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Abstract
Aim: We construct a framework for mapping pattern and drivers of insect diversity at 
the continental scale and use it to test whether and which environmental gradients 
drive insect beta diversity.
Location: Global; North and Central America; Western Europe.
Time period: 21st century.
Major taxa studied: Insects.
Methods: An informatics system was developed to integrate terrestrial data on in‐
sects with environmental parameters. We mined repositories of data for distribution, 
climatic data were retrieved (WorldClim), and vegetation parameters inferred from 
remote sensing analysis (MODIS Vegetation Continuous Fields). Beta diversity be‐
tween sites was calculated and then modeled with two methods, Mantel test with 
multiple regression and generalized dissimilarity modeling.
Results: Geographic distance was the main driver of insect beta diversity. Independent 
of geographic distance, bioclimate variables explained more variance in dissimilarity 
than vegetation variables, although the particular variables found to be significant 
were more consistent in the latter, particularly, tree cover. Tree cover gradients drove 
compositional dissimilarity at denser coverages, in both continental case studies. For 
climate, gradients in temperature parameters were significant in driving beta diver‐
sity more so than gradients in precipitation parameters.
Main conclusions: Although environmental gradients drive insect beta diversity in‐
dependently of geography, the relative contribution of different climatic and vegeta‐
tional parameters is not expected to be consistent in different study systems. With 
further incorporation of additional temporal information and variables, this approach 
will enable the development of a predictive framework for conserving insect biodi‐
versity at the global scale.
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1  | INTRODUC TION

The primary foundation on which conservation planning is built is 
the distribution of beta diversity (Buckley & Jetz, 2008; Margules 
& Pressey, 2000). Beta diversity is the difference in community 
composition at two or more sites, capturing the spatial dimension of 
biodiversity turnover, and is effective in identifying factors respon‐
sible for community assembly (McGill, Enquist, Weiher, & Westoby, 
2006). There are thought to be three mechanisms which result in 
differences in composition between sites and thus account for much 
of beta diversity; the match between environmental conditions and 
organismal requirements, the dispersal abilities of the organism and 
the physical characteristics of the environment (Nekola & White, 
1999), and interactions between co‐occurring species (Cornell & 
Lawton, 1992). It is necessary to gain some understanding of the 
relative contribution of these candidate drivers of beta diversity in 
order to make accurate predictions, for example, environmental fil‐
tering may result in very similar community structure at two sites 
even if they are disparate and geographically isolated (Penone et 
al., 2016). There are indices of beta diversity using species composi‐
tion (Koleff, Gaston, & Lennon, 2003), function (Petchey & Gaston, 
2002), and those derived from phylogeny (Webb, Ackerly, McPeek, 
& Donoghue, 2002). In some cases, these null models are insuffi‐
cient to account for diversity gradients, and rarefaction of sites to 
a higher‐level administrative area or geospatial grid is necessary 
(Sandel, 2018).

Our knowledge on global patterns in beta diversity of insects re‐
mains incipient as they are notoriously laborious to survey. However, 
insect composition may be predicted in areas which have not been 
sampled through co‐opting surrogate information, particularly en‐
vironmental data, which is usually geographically comprehensive 
(Ferrier, 2002). Earlier methods for modeling beta diversity were 
built on single‐species approaches but are considered of mini‐
mal utility in cases where sampling is particularly sparse (Ferrier & 
Guisan, 2006). In addition, classical regression can be problematic 
when comparing (geographic and environmental) distance matrices 
due to pseudoreplication (not to be confused with spatial autocor‐
relation of composition, or distance decay). Two approaches which 
address such issues when modeling dissimilarity as a function of 
geography and the environment are the multiple regression on dis‐
tance matrices (MRM) and generalized dissimilarity modeling (GDM; 
Legendre, Borcard, & Peres‐Neto, 2005; Tuomisto & Ruokolainen, 
2006). MRM is built on regression and the Mantel test and compares 
the dissimilarity matrix of the response data to one or more matri‐
ces of explanatory variables, which include geographic distance and 
environmental variables (Lichstein, 2007). By contrast, GDMs uses 
nonlinear (I‐spline) functions, which appear to be a better fit for 
typical compositional and environmental gradients than linear func‐
tions (Fitzpatrick et al., 2013) and have a wide range of applications 
(Ferrier, Manion, Elith, & Richardson, 2007).

