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Abstract

Immunotherapy for melanoma has undergone significant change since the first attempts to treat 

patients with high dose IL-2. Herein, strategies to boost patient antitumor immunity through 

vaccination, treatment with agents that augment host immunity, and adoptive cell transfer will be 

discussed. The first two strategies have yielded only limited clinical success, but adoptive cell 

transfer therapy, particularly following a lymphodepleting, preconditioning regimen has resulted in 

objective response rates approaching 50%. For a number of reasons, lymphodepletion appears to 

be critical for maintenance of circulating antitumor T cells following adoptive cell transfer. 

Balancing antitumor efficacy, autoimmunity, and reconstitution of a functioning immune system 

remain challenging and potentially life-threatening issues.

Introduction

Melanoma is among the most immunogenic of all solid cancers, as supported by the 

phenomenon of spontaneous regression of primary tumors, which is seen in 3–15% of 

melanomas with unknown primaries (Morton et al., 1991). Moreover, the presence of tumor 

antigen-specific antibodies and tumor-specific cytotoxic T cells in the peripheral blood of 

melanoma patients has been well established (Lee et al., 1999). The ability of T 

lymphocytes, especially CD8 T cells, to prevent tumor formation has been shown in mice 

and humans (Shankaran et al., 2001; Chiao and Krown, 2003), and recent evidence indicates 

that the presence of infiltrating CD8 T cells within tumors is positively correlated with better 

prognosis in cutaneous melanoma (Ladanyi et al., 2007) as well as in several other types of 

cancers (Zhang et al., 2003). Thus, melanoma has been of interest as an intensively studied 

target for immunotherapy for over two decades.

In general, an effective antitumor CD8 T-cell response must fulfill a number of criteria. First, 

sufficient numbers of antitumor specific CD8 cells need to be generated in vivo or expanded 

ex vivo. Second, the CD8 T cells that are generated should be able to traffic and infiltrate 

into tumors. Finally, the CD8 T cells must be sufficiently activated within tumors such that 

they kill tumor cells, leading to tumor necrosis and/or tumor regression. The development of 

Correspondence: Dr Sam T. Hwang, Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes 
of Health, 10 Center Drive, MSC 1908 NIH, Building 10/Rm12N238, Bethesda, Maryland 20892-1908, USA. hwangs@mail.nih.gov. 

CONFLICT OF INTEREST
The authors state no conflict of interest.

HHS Public Access
Author manuscript
J Invest Dermatol. Author manuscript; available in PMC 2020 January 10.

Published in final edited form as:
J Invest Dermatol. 2008 November ; 128(11): 2596–2605. doi:10.1038/jid.2008.101.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



murine models of melanoma, particularly those deploying transgenic T cells specific for 

melanoma antigens, has made it possible to better understand mechanisms underlying 

effective regression of established melanoma tumors and to make adjustments to improve 

immunotherapy prior to testing new strategies in the clinic (Finkelstein et al., 2004).

The most successful murine studies, however, do not always translate to safe, effective 

melanoma therapy for patients. Thus, we have attempted to list some of the most important 

clinical trials involving treatment of advanced melanoma that have been performed in the 

past few years (Table 1). The definition of clinical responses used in this review generally 

refers to “objective responses” as defined by World Health Organization (WHO) or WHO-

RECIST criteria (James et al., 1999). The RECIST criteria include unidimensional measures 

of specific tumors and/or metastases with complete response (CR), partial response (PR), 

and progressive disease responses defined by a complete disappearance of all known lesions 

(CR), at least 30% decrease in size (PR), or 20% increase in the size of tumors (progressive 

disease). Patients who do not meet the criteria for PR or progressive disease are considered 

to have stable disease. Although RECIST criteria allow better comparison of clinical benefit 

between various trials, some authors have argued that “stable disease” rather than PR and 

CR may be a more realistic goal for newer biological agents and perhaps immunotherapy 

(Michaelis and Ratain, 2006).

Currently, there are three major approaches to boost antitumor CD8 T-cell responses in 

patients with melanoma as summarized in Figure 1: (1) non-specific stimulation of 

antitumor immune responses by stimulating endogenous effector cells with cytokines or 

removing inhibitory signals for T-cell activation, (2) active immunization (that is, vaccines) 

to enhance endogenous antitumor responses in vivo, and (3) adoptive cell-transfer (ACT) 

therapy as exemplified by ex vivo selection and expansion of autologous antitumor-specific 

CD8 T cells that are subsequently transferred back to the patient. This review will discuss 

each of these therapeutic strategies in terms of the preclinical studies that underlie their 

mechanisms, their reported efficacy in melanoma clinical trials, as well as their distinct 

toxicity profiles.

