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Abstract

Histogram-based thresholding is one of the widely applied techniques for conducting color

image segmentation. The key to such techniques is the selection of a set of thresholds that

can discriminate objects and background pixels. Many thresholding techniques have been

proposed that use the shape information of histograms and identify the optimum thresholds

at valleys. In this work, we introduce the novel concept of a hierarchical-histogram, which

corresponds to a multigranularity abstraction of the color image. Based on this, we present a

new histogram thresholding—Adaptive Hierarchical-Histogram Thresholding (AHHT) algo-

rithm, which can adaptively identify the thresholds from valleys. The experimental results

have demonstrated that the AHHT algorithm can obtain better segmentation results com-

pared with the histon-based and the roughness-index-based techniques with drastically

reduced time complexity.

Introduction

Image segmentation plays a crucial role in the areas of image analysis, pattern recognition and

computer vision-related applications. In segmentation, an image is partitioned into different

nonoverlapping regions that are homogenous with respect to certain properties, such as color

information, edges, and texture [1, 2]. Although many techniques for image segmentation

have been proposed, it is still a very challenging research topic due to the variety and complex-

ity of images. Moreover, color images can provide richer information than grayscale images,

and natural color image segmentation is increasingly paid more attention by scholars.

Generally, image segmentation routines are divided into histogram-based approaches [3–

5], edge detection approaches [6, 7], region-based approaches [8, 9], clustering approaches

[10–14] and combinations of several approaches [15–17]. Although a larger number of seg-

mentation algorithms have been developed, each has its own applicability and limitations. The

properties of these techniques have been discussed in Ref [18].

One of the most widely applied techniques for image segmentation is histogram-based

thresholding, which assumes that homogeneous objects in the image manifest themselves as

clusters. The key to the histogram-based technique is the selection of a set of thresholds that

can discriminate objects and background pixels. Numerous histogram-based thresholding
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methods have been proposed over the years. These methods can be broadly classified into two

categories. The first category contains thresholding techniques that determine the optimal

thresholds by optimizing a certain objective function [19–25]. Among these thresholding tech-

niques, entropy-based approaches are the most popular, and many algorithms have been pro-

posed in this direction. Examples of these include Shannon Entropy, Renyi0s entropy [24,26],

entropic correlation [5], and cross entropy [20]. However, the main problem associated with

these algorithms is their large time complexity. For the multilevel thresholding problem in

Minimum Cross Entropy Thresholding [25,27], the time complexity is O(mLm+1), wherem
represents the number of threshold values and L indicates the number of gray levels. The sec-

ond category contains approaches that determine the optimal thresholds by utilizing shape

information of the histogram of a given image. The rationale for threshold determination

implicitly relies on the assumption that the intensities of pixels, or data in a more general set-

ting, should be similar within the same objects and different between different objects [16]. In

this manner, the intensity-level histogram values of each object could appear as a bell-shaped

mode [19]. The peak of the bell-shaped region and its adjacent position intensity correspond

to the main-body pixels of the object, while the boundary of the bell-shaped region corre-

sponds to the edge pixels of the object. Therefore, the peaks and valleys in the histogram are

used to locate the clusters in the image, and the optimum thresholds must be located in the val-

ley regions. For example, Rosenfeld et al. investigated histogram concavity analysis as an

approach for threshold selection [28]. Lim and Lee presented a valley-seeking approach that

smoothes the histogram and detects the valleys as thresholds by calculating the derivatives of

the smoothed histogram [29]. Because the histogram only includes the information of intensity

levels, these methods do not consider the spatial correlation of the same or similarly valued ele-

ments. To overcome this drawback, some variations of the histogram are presented. Mohabey

and Ray [30, 31] utilized rough set theory [32] to construct the concept of a histon. Different

from a histogram, each bin of a histon is the pixel scale belonging to the corresponding inten-

sity with uncertainty [2]. With the aid of rough set theory, the histogram and histon can be

respectively considered as the lower and upper approximations. Mushrif and Ray then pro-

posed using the roughness measure at every intensity level to extract the homogeneous regions

of a color image [33]. For some images, however, it is difficult to obtain the significant peaks

and valleys of the roughness measure; Xie et al. used local polynomial regression to smooth

the histogram and histon and then calculated the roughness measure, which enabled their

approach to find the real peaks and valleys more easily [34].