Previous work on environmental drivers of insect beta diver‐
sity has typically considered climatic and habitat parameters. Being 
ectotherms (with exceptions such as bumblebees), insects can be 

particularly constrained by climatic conditions (Speight, Hunter, & 
Watt, 2008). For example, the stringency of temperature constraint 
for Chironomidae (nonbiting midges) development is such that they 
are used for inferring past environments (Eggermont & Heiri, 2012). 
Climate dictates insect distribution not only directly through phys‐
iological limits due to temperature, precipitation, and humidity, but 
also via vegetation type and abundance, and through multitudinous 
species interactions (Stange & Ayres, 2010).

Given the sheer number of insect species and habitats they 
occupy, the degree to which insects follow generalized ecological 
principles remains unclear, and specific tests of the relative contribu‐
tions of geography, climate, and land type to insect beta diversity are 
sparse, although some work has been conducted in widely studied in‐
sects such as bees and butterflies. In the interface of agricultural and 
seminatural sites in Israel, a beta diversity shift attributed to species 
richness gradient was observed in butterflies, the strength of which 
was influenced by the level of precipitation (Pe'er, van Maanen, 
Turbé, Matsinos, & Kark, 2011). For the bees of Western Canada, 
there was a considerable alignment of assemblages to climatic and 
habitat classes, probably due to conserved traits that permit exis‐
tence in certain areas (Villalobos & Vamosi, 2018). In Nordic ground 
and diving beetles, beta diversity was most strongly correlated with 
gradients in geographic distance, annual temperature, and open land 
(Heino, Alahuhta, Fattorini, & Schmera, 2018). Krasnov et al. (2015) 
compared environmental and host factors on composition and trait 
selection in Palearctic fleas. However, there is as yet no attempt at 
a continental‐scale comparison of climatic and land‐use drivers for 
insects as a whole, which is a major omission considering their un‐
paralleled diversity and integrality to the ecosystem.

Herein, our general goal is the initiation of continental‐scale beta 
diversity maps for insects. Our specific questions are (a) do envi‐
ronmental gradients of climate and vegetation drive dissimilarity in 
insect composition independently of geographic distance and (b) if 
so, are there specific parameters which contribute most to composi‐
tional shift. Earth observation and climate data are prime candidates 
for global environmental drivers of insect distribution (Bush et al., 
2017); hence, our focus herein is bioclimate (Fick & Hijmans, 2017) 
and vegetation indices derived from remote sensing (Townshend et 
al., 2011). This foundational system on contemporary insect beta di‐
versity paves the way for a temporally predictive framework.

2  | METHODS

An overview of the analysis pipeline herein is given in Figure 1.

2.1 | Distribution

Contemporary insect distributions were inferred from observation 
records. We conducted three case studies: a global model and two 
continental‐scale models for the most comprehensively sampled 
regions of North and Central America and Western Europe. For 
the new world, Central America was included as to encompass the 
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well‐sampled tropical regions of Costa Rica and Panama. Geographic 
occurrence records were retrieved from the Global Biodiversity 
Information Facility (GBIF), an international network and research 
infrastructure which provides open access to data about species oc‐
currences on earth. GBIF records for all insects were downloaded 
(GBIF Occurrence Download https​://doi.org/10.15468/​dl.hciamo 
accessed via GBIF.org). Coordinates were grouped into sets of geo‐
graphic samples. Euclidean distances between coordinates were cal‐
culated using the “ecodist” R package (Goslee & Urban, 2007), and 
then distances were clustered with mcl (van Dongen, 2000). The ‐I 
and ‐pi options were adjusted to reduce formation of large regions 
which overlap multiple ecoregions. Remaining observations which 
occurred at boundaries (coordinates at one decimal place, roughly 
corresponding to 5 km) between ecoregions were removed.

