the OF of their pairwise
analysis is to maximise the correlation between their LVs
ζ q and ζ q′ , corresponding to the characteristic objective
function of Canonical Correlation Analysis (CCA) [8, 22,
50]. In an asymmetric relationship, the OF of a pairwise
analysis is to maximise the sum of squared correlation
between the explanatory LV ζ q and the response MVs in
Xq′ , corresponding to the characteristic objective function
of Redundancy Analysis (RDA) [10, 22, 51]. This direct
correspondence with CCA and RDA is described in Addi-
tional file 1 under theModes of relationships between data
sources section.
Next we describe the general algorithm for Q data

sources.
General msPLS algorithm

Given Q data sources X1, ..,Xq, ...,XQ,
and � = C ∈ {0, 1}Q×Q, where

cq,q′ =
{
1 if Xq response for Xq′

0 otherwise

1. Preliminary steps

(a) Center and scale X1, ..,Xq, ...,XQ
(b) Set w(0)

q to arbitrary weight vectors [ 1, 1, ..., 1]′

with length pq
(c) Define convergence criterion CRT = 1 and a

small positive tolerance γ = 10−6

2. Iterative regression steps
While CRT ≥ γ ;

a. Estimate initial LVs
ζ q ∝ Xqw(0)

q ; where q is the index from 1 to Q
and ∝ indicates that ζ q is normalised to unit
variance

b. Model the relationship between data sources
(i) Let vector cq be the q-th row of C that
indicates the data sources that are exploratory
for data source q
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If
∑Q

i=1 cqi> 0, i.e. if data source q has any
explanatory data sources:

�cqq =[Z′
cqZcq ]−1 Z′

cqζ q,
where Z is the matrix of column bind LVs, i.e.
Z =[ ζ 1, ζ 2, ζ 3], and Zcq is the matrix of the
column-bind explanatory LVs of data source q.

(ii) Let vector cq′ be the q′-th column of C that
indicates the data sources that are response for
data source q′
If

∑Q
i=1 ciq′ > 0, i.e. if data source q′ has any

responses:
�cq′q′ = cor(ζ q′ , ζ cq′ )

c. Re-estimate the LVs
Z̃ = Z�

d. Estimate the new w(1)
q weights

If Xq doesn’t have any response data sources:
w(1)
q = [

[ ζ̃ ′
qζ̃ q]−1 ζ̃

′
qXq

]′

otherwise:
w(1)
q = argmin

w(0)
q

w′(0)
q

(
X′
qXq+λ2I
1+λ2

)
w(0)
q −

2ζ̃ ′
qXqw(0)

q + λ1w(0)
q

e. Evaluate the convergence criteria and discard
the old w(0)

q weights and calculate OF from
Eq. (5) with respect to each data sources
CRT = ∑

(w(1)
q − w(0)

q )2

w(0)
q = w(1)

q

3. Upon convergence, return w(0)
q

After the algorithm converges, the wq weights indi-
cate the contribution of explanatory MVs from the qth
data source towards the overall explained variance in the
responseMVs or LVs (see Additional file 1 underModes of
relationships between data sources section). Through the
penalisation of the multivariate regression in Step (2-d),
a small subset of explanatory MVs are extracted, namely
those with the highest explanatory power for the vari-
ance in their response MVs or LVs. The extracted set
of MVs can be further explored in terms of known bio-
logical pathways, for example through gene enrichment
analysis.

Multiple latent variables per dataset
It is possible to extract multiple LVs per data source in a
way that they explain a different portion of variance in the
MVs. The explained variance is based on the R2 statistic
obtained from the regression model from Step (2-d) in the
general msPLS algorithm. The subsequent latent variables
can be obtained by applying msPLS to the residual data
sources, where the residuals data sources are calculated as

Xres
q(α) = Xq(α) − X̂q(α)

= Xq(α) − ζ q(α)[ ζ
′
q(α)ζ q(α)]−1 ζ

′
q(α)Xq(α).