Nonspecific stimulation of antitumor immune responses

IFN-α and IL-2 therapy.

In the 1980s, IFN-α was reported to inhibit the growth of B16 murine melanoma cells in 
vitro and in vivo (Bart et al., 1980). Kirkwood et al. (1996) demonstrated for the first time 

that high-dose IFN-α2b not only prolongs disease-free survival, but also overall survival in 

high-risk patients with melanomas thicker than 4 mm or with lymph node metastasis.

To date, IFN-α has been one of the most intensely investigated immunotherapeutic agents 

for melanoma, and it is the only currently approved adjuvant therapy for the treatment of 

high-risk melanoma patients. The effect of IFN-α2b on disease-free survival was confirmed 

in a subsequent trial, but the study failed to prove significant effect on overall survival 

(Kirkwood et al., 2000). In an extensive meta-analysis, investigators concluded that adjuvant 

treatment with IFN-α reduces the incidence of melanoma recurrence by ~26% and provides 

benefit in overall survival (15% reduction in risk of death) that is not quite statistically 
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significant (P = 0.06) (Wheatley et al., 2003). The use of polyethylene glycol-conjugated 

IFN, which has a substantially longer half-life than the unconjugated molecule, resulted in 

significant clinical responses of ~33% when used in combination with temozolomide in 

patients with advanced disease (Hwu et al., 2006). Polyethylene glycol-conjugated IFN may 

also have utility in the adjuvant setting in melanoma patients with a high risk of recurrence 

(Eggermont et al. j Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. vol. 25, no. 

18S (June 20 Supplement); 2007: 8504). Considering its efficacy and ease of administration, 

polyethylene glycol-conjugated IFN is worth further investigation to define its place in the 

treatment of patients with advanced stage melanoma.

IL-2 is known for its potent ability to activate CD8 T cells and natural killer cells, resulting 

in development of the so-called lymphokine-activated killer cells. Because systemic 

administration of high dose of IL-2 resulted in regression of established pulmonary 

metastases in B16 melanoma-bearing mice (Rosenberg et al., 1985b), Rosenberg et al. 
performed the first clinical trial using autologous lymphokine-activated killer cells and 

systemic IL-2 in patients with metastatic melanoma. Although initial clinical results were 

promising (Rosenberg et al., 1985a), subsequent trials demonstrated that high-dose IL-2 

provided consistent, but low, overall response rate of ~ 13–17% (7–9% PR and 6–8% CR) 

(Rosenberg et al., 1994a; Atkins et al., 1999). Currently, IL-2 is the only FDA-approved 

immunotherapeutic agent for treatment of patients with metastatic melanoma. Notably, 

within the 15 years of follow-up in these studies, >80% of the complete responders to high-

dose IL-2 treatment have not had recurrences and may be considered cured (personal 

communication, SA Rosenberg, NCI).

The modest benefits of IL-2-based treatment regimens, however, must be weighed against 

the serious adverse side effects and the high cost of therapy. Moreover, recent studies have 

shown that IL-2 expands CD4+ CD25+ Foxp3+ -regulatory T cells (Tregs) in vivo, thereby 

possibly inducing immune tolerance (Malek and Bayer, 2004). Furthermore, administration 

of high-dose IL-2 resulted in a nearly fourfold increase in the frequency of CD4+ Foxp3+ 

Tregs in the peripheral blood when compared with pretreatment levels (Ahmadzadeh and 

Rosenberg, 2006), suggesting that Tregs may play important downstream roles in 

determining responses to IL-2.

Several studies have been conducted to study combinations of IL-2 and chemotherapy in 

advanced melanoma in an effort to improve response rates and survival. Unfortunately, 

recent phase-III trials of chemotherapy with high-dose IL-2 administration resulted in 

increased serious toxicity to patients and failed to confirm significantly better durable 

response rates (or overall survival) compared with chemotherapy alone (Rosenberg et al., 

1999; Ridolfi et al., 2002; Keilholz et al., 2005).