2.2 | Environmental variables

Based on geographic coordinates, occurrences were classified for 
climate (Kottek, Grieser, Beck, Rudolf, & Rubel, 2006) and ecoregion 
(Olson et al., 2001). Currently, Kottek et al. (2006) is the most popu‐
lar system to define Köppen–Geiger climate type based on explicit 
rules of temperature and precipitation conditions. Köppen–Geiger 
climate zones correspond to partitions in composition in some in‐
sects (Brugger & Rubel, 2013), although to date studies of climate 
classes and higher taxonomic insect groups are rare. We also used 
the WWF's “Terrestrial Ecoregions of the World” classification 
(available at http://maps.tnc.org/gis_data.html; Note, “realm” and 
“biome” are broader classes within the same system, although not 
applied here). Ecoregions contain biotic and abiotic features which 
promote specific communities (e.g., Olson et al., 2001); thus, pat‐
terns in distribution might delineate with physical factors, such as 
hydroclimatic conditions, or functional considerations such as nutri‐
ent cycles (Cox, Moore, & Ladle, 2016). Ecoregions have been used 

extensively for looking at global habitat loss and conservation as‐
sessment (Hoekstra, Boucher, Ricketts, & Roberts, 2005). Other bi‐
oregion classifications exist, although are either largely derived from 
the terrestrial ecoregions (The Nature Conservancy, 1997; http://
maps.tnc.org/gis_data.html) or are regionally restricted (EPA ecore‐
gions, a 3‐level system for US, Canada, Mexico; and the Global 200).

In addition to classifications, we retrieved candidate environ‐
mental data under the criteria that they (a) are likely to constrain 
the distribution of insects, (b) are available for all terrestrial re‐
gions, and (c) are likely to be produced regularly (for the purpose 
of further development of a temporal dimension). Figure 2 shows 
four examples out of the 23 variables retrieved. The 19 bioclimate 
variables of WorldClim version 2 (Fick & Hijmans, 2017) were ob‐
tained from http://world​clim.org/version2, at 5 min resolution and 
in GeoTIFF format. For each sample site, climate parameters were 
extracted from the geotiff file using the gdallocationinfo function of 
the Geospatial Data Abstraction Library (GDAL/OGR Contributors, 
2018). Next, estimates of vegetation cover were derived from 
the Moderate‐Resolution Imaging Spectroradiometer (MODIS) 
Vegetation Continuous Fields (VCF) product (MOD44B V051, 
Townshend et al., 2011). The VCF product (Figure S1.1) provides an‐
nual global estimates of vegetation cover in terms of tree vegetation, 
herbaceous vegetation, and bare ground percentages. It is generated 
using monthly composites of Terra MODIS 250 and 500  m Land 
Surface Reflectance data, including all seven spectral bands and 
land surface temperature. To reduce interannual fluctuations caused 
by atmospheric noise, median values of the three cover categories 
were calculated over the 3‐year period 2013–2015 for the nominal 
year 2014. Values were extracted at a 250 m pixel scale. For a small 
portion of sampling locations, no values were available at this scale; 
thus, at these locations values were extracted from the nearest 
neighbor pixel that contained data. To facilitate this, the VCF prod‐
uct was resampled (nearest neighbor resampling) at steps of 250 m 

F I G U R E  1   Flowchart giving main steps in the mining, processing, and analysis framework herein
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until a pixel size of 2,000 m was reached. All image processing and 
sampling was done using Google Earth Engine (Gorelick et al., 2017).

2.3 | Data analysis

Analysis was conducted in R, using the libraries “picante” (Kembel et 
al., 2010), “vegan” (Dixon, 2003), “ecodist” (Goslee & Urban, 2007), 
and “gdm” (Manion, Lisk, Ferrier, Nieto‐Lugilde, & Fitzpatrick, 2019), 
although note the size of the datasets precluded some functions. 
For compositional beta diversity, pairwise dissimilarity was calcu‐
lated according to a variant of the Morisita measure, which is based 
on the probability that two individuals from each of site pair are of 
same species (Magurran, 2004). Although the Bray–Curtis meas‐
ure is perhaps the mostly commonly used in community ecology, 
Morisita, and derived indices have proven more robust against in‐
complete sampling and unequal sample size (Barwell, Isaac, & Kunin, 
2015; Magurran, 2004; Wolda, 1981), with the Horn–Morisita vari‐
ant more flexible on input data type.