Similar to the histogram, both the histon and roughness indexes provide the global infor-

mation of homogeneous regions in the image, and every peak and its adjacent position repre-

sent a homogeneous region. Theory analysis shows that the histon pays little attention to the

small homogenous regions, and the roughness index can effectively indicate the region homo-

geneity degree and avoid the disturbance of imbalanced color distribution. As two variants of

the histogram, the histon and roughness index were demonstrated to achieve better segmenta-

tion results. Both histon-based and roughness-index-based algorithms, however, need to cal-

culate the color difference between every pixel and its neighborhood, which means both

require significant time. The steps of the above techniques involve some smoothing of the his-

togram (histon or roughness-index) data, searching for significant modes, and placing thresh-

olds at the minima between them.

In this paper, we propose an original segmentation scheme named AHHT (Adaptive Hier-

archical-Histogram Thresholding), which uses a structure called the hierarchical-histogram to

adaptively identify the thresholds at valleys for thresholding. A hierarchical-histogram includes

a group of histograms that corresponds to a multigranularity abstraction of the image. The

lower the histogram is in the hierarchical-histogram, the more elaborate the details of the

Color image segmentation using adaptive hierarchical-histogram thresholding
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image it pertains to are. The role of the prior-level histogram in the hierarchical-histogram is

generating for the next-level histogram, and the top-level histogram is applied to segment the

image. To verify the effectiveness of AHHT, experiments are performed on the Berkeley Seg-

mentation Data Set and Benchmark, and a comparison with the histon-based technique and

roughness-index-based technique is made in terms of both visual and quantitative evaluations.

This paper is organized as follows. Section 2 reviews the related work. Section 3.1 describes

the main idea of the proposed AHHT algorithm. Section 3.2 presents the AHHT algorithm

in detail. Section 3.3 analyzes the complexity of the AHHT algorithm. Section 4 analyzes the

experimental results. Section 5 concludes the paper.

Related work

RGB is the most commonly used model for the television systems and pictures acquired by dig-

ital cameras. As discussed in other related works, this paper also focuses on color image seg-

mentation in the RGB color space. Consider I to be an RGB image of sizeM × N, consisting

of three primary color components: red R, green G, and blue B. The classic histogram of the

image for each color component is defined as

hiðlÞ ¼
XM

m¼1

XN

n¼1
dðIðm; n; iÞ � lÞ; for 0 � l � L � 1 and i 2 fR;G;Bg; ð1Þ

where dðxÞ ¼
1; x ¼ 0

0; x 6¼ 0

(

is the indicator function and L is the intensity scale in each of the

color components. The value hi(l) is the number of pixels having intensity l in color compo-

nent i.
Let c1 and c2 be color vectors in the RGB color space. The Euclidean distance between the

two vectors is given by

dðc1; c2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i2fR;G;Bg
ðc1ðiÞ � c2ðiÞÞ

2
q

: ð2Þ

For a P × Q neighborhood around a pixel I(m, n), the color difference between I(m, n) and

its surrounding pixels in neighborhood is defined as [33]:

dTðm; nÞ ¼
X

p2P

X

q2Q
dðIðm; nÞ; Iðp; qÞÞ: ð3Þ

If the color difference dT(m, n) is less than a threshold T0, the surrounding pixels in neigh-

borhood fall in the sphere of a similar color. For an RGB image I of sizeM × N, a matrix I0 of

sizeM × N is defined such that an element I0(m, n) is given by

I0ðm; nÞ ¼
1; dTðm; nÞ < T0

0; otherwise
:

(

ð4Þ

Then, the histon is defined as follows [31]:

h0iðlÞ ¼
XM

m¼1

XN

n¼1
ð1þ Iðm; nÞÞdðIðm; n; iÞ � lÞ; for 0 � l � L � 1 and i 2 fR;G;Bg: ð5Þ

The histogram and the histon can be associated with the concept of approximation space in

rough set theory [32,35]. For intensity class l, the value of hi(l) is the number of pixels that have

intensity value l and therefore can be viewed as the lower approximation, and the value of h0iðlÞ
can be considered as the upper approximation. Mushrif and Ray then proposed the roughness
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measure as follows [33].

ri lð Þ ¼ 1 �
hiðlÞ
h0iðlÞ

; for 0 � l � L � 1 and i 2 fR;G;Bg: ð6Þ

Like the histogram, the histon and the roughness index for all intensity values also give the

global information of homogeneous regions in the image, and every peak and its adjacent posi-

tion represent a homogeneous region. Therefore, the histon and the roughness index are two

variations of the histogram. The histogram, the histon and the roughness index are collectively

called histogram-based techniques in this paper. The segmentation process of such histogram-

based techniques is divided into three stages [33], as shown in Fig 1.

We take the roughness-index-based [33] technique for example to illustrate the flowchart of

Fig 1. First, the roughness index for each plane of R, G and B of the image is calculated. Then,

Fig 1. Flowchart of the histogram-based technique.

https://doi.org/10.1371/journal.pone.0226345.g001
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two criteria are used to obtain the significant peaks of the roughness indexes: (1) the height of

the peak is greater than 20% of the average value of all peaks; and (2) the distance between two

peaks is greater than 10. After the significant peaks are selected, the thresholds are identified at

the minima between every two adjacent significant peaks. Second, all selected thresholds are

applied to split the image into multiple clusters. The color representing each cluster is obtained

by averaging all the pixels within the cluster. At this point, the initial segmentation is com-

pleted. Generally, this process usually results in over-segmentation. Lastly, the Region-Merging
process uses the algorithm proposed by Cheng et al. [36] to deal with small regions and similar

regions. Concretely, the following two steps are carried out. (1) The clusters with pixels less

than a predefined threshold Tn are merged with the nearest clusters. (2) Two closest clusters

are combined to form a single cluster if the distance between the two clusters is less than a pre-

defined threshold Td.
The basic thresholding procedure consists of analysis of an image histogram and subse-

quent threshold selection from the values located in the valleys between peaks. However, the

determination of peaks and valleys in a multimodal histogram is a nontrivial problem. In gen-

eral, there are many local peaks and local valleys in the histogram of each color space of an

RGB color image. The steps of the above techniques involve some smoothing of the histogram

data, searching for significant peaks, and then identification of thresholds at the minima

between two adjacent significant peaks. This means that the selection of significant peaks will

be used to determine the thresholds, which consequently determine the final segmentation

result of the image. As such, the above histogram-based thresholding techniques mainly focus

on how to identify the significant peaks in the histogram, and then identify the valleys for

thresholding. As two variants of the classic histogram, the histon and roughness index were

demonstrated to achieve better segmentation results. Both histon-based and roughness-index-

based algorithms, however, need to calculate the distance between every pixel and its neigh-

borhood, which means that significant time is required to calculate the histograms. In addi-

tion, as mentioned above, both algorithms also need to determine the significant peaks to

identify the thresholds. Moreover, it is difficult for these techniques to find the exact threshold

point if the valley is flat.

Color image segmentation based on adaptive hierarchical-

histogram thresholding

In this section, we propose a segmentation technique that uses a hierarchy structure of histo-

grams to adaptively obtain the thresholds for color image segmentation. Our method does not

need to find the significant peaks, it can adaptively identify the thresholds from valleys, and it

has high efficiency.