Anti-CTLA-4 therapy.—Optimal T-cell activation requires signaling through both the T-

cell receptor (TCR) and the costimulatory receptor CD28, which is constitutively expressed 

on T cells. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), a member of CD28 

immunoglobulin family, is an inhibitory receptor expressed mainly by activated T cells and 

Tregs. CTLA-4 binds CD80 or CD86 with higher affinity and avidity than does CD28, 

thereby inhibiting CD28-dependent T-cell activation and decreasing IL-2 production (Teft et 
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al., 2006). The critical negative regulatory function of CTLA-4 was established upon 

characterization of CTLA-4-deficient mice, which exhibited profound lymphopro-liferation 

and autoimmunity.

mAbs targeting CTLA-4 have been shown to increase host antitumor immunity in a number 

of tumor models (Leach et al., 1996). However, anti-CTLA4 mAb alone failed to produce 

similar antitumor efficacy in a B16 melanoma model, even when the treatment was initiated 

at the time of tumor inoculation (van Elsas et al., 1999). By contrast, a short course of anti-

CTLA-4 blocking antibody in combination with a GM-CSF-expressing irradiated tumor cell 

vaccine eradicated established B16 melanoma in 80% of wild-type mice and protected those 

mice from subsequent tumor challenge (van Elsas et al., 1999). When tumors were 

successfully rejected, depigmentation was observed in 50% of the treated mice. Since 

depigmentation, a marker of autoimmunity, is an uncommon event following vaccination 

alone and has not been observed with anti-CTLA-4 monotherapy, these findings suggested 

that CTLA-4 played a significant role in breaking peripheral tolerance.

Fully humanized antibodies against human CTLA-4, MDX-010 (ipilimumab), and 

CP-675,206 (ticilimumab) have been evaluated in several published phase-I and phase-II 

trials (Table 1). Anti-CTLA-4 monotherapy has yielded response rates of 7–15% in heavily 

pretreated patients with metastatic melanoma (Korman et al., 2005; Ribas et al., 2005). 

Administration of MDX-010 in conjunction with peptide vaccination to patients with stage-

IV melanoma resulted in objective cancer regression in 3 of 14 patients (two CRs and one 

PR) and grade-III/IV autoimmune manifestations in 6 of 14 patients (43%) (Phan et al., 

2003). Combination therapy with anti-CTLA-4 and IL-2 in patients with metastatic 

melanoma yielded a similar 22% response rate coupled with a 14% rate of grade-II/IV 

autoimmune toxicities (described below). Given an anticipated 15% response rate to IL-2 

alone in the treatment of metastatic melanoma, there does not seem to be a synergistic effect 

(Maker et al., 2005).

Treatment with anti-CTLA-4 mAb is frequently associated with adverse immune events, 

most commonly involving the skin and the gastrointestinal tract. Grade-III and grade-IV 

adverse immune events, especially enterocolitis (21%;Beck et al., 2006) and autoimmune 

hypophysitis (5%; Blansfield et al., 2005) have been reported. A dermatitis characterized by 

pruritic macules and papules occurred in 14% of stage-IV melanoma patients treated with 

ipilimumab as monotherapy (Jaber et al., 2006). The erythermatous macules and papules 

present in anti-CTLA-4 dermatitis were photodistributed in some patients, and a Koebner-

like phenomenon could be elicited in others (Figure 2). Peripheral eosinophil counts were 

increased by fourfold in patients who had experienced the eruption compared with in those 

who had not (Jaber et al., 2006). Of note, this pruritic skin eruption was similar in clinical 

and histological appearance (superficial perivascular lymphocytic infiltrate with frequent 

eosinophils) to the macular-papular rash most commonly associated with drugs such as 

penicillins (Jaber et al., 2006). Autoimmune side effects have been correlated with clinical 

antitumor responses and relapse-free survival (Attia et al., 2005), suggesting that antitumor 

immunity is achieved by blockade of CTLA-4 at the increased risk of autoimmunity in other 

tissues.
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Toll-like receptor agonists.—Synthetic deoxycytidyl-deoxyguanosine 

oligodeoxynucleotides contain unmethylated CG motifs similar to those observed in 

bacterial DNA. By triggering Toll-like receptor-9 (TLR9), these oligodeoxynucleotides 

trigger an immunostimulatory pathway that includes dendritic cell (DC) activation and 

production of proin-flammatory cytokines such as type-I IFN, thus potentially favoring 

antitumor immunity. In humans, only plasma-cytoid DCs and B cells are known to express 

TLR9 (Krieg, 2004).