Two approaches were used to account for autocorrelation in 
distance matrices, MRM and GDM. MRM returns the proportion 
of variance in beta diversity attributable to the environmental vari‐
ables. Secondly, GDM extends traditional regression of composition 
and spatial/environmental distances with nonlinear functions, which 

more appropriately fit the asymptote in composition observed over 
large areas (Fitzpatrick et al., 2013). Geographic distance (input as 
separate latitude and longitude) was modeled along with eleva‐
tion, 19 bioclimate variables, and three vegetation cover variables. 
Significant I‐splines were extracted, plotted individually, and trans‐
formed to biological space, and predicted dissimilarities were esti‐
mated based on the model. Beta diversity measures used in GDM 
were species composition based on Horn–Morisita. Species richness 
was used for site weighting in GDM, which reduces bias when using 
ad hoc presence data (Ferrier et al., 2007). Finally, the spatial pat‐
tern in insect diversity was mapped for the whole area of interest by 
predicting beta diversity between sites using the fitted model with 
significant environmental variables (Manion et al., 2019). For visual‐
izing the spatial pattern, dimensionality was reduced with a principal 
component analysis (PCA), and the first three components used in 
plotting.

3  | RESULTS

3.1 | Case study 1, Global

A total of 21,542,045 records were parsed with geographic coor‐
dinates (Figure 3). Ignoring 264,256 species observed at <30 sites 

F I G U R E  2   Four mapped example variables which are candidate drivers of insect beta diversity
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and sites with <300 observations (thresholds selected to meet 
computational demands), a matrix of 8,553 sites and 38,388 spe‐
cies was analyzed. About 67.8% of null deviance was explained by 
the model, with geographic distance the main driver by magnitude. 
Independent of geographic distance, gradients in six environmen‐
tal variables were significant in driving insect compositional shifts; 
precipitation of the driest quarter (magnitude 0.7), tree density 
(magnitude 0.4), elevation (0.4), precipitation seasonality (0.15), 
temperature of the driest quarter (0.1), and diurnal range (0.1). 
Based on the model, the biogeography of insects was predicted for 
all terrestrial regions (Figure S1.2).

3.2 | Case study 2, North and Central America

For North and Central America, there were 304,090 GBIF re‐
cords subject to climatic and land‐type classification, with filtered 
tables of dimensions 931 sites and 5,117 species. Community 

dissimilarity was greater between sample sites of different ecore‐
gions (r  =  .7025, p  <  .001) or climes (r  =  .3177, p  <  .001) than 
between sites of the same class. According to MRM, a model in‐
cluding geographic, climate, and vegetation parameters could ex‐
plain a reasonable degree (r = .344, p < .001, Table 1) of variance in 
compositional dissimilarity, although the contribution of individual 
parameters was negligible. The fit was greater with inclusion of the 
19 climate parameters (r = .337) than inclusion of the three vegeta‐
tion parameters (r = .252).

The I‐spline functions of the GDM have been favored recently 
as a better fit of the nonlinear nature of composition and environ‐
mental gradients, which are particularly relevant at broad scales. 
Accounting for geographic distance and including all climatic and 
vegetation parameters, 56% of null deviance was explained by the 
model. The fitted splines for all environmental variables significant 
in both GDM and MRM are shown in Figure 4 (and for W. Europe in 
Figure 5), with individual variables transformed to biological space 

F I G U R E  3   Insect species per ecoregion as analyzed herein. Points are positioned at most frequently sampled area within ecoregion. 
Most thoroughly sampled ecoregions are labeled. Abbreviations: C, central; F, forests; N, north; S, south; W, west
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in Figure S1.3, and predicted beta diversity across the continents 
in Figure 6. The greatest degree of compositional change occurred 
along the geographic distance gradient. Otherwise, temperature‐
based climatic parameters featured more heavily than precipitation 
or land‐type parameters. The curves for RS‐derived vegetation indi‐
ces were complementary, with the greatest degree of compositional 
change occurring in denser vegetation coverages.

3.3 | Case study 3, West Europe

A total of 2,997,351 GBIF records were obtained for which climatic 
and land‐type classifications could be made, with 4,085 sites and 
8,523 species retained after filtering steps. Although less pro‐
nounced than for N. & C. America, community dissimilarity in W. 
Europe was also greater between samples of different ecoregion 

Model components N. & C. America W. Europe

Compositional dissimilarity ~ geographic .237 .094

Compositional dissimilarity ~ geographic + climate .337 .191

Compositional 
dissimilarity ~ geographic + vegetation

.252 .108

Compositional 
dissimilarity ~ geographic + climate + vegetation

.344 .198

Note: p < .001 in all cases.