Selecting the optimal penalisation parameters and
assessing the statistical significance of the resulting model
In order to obtain the wq weights that optimise OF
in Eq. (5), the optimal LASSO and Ridge penalisation
parameters can be selected through k-fold cross valida-
tion. Given the usual size of omics data and the multiset
approach of the analysis, searching for the optimal penali-
sation parameters is often too computationally expensive.
As a solution, we propose to use Univariate Soft Thresh-
olding (UST), by setting λ2 → ∞ in Eq. (4) [27].
To assess the statistical significance of a resulting model

in respect to the OF in Eq. (5), we use a standard per-
mutation approach. The null distribution of the opti-
misation criterion is estimated by applying msPLS to
permuted dataset, where we permute the rows of each
dataset. Permuting the samples removes the correla-
tion between data sources while the internal correlation
structure of each data source is preserved. The weights
obtained from the permutation are used to calculate
OF, and the null distribution of the optimisation crite-
rion can be approximated by repeating the permutation
a large number of times. In addition, we use bootstrap-
ping to approximate the confidence intervals for the opti-
mised OF. During bootstrapping, the observations are
sampled with replacement and the penalisation param-
eters from the original model are used for the boot-
strap samples. In contrast to permutation, with boot-
strapping the correlation between data sources is also
preserved. After repeating the bootstrapping many times,
the selected quantiles of the resulting distribution are
reported.

Assessing msPLS’s ability to identify associated variables
amongmultiple high dimensional data sources
Before we applied msPLS to omics data sources, we anal-
ysed simulated data to assess msPLS’s ability to extract
the associated MVs from multiple high dimensional data
sources that optimise the OF in Eq. (5). Then we applied
msPLS to omics data sources to see whether the result-
ing model can be interpreted in terms of known biological
pathways. Below, we describe the simulation studies, and
the real data analysis can be found in the “Results” section.

Simulation studies
We conducted simulation studies to assess msPLS’s abil-
ity to identify associated MVs (i.e. explanatory MVs that
are highly correlated with their response MVs and thus
have the highest explanatory power for the variance in
the response MVs) when those MVs are spread over
multiple data sources. We repeated the simulations 1000
times and used UST penalisation for which the optimal
penalty parameter (λ1) was selected through 10-fold cross
validation. Additionally, we assessed the statistical signif-
icance of the resulting models through permutations and
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the confidence interval of the optimisation criterion was
approximated through bootstrapping.

Data generation for simulation studies
For all simulation studies, we generated three data
sources, X1, X2 and X3, in such way that the relationship
between data sources resembles the one we describe in
“Chronic lymphocytic leukaemia data” section (Fig. 4).
All Xqs were assigned to pq number of MVs (i.e. p1 = p2

= 1000, p3 = 100) from which kq variables were associated
with their LVs and response MVs (i.e. k1 = k2 = k3 = 10),
and there were jq number of not associated MVs (i.e. j1 =
990, j2 = 990, j3 = 90). The number of samples are denoted
by n samples (i.e. Xq ∈ R

n×pq with kq associated MVs and
jq not associated MVs, pq = kq + jq), and in the first three
simulation studies n varied from 1, 100, and 250.
X1 and X2 were generated from a multivariate normal

distribution with mean 0 and covariance matrix �, and
their response MVs in X3 was generated from LVs ζ 1 and
ζ 2, as follows;

(1) � = I2000
(2) Replace �1001:1010,1:10 = �

′
1:10,1001:1010 = H,

whereH ∈ R
10×10 distributed overN (0.3, 0.05)

(3) D ∼ N (0,�) where D ∈ R
n×2000

(4) X1 = D1:n,1:1000 and X2 = D1:n,1001:2000

� is a p1 + p2 dimensional identity matrix where ele-
ments �1001:1010,1:10 = �

′
1:10,1001:1010 were replaced with

H, where H ∈ R
10×10 was distributed over N (0.3, 0.05).