Main idea of adaptive hierarchical-histogram thresholding

Based on experiments performed on hundreds of RGB color images, we found that each image

yields dozens of local valleys and local peaks in each histogram of the R, G, and B planes. As

presented above, in the histogram, the peak of the bell-shaped region and its adjacent position

intensity correspond to the main-body pixels of the object, while the boundary of the bell-

shaped region corresponds to the edge pixels of the object. Therefore, in the histogram, the

intensities between every pair of adjacent local valleys correspond to a small breadth bell-

shaped region. All pixels ranged in a small bell-shaped region can also be regarded as a small

homogeneous region. If we use all local valleys in the histogram of each color plane to segment

an image, the image will be divided into a mass of small homogeneous regions. The colors of

Color image segmentation using adaptive hierarchical-histogram thresholding
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these small homogeneous regions will very close to the corresponding colors in the original

image because such segmentations are overelaborate. Although such segmentation is exquisite,

the segmented image can be viewed as an abstract version of the original image. For the origi-

nal image, we noticed that a more abstract version with a relatively small number of homoge-

neous regions can be generated based on the segmented image. This finding is what inspired

us to propose the AHHT algorithm for color image segmentation. The main idea of AHHT is

to build a group of hierarchical histograms that corresponds to a multigranularity abstraction

of the original image.

For each different color space, AHHT adopts a bottom-up approach to generate a group of

histograms that form a hierarchy graph, and the obtained top-level histograms will be applied

to segment the image. The rough process of AHHT is as follows. In each plane of R, G, and B,

according to Eq 1, the histogram is calculated as the first (bottom)-level histogram. From the

first-level histogram, each small bell-shaped region is merged into a bin expressed by the

count (the number of pixels within the intensity range of the small bell-shaped region) and

the weighted average intensity (the average intensity of all pixels within the small bell-shaped

region), and then the second-level histogram is obtained. Next, similar action is applied to

generate the third-level histogram, that is, from the second-level histogram, each bell-shaped

region is merged into a bin expressed by the count and the weighted average intensity of all

pixels within the bell-shaped region. Such process continues until the last-generated histogram

has no valleys or the difference of every adjacent pair of bins is larger than a threshold w. Obvi-

ously, each bin of the top-level histogram corresponds to a group of pixels in the image. All

bins0 information in the top-level histogram in each plane of R, G, and B is applied to split the

image into multiple clusters. The color representing each cluster is obtained by averaging all

the pixels within the cluster. At this point, the initial segmentation is completed. In the process

of Region-Merging, the AHHT algorithm adopts an approach identical to that used in the

roughness-index-based algorithm.

In each color plane of R, G, and B, AHHT generates a group of histograms in a hierarchical

fashion. Hereafter, such a group of histograms is called a hierarchical-histogram. The lower

a histogram is in the hierarchical-histogram, the more elaborate the details of the image it

encodes are. The role of the prior-level histogram is generating for the next-level histogram.

The experiments performed on hundreds of color images show that AHHT commonly gener-

ates four to five histograms for each color plane of the image. The AHHT algorithm segmenta-

tion of the image is based on the top-level histograms.

The hierarchical-histogram for each plane of R, G, and B of the imageMoon, generated by

the AHHT algorithm, are shown in Fig 2(a)–2(c), respectively. In the experiment, the parame-

ter w = 20, which means that the difference of every adjacent pair of bins in the histogram is

larger than 20, and the top-level histogram is generated. As shown in Fig 2, AHHT generates

four histograms for each color plane. The first-level histogram is generated from the original

imageMoon, and the next-level histogram is generated from the prior-level histogram. In each

histogram of Fig 2, each dashed line marks a valley0s position. From Fig 2, we can see that the

first-level histogram (of each plane of R, G, and B) has many local valleys, which means that

there are many small bell-shaped regions in the first-level histogram. Each small bell-shaped

region in the first-level histogram is expressed by a bin in the second-level histogram, and so

on. The fourth-level (top-level) histogram of each color plane is applied to segment the image.