Because TLR9 agonists have shown efficacy in animal tumor models (Lonsdorf et al., 2003), 

they are being evaluated for their therapeutic potential in clinical trials for melanoma 

patients. The first human trial of a synthetic deoxycytidyl-deoxyguanosine 

oligodeoxynucleotides combined with a melanoma peptide showed that use of CpG 7909 as 

an adjuvant to Melan-A/Mart-1 peptide vaccination resulted in 10-fold increase in 

circulating Melan-A-specific CD8 T cells compared with use of peptide alone. Clinical 

response rates were not obtained in this phase-I study due to the short follow-up period 

(Speiser et al., 2005).

Imiquimod, a TLR7 agonist that is currently FDA-approved for the topical treatment of 

actinic keratosis, external genital warts, and superficial basal cell carcinoma, also appears to 

hold potential for the treatment of melanoma. Several cases of successful treatment with 

topical 5% imiquimod of otherwise untreatable cutaneous metastases of malignant 

melanoma (Steinmann et al., 2000) and melanoma in situ (Ray et al., 2005) have been 

reported. Therapeutic approaches based on TLR agonists may be of particular relevance in 

cases where standard therapies have been refused or are contraindicated.

Cancer vaccines

Peptide-based vaccination strategies.—The identification of defined tumor antigens 

that can be the targets of T cells has led to development of new immunotherapeutic 

strategies (Boon et al., 1997). Tumor antigens isolated from melanomas include MART-1/

Melan-A, gp100, and tyrosinase, all of which are melanocytic differentiation antigens that 

are also expressed by normal melanocytes. Anti-melanoma-specific CTLs have been found 

in peripheral blood, draining lymph nodes, and within tumors in melanoma patients (Pittet et 

al., 1999; Zippelius et al., 2004). It has been suggested that these cells may be unable to 

eradicate invasive tumors due to low frequency and/or an immunosuppressive host 

microenvironment. Therefore, administration of cancer vaccines may boost endogenous 

antitumor immune responses in vivo.

Vaccines are classified as either univalent, stimulating the immune system against a 

particular antigen, or polyvalent, eliciting immune responses against multiple antigens. The 

most extensively studied melanoma vaccines are polyvalent whole cells or cell lysates 

derived from allogenic or autologous tumor cells. One advantage of this approach is that the 

vaccine immunizes the patient against a variety of tumor antigens, without attempting to 

predict which antigen will elicit the most effective antitumor responses. Since these vaccines 

are expected to be immunogenic in patients with various HLA types, they are potentially 

beneficial for a larger patient population.
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Early trials of polyvalent whole-melanoma-cell vaccines (Mitchell et al., 1988; Morton et 

al., 1992; Hsueh et al., 2002) suggested vaccines could elicit immunological responses in 

melanoma patients and provide clinical benefit to some patients. However, later trials (Table 

1) involving larger numbers of patients failed to show a clinical benefit (Sondak et al., 2002; 

Faries and Morton, 2005). One polyvalent whole-cell vaccine (Melacine®) combined with 

low-dose cyclophosphamide was shown to provide superior quality of life during therapy, 

although there was no demonstrable difference in response rates and survival compared with 

patients treated with a four-drug chemotherapy regimen (Mitchell, 1998).

Immunization with melanoma-associated peptide antigens is a strategy that has been 

vigorously pursued. In one of the first clinical trials using melanoma cell-derived peptides, 

Rosenberg et al. (1998a) vaccinated stage-IV melanoma patients with g209-2M, a modified 

immunodominant peptide of the gp100 antigen. On the basis of immunological assays, 91% 

of patients could be successfully immunized with this synthetic peptide, and 13 of 31 

patients (42%) receiving the peptide vaccine plus IL-2 had objective cancer responses. All 

patients, however, eventually developed progressive disease. Nevertheless, this study 

provided essential proof-of-principle of the concept that immune responses against self-

antigens can be elicited in patients with advanced melanoma. Although encouraging, this 

and subsequent clinical studies also highlighted the fact that tumor progression can occur 

despite induction of an antigen-specific immune response (Powell et al., 2006). Strategies 

using expression of melanoma peptides via recombinant adenoviral vectors (Rosenberg et 

al., 1998b) or with plasmid vectors encoding tumor antigen (Rosenberg et al., 2003) were 

initially attractive due to their low cost and ease of administration, but have not resulted in 

clear elicitation of immune or clinical responses in patients. Cancer-testis antigens, 

expressed in different tumors and normal testis, are also potential targets for melanoma 

immunotherapy. While an initial study of the cancer-testis antigen known as MAGE-3 

resulted in tumor regression in some patients (Marchand et al., 1999), later studies with this 

cancer-testis antigen showed poor clinical and immunological responses (Kruit et al., 2005).