TA B L E  1   r2 values of MRM tests

F I G U R E  4   For N. & C. America, I‐splines for significant individual geographic or environmental variables from the fitted generalized 
dissimilarity modeling. Y‐axis shows the partial ecological distance, that is, the magnitude of compositional change according to the 
environmental gradient
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(r = .2855, p = .001) or climes (r = .1816, p = .001) than within. The 
MRM model of geographic, climate, and vegetation explained 0.198 
of variance in composition (Table 1). As previously, the model im‐
proved more so from the inclusion of climatic rather than vegeta‐
tion parameters. In the GDM, 29% of null deviance was explained, 
with significant fitted splines shown in Figure 5 and biological space 
mapped in Figure S1.4. In W. Europe, geographic distance was not 
the most prominent correlate of compositional variance and only 
showed an influence at short ranges. As observed in N. & C. America, 
change in tree cover at the denser ends of the scale corresponded to 
composition changes, and gradients in temperature‐based climatic 
variables were key predictors of compositional changes, particularly 
mean summer temperature.

Naturally, the dataset includes many species in which the dis‐
tribution is insufficiently represented. Limiting the analysis to 362 
species which were very highly sampled (>1,000 observations), 
results were very similar, with 27% of variance explained, and sim‐
ilar magnitudes for environmental parameters. Similarly, repeating 

the analysis only on observations of Lepidoptera species, being 
data‐rich while ecologically homogeneous in comparison to other 
insect groups, we find a reduced model fit (23.8% of null devi‐
ance explained) but remarkably similar magnitude and pattern in 
environmental drivers (Figure S1.5). These findings suggest the 
analysis is unaffected by species with poor distribution informa‐
tion, although we cannot discount that the results reflect more so 
the environmental needs of those species well represented in the 
database.

4  | DISCUSSION

4.1 | Environmental drivers of insect diversity

Our initial analyses used established environmental classifications of 
Köppen–Geiger climatic and WWF ecoregion. In partitioning insect 
diversity across climes and ecoregions, it was found that forests har‐
bored the overwhelming majority of compositional variation in both 

F I G U R E  5   For W. Europe, I‐splines for significant individual geographic or environmental variables. Y‐axis shows the partial ecological 
distance
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continents, likely related to their considerable land area. We also 
found modest unique composition in the tundra–taiga of Canada and 
cold and polar climes of both continents. The tropics are generally 
understudied, and herein this clime was represented only by a geo‐
graphically restricted region of Central America. Perhaps as a result, 
the tropical samples were relatively homogenous, although there 
have been conflicting findings on the level of turnover of tropical 
insects (d'Souza & Hebert, 2018; Novotny et al., 2007). Otherwise, 
greater diversity was correlated with decreasing latitude, increasing 
temperature, greater tree cover, and less open ground. However, 
the utility of contemporary classifications can be limited in that they 
are not amenable to automated updates, nor to some key modeling 
methods. For this reason, we conducted modeling on the underlying 
environmental variables, which represent a more sustainable data 
source for development of predictive modeling of beta diversity.

Of the 23 environmental variables assessed as candidate drivers 
of insect distribution, percent tree cover was one of the few which 
showed a consistent magnitude and pattern over the case studies 
and methods, with the finding that gradients of tree cover of >40% 
drove compositional dissimilarity of insects, independently of geo‐
graphic distance. To date, tree density effects on alpha diversity have 
received considerably more study than beta diversity. For example, 
tree species diversity was found to drive alpha diversity of herbivo‐
rous insects only in densely planted forest plots and not sparse plots 
(Barantal et al., 2019); while reduced tree density and related abi‐
otic effects resulting from urbanization increased herbivore insect 
abundance and decreased parasitism rate (Dale & Frank, 2014), indi‐
cating taxon‐specific effects. There has been little attention on tree 
density effects on insect beta diversity, although it is known that 
for cursorial insects inhabiting trees, minor reductions in vegetation 
density can represent considerable barriers in connectivity (Adams, 
Schnitzer, & Yanoviak, 2019). Candidate mechanisms responsible for 
tree density effects might be that there is a threshold in resource 