D was sampled from the multivariate normal distribu-
tion with mean 0 and covariance matrix �, and D was
used to generateX1 andX2. Next, the weight vectors were
generated;

(5) wq = (wq(1),wq(2), ...,wq(k1),wq(k1+1), ...wq(p1)),
wq(1:k1) = wassociated

q , wq(kq+1:pq) = 0

The associated k MVs had higher regression weights
with their LVs (with weights wassociated

1 = 0.7, wassociated
2

= 0.6, wassociated
3 = 0.3) than the not associated jq MVs

(i.e. wq = (wq1,wq2, ...,wqkq ,wqkq+1, ...wqpq ), wq(1:kq) =
wassociated
q , wq(kq+1:pq) = 0). The LVs were generated as a

linear combination of the MVs and weights,

(6) ζ1 = X1w1 and ζ 2 = X2w2

X3 was generated with from ζ 1 and ζ 2. The k3 associ-
ated LVs were sampled from the normal distribution with
mean θ1ζ1 + θ2ζ2 (where θq is the regression coefficient
from Eq. (1), with θ1 = 0.8 and θ2 = 0.7) and standard
deviation

√
1 − (w3)2. The j3 not associated variables were

sampled from the standard normal distribution;

(7) X3 ∈ R
n×100

(8) For i = 1, ..., k3:

X3(i) distributedN (θ1ζ1 + θ2ζ2,
√
1 − (w3)2)

(9) For i = k3 + 1, ..., p3:

X3(i) distributedN (0, 1)

In addition, we designed a fourth simulation study, where
the size of the data resambled the size of the omics data
sources, described in “Results” section (i.e. p1 = 360000,
p2 = 18000, p3 = 47, k1 = k2 = 40, k3 = 10, and n = 37).

Simulation study results
We generated data as described in above with three dif-
ferent sample sizes, i.e. n = 50, n = 100, n = 250.
To assess msPLS’s ability to identify the kq associated
MVs from explanatory data sources X1 and X2, we used
the true-positive rate (TPR) and true-negative rate (TNR)
measures over 1000 simulations.
TPR measures the proportion of associated MVs

included in the final model (i.e. those that are assigned
to non-zero w weights) to either the number of associ-
ated MVs that were generated, or to the total number of
non-zero w weights, whichever is smaller (i.e. TPRq =
∑kq

i=1 I(wq(i) �= 0)/min(kq,
∑pq

i=1 I(wq(i) �= 0))). TPR
ranges from 0.61 to 0.99 and increases with increasing
sample size when the variable size held constant (Table 7).
TNR measures the proportion of not associated MVs

excluded from the model to the number of not associated
MVs that were generated (i.e. TNRq = ∑pq

i=kq+1 I(wq(i) =
0)/jq). TNR rates resulted in 0.99 and were not affected by
the sample size (Table 7).
We assessed the statistical significance of the resulting

models in respect to the optimised OFs through permu-
tation, and the confidence intervals of the optimised OFs
were constructed through bootstrapping (see the “Selec-
ting the optimal penalisation parameters and assessing the
statistical significance of the resulting model” section). All
the three models obtained on the three different sample
sizes with constant variable size were statistically signif-
icant, and the confidence interval of the optimised OFs
shrank with increased sample size (Fig. 7). For n = 50,
the optimised OF with respect to X3 resulted in 114.21
(95% CI [85.02, 163.43], p-value <0.001), for n = 100
the optimised OF resulted in 117.12 (95% CI [71.58,
142.69], p-value <0.001), and for n = 250 the optimised
OF resulted in 123.61 (95% CI [91.04, 130.94], p-value
<0.001).

Table 7 True-positive rate (TPR) and true-negative rate (TNR)
results of the simulation study

n = 50 n = 100 n = 250 n = 37

TPRX1 0.67 0.93 0.99 0.61

TPRX2 0.66 0.94 0.99 0.72

TNRX1 0.99 0.99 0.99 0.99

TNRX2 0.99 0.99 0.99 0.99
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Fig. 7 The null distributions of the optimisation criteria (with respect to X3) for the simulated data with different sample sizes (n = 50, 100, 250),
obtained after 1000 permutations. The red bars indicate the optimisation criteria obtained applying msPLS to the original data with the optimal λ1
parameters for UST. The red dots are the bootstrapped values, and the dashed red bars are the 95% confidence intervals
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