DC-based vaccination strategies.—Effective presentation of the defined tumor 

antigens to the immune system of a cancer patient remains to be one of the most important 

challenges in the field. The presentation of tumor antigen by DCs or other antigen-

presenting cells is a central step in the induction of an antigen-specific T-cell response, and 

DCs, therefore, have been proposed to be an ideal tool for the induction and augmentation of 

an immune response in a vaccination setting (Grabbe et al., 1995). In recent years, the 

clinical use of DCs has been facilitated by development of techniques to generate large 

numbers of these cells in vitro from blood monocytes or CD34+ progenitor cells. The first 

human trial using monocyte-derived peptide- or tumor lysate-pulsed DCs for antigen 

delivery enrolled 16 patients with advanced melanoma and yielded five objective responses 

(ORs) (2/16 CR, 3/16 PR) (Nestle et al., 1998). Using a similar vaccination strategy with 

larger numbers of patients, however, Schadendorf et al. (2006) demonstrated only a 3.8% 

OR rate that was similar to the OR rate for dacarbazine. Other DC vaccination trials have not 

resulted in significant objective clinical responses, but have shown delayed-type 

hypersensitivity to the peptide antigen (Thurner et al., 1999) or a delay in tumor progression 

when patients were able to mount immune responses to multiple antigens used in the 
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multivalent DC-based vaccine (Banchereau et al., 2001). Thus, although immunological 

responses to selected vaccination strategies have often been detected, their clinical utility as 

single agents is not promising. In summarizing the results from 35 representative published 

vaccine studies, Rosenberg et al. (2004) calculated an OR rate of 3.8% (7.1% for DCs, 4.2% 

for modified tumor cells, 4.0% for peptide-based vaccines, and 0% for pox viruses) for 

cancer vaccines. Currently there are no vaccination strategies that consistently induce 

melanoma regression.

ACT therapy

CTL therapy.—In CTL therapy, peripheral blood mononuclear cells are isolated from 

melanoma patients and stimulated with autologous antigen-presenting cells pulsed with 

HLA-restricted peptide epitope of MART-1 or gp100. After several rounds of stimulation, 

single clones are selected in vitro for their abilities to specifically kill antigen-positive tumor 

targets. CTL clones are further expanded in vitro before being adoptively transferred back to 

patients (Ho et al., 2002). Early clinical trials with CTL therapy met with limited success as 

antigen-specific CD8 T cells persisted in vivo only for a short period of time. In addition, 

recurrent tumors were found to selectively lose the targeted antigen(s) (Yee et al., 2002).

Tumor-infiltrating lymphocyte (TIL) therapy.—In contrast to cancer vaccines, which 

activate the immune system in situ, TIL therapy relies upon (1) isolation and propagation of 

autologous T cells present in patient tumors (usually metastases) in the presence of high 

levels of IL-2, (2) selection of highly avid clones that produce high levels of IFN-γ against 

multiple melanoma cell lines, and (3) expansion of those cells in vitro with anti-CD3 and 

IL-2 to large numbers that are then transferred back to the patient (Dudley and Rosenberg, 

2003).

Early attempts with TILs and high-dose IL-2 in melanoma patients achieved limited clinical 

success (Rosenberg et al., 1994b) and were generally characterized by poor persistence of 

TIL clones in vivo following adoptive transfer. Although cultured TIL clones often showed 

high avidity toward tumor-associated melanoma peptides, only rarely were clinical 

remissions achieved in excess of that expected for IL-2 therapy alone. Thus, high-avidity T-

cell clones alone were not sufficient for treatment efficacy.