density at which insects will begin to use the resource (Verschut, 
Becher, Anderson, & Hambäck, 2016). Further, there is a well‐es‐
tablished theoretic framework for plant‐herbivore interaction, in 
which plant traits and interactions with higher trophic groups are 
mediated by plant neighborhood (Underwood, Inouye, & Hamback, 
2014), while tree cover at the scale of plot or forest is well known to 
drive insect communities in both alpha and beta diversity, probably 
via habitat availability and microclimatic differences between dense 
and open forests (e.g., Friess et al., 2019; Penone et al., 2019).

Of the climatic variables, mean temperature of the warmest 
quarter most consistently drove compositional shifts, with shifts 
occurring in the range 10–20°C. Again, to date studies specifically 
comparing bioclimate and vegetation drivers on insect beta diver‐
sity have been sparse. Climate was not dominant in structuring 
composition in the case of fungus‐associated arthropods in beech 
forest (Friess et al., 2019). In other study systems, mean summer 
temperature was found to be the primary climatic variable driving 
alpine plant diversity (Baldwin‐Corriveau, 2012) and beta diversity 
of grassland and savanna plots in South Africa (Jewitt, Goodman, 
O'Connor, Erasmus, & Witkowski, 2016), and compositional and phy‐
logenetic beta diversity of snakes in the Atlantic forest hotspot of 
South America (Moura, Costa, Argôlo, & Jetz, 2017).

4.2 | Insect biogeography

Western Europe, particularly the north, has by far the most com‐
prehensive data on insect distribution. Geographic patterns in in‐
sect compositions were revealed through applying the model to 
environmental data for the whole region (Figure 6). In the north of 
Scandinavia, compositions strongly followed the axis of the pen‐
insula, with a marked boundary (Figure 6) corresponding to that 
between the taiga and birch‐forest ecoregions, with several envi‐
ronmental variables following the same axis (Figure 2, Figure S1.4). 

F I G U R E  6   Continent‐specific insect 
beta diversity for (a) N. & C. America and 
(b) W. Europe. Based on the generalized 
dissimilarity modeling, predicted beta 
diversity between points was transformed 
to biological space on significant 
environmental rasters. The space was 
depicted through the first three axes of a 
principal component analysis assigned to 
the colors red, green, and blue. Areas not 
included in the model are shaded

(a) (b)
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The Bothnian bay is apparent as a considerable barrier to insects; 
indeed, it is frozen for half of the year and known to be harsh for 
biota (Ojaveer et al., 2010). In contrast, compositional mixing is 
considerable further south in the Baltic Sea, between samples of 
Sarmatic mixed forests of S. Sweden and S. W. Finland, via the 
Åland islands. Beta diversity between Fennoscandia and cen‐
tral Europe correlated mostly with temperature and tree density 
gradients (Figure S1.4). Low beta diversity was inferred through 
a large swath of low‐lying coastal land from the English Channel 
through to the Baltic Sea, whereas high, temperature‐driven beta 
diversity was predicted between the Pyrenees Conifer Forests, 
Alps conifer, and Carpathian Montane Forests and their respective 
surrounding sites. Precipitation seasonality was predicted to drive 
beta diversity observed south toward the three Mediterranean 
peninsulas.