Remarkable results in this field were first reported by Rosenberg et al., who used non-

myeloablative, lymphodepleting preconditioning followed by infusion of autologous TILs 

and IL-2 (Dudley et al., 2002a). Subsequent studies at the NCI confirmed response rates of 

~50% in advanced melanoma patients with metastatic disease (Dudley et al., 2005). Several 

patients receiving treatment regimen achieved impressive clinical regression of large bulky 

tumors (figure 3). The rationale for this lymphodepleting preconditioning regimen was based 

on early animal studies demonstrating that depletion of endogenous lymphocytes by 

chemotherapy (prior to adoptive transfer of T cells) resulted in improved antitumor 

responses (Cheever et al., 1980; North, 1982; Dummer et al., 2002). The mechanisms by 

which lymphodepleting regimens improve outcome of ACT therapy have been shown to 

involve elimination of Tregs, increasing the availability of T-cell growth-promoting 
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cytokines, and improvement of the function and/ or availability of antigen-presenting cells as 

discussed below (Gattinoni et al., 2006).

Naturally occurring Tregs possess the ability to suppress or antagonize the function of other 

T cells. Tregs are crucial for maintenance of peripheral self-tolerance and suppression of 

antitumor immunity (Sakaguchi, 2005). The Tregs described in this review are characterized 

by expression of the forkhead box P3 (FoxP3) transcription factor, CD4, and activated T-cell 

markers, including CD25 (IL-2 receptor-a), glucocorticoid-induced tumor-necrosis factor-

receptor family-regulated gene, and CTLA-4.

CD4+ CD25hiFoxp3+ cells are relevant to immunotherapy for melanoma for a number of 

reasons. Co-transfer of CD4+ CD25+ Tregs reduced the ability of transgenic, antigen-

specific CD8 T cells to induce B16 murine melanoma tumor regression in vivo (Antony et 

al., 2005). Clinically, Foxp3+ Tregs were overrepresented in metastatic lymph nodes from 

patients with melanoma. Following isolation, these Tregs inhibited proliferation and 

cytokine production of tumor-infiltrating CD4 and CD8 cells in vitro (Viguier et al., 2004). 

In ovarian cancer patients, reduced survival was associated with increased tumor-infiltrating 

Treg levels (Curiel et al., 2004), whereas increased survival was associated with a high ratio 

of intratumoral CD8 T cells to Tregs (Sato et al., 2005). Even though the presence of Treg 

cells in tumor lesions has not been conclusively connected with progression of cancers, the 

suppressive function of Treg cells may contribute to poor clinical response in non-

lymphodepleting patients receiving ACT therapy.

Lymphodepleting preconditioning regimens may also be effective because they reduce the 

size of the host endogenous lymphocyte pool, allowing newly transferred T cells access to 

growth promoting cytokines (Goldrath et al., 2000). Because the size of the T-cell pool in 

humans and mice is tightly maintained at a nearly constant level, adoptive transfer of cells 

into a lymphopenic host will result in rapid expansion of the newly transferred antigen-

specific T cells in an IL-7- and IL-15-dependent manner (Tan et al., 2002). Dummer et al. 

(2002) first reported that the antitumor benefits of lymphodepletion were dependent on 

homeostatic expansion of a polyclonal T-cell population within lymph nodes, indicating that 

T cells can be induced to mount an effective autoimmune response against self-antigens 

when homeostatic expansion occurs at the time of antigen encounter. In the pmel-1 mouse 

model of ACT therapy for melanoma, lymphodepletion also enhanced antitumor efficacy of 

adoptively transferred T cells in an IL-7- and IL-15 dependent manner (Gattinoni et al., 

2005a).

Preconditioning of the host with systemic chemotherapy or total-body irradiation before 

ACT therapy was initially thought to result in apoptosis or necrosis of tumor cells, allowing 

more efficient presentation of tumor antigens by host DCs to the adoptively transferred CD8 

cells. Recent results, however, showed that total-body irradiation caused mucosal injury, 

resulting in microbial translocation from gastrointestinal tract and systemic release of 

lipopolysaccharide. Signaling through TLR4, lipopolysaccharide increased the absolute 

numbers of activated DCs, which subsequently secreted high levels of T-cell-activating 

cytokines (Paulos et al., 2007).
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While lymphodepletion remarkably improves the outcome of ACT therapy, it is not the only 

factor that determines the clinical response. Preclinical and clinical studies have implied that 

the differentiation state of transferred CD8 T cells may be crucial for the success of ACT 

therapy. Upon encoun-ter with antigen, naïve CD8 T cells proliferate and differentiate 

through early, intermediate, and late effector stages depending on signal strength 

(Lanzavecchia and Sallusto, 2002). Differentiation from early stage to late stage of effector 

CD8 T cells is characterized by progressive downregulation of CD62L, CCR7, β7-integrin, 

and CD27 and concurrent upregulation of CD44, CD69, CD25, granzyme B, and perforin. 