4.3 | Future directions in insect diversity mapping

Currently, the quality of data is quite heterogeneous; occurrence 
data may be available only from parts of a species' distribution, dif‐
ferent regions are sampled at different intensity (Figure 3), earth 
observations are used for a period other than the recording of the 
specimen, and spatial resolution is very coarse. Further, while the 
way we have developed this framework facilitates integration of 
a predictive temporal dimension, the inclusion of this would com‐
pound the issue of incomplete insect data. Gaps in knowledge 
on insect species diversity and distribution are long known (e.g., 
Anderson, 2012; Graham, Ferrier, Huettman, Moritz, & Peterson, 
2004). While the taxonomic literature can leave the impression of 
detailed knowledge on distribution for most insects, these informa‐
tion are not well databased, georeferenced, nor centralized. Lack 
of distribution data might be alleviated with integration of other 
sources. We select GBIF as it is emerging as the primary source for 
species distributions and the public database with the largest num‐
ber of occurrence records, but regional efforts (e.g., Atlas of Living 
Australia) will maximize global coverage for insect diversity mapping. 
Further, existing museum insect collections and records need to be 
digitized, and while there are no significant technological hurdles 
to doing this (Blagoderov, Kitching, Livermore, Simonsen, & Smith, 
2012; Hebert et al., 2013; Vollmar, Macklin, & Ford, 2010), there is a 
pressing need for addressing misidentifications in collections. In par‐
allel, standardized insect sampling combined with next generation 
sequencing will be able to obtain contemporary insect biodiversity 
data at high levels of throughput (Morinière et al., 2016; Yu et al., 
2012), although enthusiasm for such technological solutions should 
be tempered, for there remains considerable challenges in obtain‐
ing historical samples and in interpreting OTU which lack reference 
DNA barcodes. Before solutions to improving the quality of insect 
data are found, it would be expected that widespread species would 
be overrepresented as they tend to be the first to be recorded, which 
can lead to underestimating beta diversity (Ruokolainen, Tuomisto, 
Vormisto, & Pitman, 2002). As such, the current results should be 
considered conservative.

For environmental information, earth observation data are 
perhaps the critical source that will allow predictions on land‐use 
changes (Bush et al., 2017). Besides development of a system of tem‐
porally matched observations and environmental variables, current 
development of remote sensing techniques and the analysis of his‐
torically collected satellite data might improve the ability of remote 
sensing products to predict the distributional patterns of insect di‐
versity. The MODIS VCF data used in our study, for example, have 
the limitation that it only provide estimates of vegetation cover and 
does not provide information on whether trees are part of a natural 
forest or of a monospecific plantation. This might be problematic, for 
example increasing density of monocultures can show insect abun‐
dance trends which differ from patterns typically observed in natural 
forests, such as increased pest infestations (e.g., Al Shidi, Kumar, Al‐
Khatri, Albahri, & Alaufi, 2018). Neither does it provide information 
on other forest characteristics, such as tree age and level of distur‐
bance, which also influences insect community structure (Perry et 
al., 2016). The incorporation of land cover history derived from time 
series analyses (such as Landsat, MODIS or Sentinel‐2) might be ben‐
eficial in this context. The open data policy of Landsat and Sentinel 
potentially allows for such an approach, and recently published data‐
sets aiming at capturing forest cover dynamics and human distur‐
bance (Hansen et al., 2013) provide starting points to explore this 
approach. Further, the free, global availability of Sentinel‐1 SAR data 
potentially enable the assessment and incorporation of vegetation 
structural attributes (Schmidt et al., 2017) into large‐scale assess‐
ments and analyses of insect communities. Though there have been 
several promising studies that showed correlations between remote 
sensing products and ecosystem structure, habitat conditions, and 
animal communities, it must be acknowledged that we are still in an 
early stage of deriving reliable indicators for biodiversity information 
from earth observation data (Bush et al., 2017).

There are many other candidate terrestrial variables both which 
are likely to impact insect community assembly, and that can viably 
be integrated, and therefore would be likely to increase explana‐
tory power of GDMs. Examples include distance to coast (Bivand 
& Rundel, 2017), human footprint indicators (Venter et al., 2016), 
and measures of topographic heterogeneity between sites, which 
often better reflect spatial isolation of sites than geographic dis‐
tance alone (Panda, Behera, Roy, & Biradar, 2017; Stein et al., 2015). 
Other sources might be the rapidly improving global plant diversity 
maps (Keil & Chase, 2019), as well as pesticide use records (Gibbs, 
Mackey, & Currie, 2009), species traits (McGill et al., 2006), and spe‐
cies interactions (Brooks et al., 2012). These variables include both 
drivers operating on evolutionary time scales and those human‐in‐
duced, both of which might have a considerable impact on insects. 
Finally, current methodology in predicting beta diversity might need 
to adapt to current ecological thinking, which suggests that in addi‐
tion to community assembly being a product of environmental con‐
ditions, it is also both driver and result of ecosystem functions such 
as pollination and biomass production (van der Plas, 2019). In any 
case, the need to improve our ability to predict how insect diversity 
is distributed and how it is changing could not be more pressing.
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