After multiple rounds of in vitro stimulation with antigen and IL-2, activated pmel-1-

transgenic CD8 T cells acquired terminally differen-tiated effector properties, including 

increased cytolytic activity and higher levels of IFN-γ production. How-ever, when 

adoptively transferred into lymphodepleted B16 tumor-bearing wild-type mice, terminally 

differentiated pmel-1 CD8 T cells were at least 100-fold less effective than early effector 

CD8 cells in antitumor efficacy (Gattinoni et al., 2005b). In addition, terminally 

differentiated pmel-1 CD8 T cells proliferated poorly in vivo, suggesting they might have 

already exhausted their abilities to proliferate and to persist in vivo once adoptively 

transferred. On the other hand, early effector CD8 T cells possessing essential adhesion 

molecules for trafficking to lymph nodes showed superior antitumor efficacy compared with 

T cells that could not traffic to lymph nodes (Gattinoni et al., 2005b). These findings suggest 

that trafficking of less differentiated CD8 T cells to lymph nodes (where they can be 

effectively stimulated by DCs) may be more effective in ACT for cancer.

These findings pose new challenges for ACT-based immunotherapy. Currently, the only 

criteria clinically used to screen for TIL clones is their ability to produce high levels of IFN-

γ and to kill antigen-specific target cells in vitro. Selected TIL clones undergo several 

rounds of expansion with anti-CD3, IL-2, and allogeneic antigen-presenting cells, which 

inevitably led to selection of late-stage or terminal differentiated TIL clones for adoptive 

transfer. Two ACT clinical studies using tumor-reactive CD8 T cells generated and expanded 

ex vivo through multiple stimulations did not show substantial ORs, although transferred 

CD8 cells showed potent antitumor activity in vitro (Dudley et al., 2002b; Yee et al., 2002). 

Thus, balancing the quality and quantity of the transferred cells poses one of the greatest 

challenges for ACT therapy.

While lymphodepletion combined with ACT shows great promise, lymphodepletion appears 

to increase the risk of viral infections and virus-associated cancers, perhaps because of the 

long period of time required for lymphocyte recovery following chemotherapy (Dudley et 

al., 2002b). Furthermore, use of high-dose IL-2 following transfer of T cells exposes patients 

to many of the same risks incurred by IL-2 therapy in the past. The use of genetically 

engineered T cells that endogenously express IL-2 may remove the need to give patients 

high systemic doses of IL-2 (see below). Alternatively, modifications of IL-2 that result in 

more T-cell (vs natural killer cell) selectivity may reduce systemic toxicity (Shanafelt et al., 

2000). Clearly, advances in reducing the use of systemic IL-2 (or replacing it with less toxic 

alternatives) would make ACT a more attractive (and safer) therapy for melanoma.
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Additional strategies for improving immunotherapy for melanoma

Engineered T-cell therapy.

Although ACT therapy has achieved objective tumor regression in patients with metastatic 

melanoma, not all the biopsy specimens yield high-avidity TIL clones for adoptive transfer 

(Dudley et al., 2003). One approach to overcome this limitation is to generate and adoptively 

transfer engineered autologous T cells that express cloned high-affinity TCRs for melanoma-

specific antigens. TILs recognize tumor-associated antigens through major 

histocompatibility complex-restricted TCRs that are composed of TCR-α and -β chains. 

Rosenberg et al. have identified individual patient TIL clones showing high affinity in vitro 
to specific melanoma antigens (for example, gp100); they cloned the TCR-α and -β chains 

from these TILs and subsequently expressed these TCRs using retroviruses in peripheral 

blood T cells from other patients (Morgan et al., 2003). The genetically engineered T cells 

secreted high levels of IFN-γ and were cytolytic against both melanoma cell lines and 

autologous melanoma cells. Importantly, following adoptive transfer into melanoma patients 

lymphodepleted by chemotherapy, transduced T cells expressing the cloned TCR chains 

persisted at high levels in the peripheral blood for at least 2 months (and up to 1 year) in 

patients (Morgan et al., 2006).

Although clinical response rate in this study was lower than that achieved using autologous 

TILs (Dudley et al., 2005), several approaches to increase efficiency of TCR expression may 

potentially enhance clinical efficacy (Cohen et al., 2007; Zhao et al., 2007). Furthermore, 

transducing tumor-reactive T cells with IL-2 (Liu and Rosenberg, 2001) or IL-15 (Klebanoff 

et al., 2004) may promote survival of TILs without subjecting patients to the toxicities of 

systemically administered IL-2.

Potential synergy of immunotherapy and blockade of chemokine receptor-

mediated survival pathways

Clinical studies showed that selected chemokine receptors, particularly CXCR4, are often 

upregulated in a large number of common human cancers, including melanoma, and that 

chemokine receptors (in concert with their chemokine ligands) facilitate cancer survival and 

metastasis through a number of mechanisms (Muller et al., 2001; Murakami et al., 2002; 

Kakinuma and Hwang, 2006). The CXCR4 ligand, CXCL12, protected B16 cells from 

killing by activated pmel-1 CD8 T cells in vitro (Lee et al., 2006), presumably through 

activation of the phosphoinositide-3-kinase and its downstream effector, Akt (Murakami et 

al., 2003). Inhibition of CXCR4 by a peptide antagonist, T22, in combination with 

cyclophosphamide or anti-CTLA-4 antibody significantly reduced metastatic tumor burden 

in the lungs compared with treatment with cyclophosphamide or anti-CTLA-4 alone (Lee et 

al., 2006). This study suggests that pretreatment of patients with a chemo-kine-receptor 

antagonist prior to immunotherapy may result in better clinical responses.

Summary

Until recently, immunotherapy for melanoma has made only small incremental 

improvements since the first attempts to treat patients with high-dose IL-2. Vaccination 
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strategies alone have shown little efficacy, whereas attempts to boost the endogenous host 

antitumor response with agents such as anti-CTLA4 have met with marginal success. In the 

case of the latter agent, clinical efficacy in shrinking tumors has often come at a high price 

in terms of autoimmune toxicities that have been potentially life threatening. By contrast, 

ACT therapy, particularly following lymphodepleting, preconditioning regimen has resulted 

in response rates approaching 50%. Lymphodepletion appears to be particularly critical for 

the success of these therapies because (1) it provides access to cytokines that promote 

growth and survival of newly transferred T cells and (2) it removes suppressive or regulatory 

T-cell populations.

Developing safe lymphodepleting regimens will be a challenge, since toxicities of high-dose 

IL-2 and delays in immune reconstitution remain major impediments to ACT. Future 

enhancements to ACT include using total-body irradiation to activate antigen-presenting 

cells via TLRs (in addition to reducing endogenous T-cell populations through bone marrow 

suppression). These experiments suggest that the growing library of clinical-grade TLR 

agonists may prove to be valuable adjuvants for ACT. Lastly, genetic manipulation of either 

allogeneic or autologous T cells with highly avid cloned TCRs selected for clinical efficacy 

or with cloned cytokines such as IL-2 and IL-15 may allow production of highly tumor-

reactive T cells that can be delivered far more quickly and with less cost than the current 

methods of culturing tumor-infiltrating T cells from resected tumors. While prognosis for 

the majority of patients with advanced metastatic melanoma remains relatively poor, almost 

half of the patients with advanced melanoma can obtain substantial ORs using current ACT 

regimens. Improvements to current treatment strategies that are now being refined in mouse 

models of melanoma suggest that future enhancements in clinical efficacy are forthcoming.
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Figure 1. Strategy for immunotherapy of melanoma.
CTL, cytotoxic T lymphocyte; DLN, draining lymph node; PBMC, peripheral blood 

mononuclear cells; CTLA, cytotoxic T lymphocyte antigen; TIL, tumor-infiltrating 

lymphocyte; HSC, hematopoietic stem cell.
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Figure 2. Skin dermatitis following treatment with anti-CTLA-4 mAb as a single agent as 
described in Jaber et al. (2006).
(a) Photodistributed macules and papules on face and neck, and (b) erythematous papules 

with Koebner-like phenomenon elicited by the trauma of scratching.

Fang et al. Page 19

J Invest Dermatol. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Response of a melanoma tumor to a lymphodepleting chemotherapy regimen combined 
with adoptive transfer of tumor-infiltrating T cells (Dudley et al., 2002a).
(photo courtesy of Dr Steven A. Rosenberg, Surgery Branch, NCI).
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