In the Region-Merging process of this experiment, the regions with fewer than 0.1% of the pix-

els are merged with the nearest region, and two regions with a distance of less than 70 are com-

bined to form a single region. Fig 3(b) and 3(c) show the initial segmented result and the final

segmented result of the imageMoon, respectively.

Color image segmentation using adaptive hierarchical-histogram thresholding
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Algorithm

In a histogram, a valley corresponds to a local minimum, which is present near a local lowest

point or a local lowest horizontal line. All valleys in the histogram of a color plane can be iden-

tified by the following rule.

if hiðlÞ < hiðl � 1Þ & hiðlÞ < hiðlþ 1Þ

then ðl is valleyÞ

if hiðlÞ < hiðl � 1Þ & hiðlÞ ¼ hiðlþ 1Þ ¼ � � � ¼ hiðl þ kÞ & hiðlþ kÞ < hiðlþ kþ 1Þ

then ðl þ bk=2cis valley; f or 0 � l � L � 1 and i 2 fR;G;Bg:

ð7Þ

In our program, a bin in the histogram is expressed as a triple of [h(l), l, lR], where l(0� l�
L − 1) is the intensity, h(l) is the number of image pixels having intensity l, and lR is the right

endpoint0s intensity of the bin.H is an array of bins in ascending order according to intensity,

which means thatH corresponds to a histogram. Themth and (m + 1)th elements ofH are

H[m] = [h(lm), lm, lmR] andH[m + 1] = [h(lm+1), lm+1, lm+1R], respectively, where lm< lm+1

holds. The first-level histogram H is generated from the original image. For every bin [h(l), l,
LR] of the first-level histogram, lR = l holds. According to Eq 7, a function named GetValleys
(H) is used to find all valleys (sorted in ascending order) from a histogram H. The details of

Fig 2. Hierarchical-histogram of each plane of R, G, and B of the image Moon obtained by AHHT.

https://doi.org/10.1371/journal.pone.0226345.g002
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the function are left out in order to keep the paper reasonably concise. IfH is generated from

the original image, which means thatH is the first-level histogram, then GetValleys(H) can

find all local valleys that will be used to generate the second-level histogram. IfH is the kth

(k> 1)-level histogram, then the result of GetValleys(H) will be used to generate the (k + 1)th-

level histogram. Function 1 –GetNextHist is used to generate the next-level histogram ofH,

and the pseudocode is as follows.

Function 1. GetNextHist(H, valleys, w).
Input: a histogram H and its valleys; bin merge threshold w;
Output: H0, which is the next-level histogram of H;
(1) H0 = ;; //initialize the result
(2) left = 1; right = 1; // left-end and right-end intensities of a

bell-shaped region
(3) bins = []; //store bins of a bell-shaped region
(4) for r = 1 to length(valleys)
(5) for m = left to length(H)//find the bin for which the intensity

equals valleys[r]
(6) [h(lm), lm, lmR] = H[m]; //fetch the mth bin of H
(7) if lm == valleys[r] then
(8) {right = m; break;}
(9) bins = GetMergeBin(H, left, right, w); //generate bins for the

bell-shaped region
(10) H0 = H0 [ bins;// Append every bin of bins to H0

(11) left = right + 1
(12) bins = GetMergeBin(H, left, length(H), w); //generate bins for

last bell-shaped region
(13) H0 = H0 [ bins;
(14) return H0;

In lines 9 and 12, a function named GetMergeBin returns bin or a group of bins for a bell-

shaped region. In line 9, the parameters left and right of GetMergeBin are the left-end index

and right-end index of a bell-shaped region in the histogramH. If the difference between

the right-end intensity and left-end intensity is less than w, then GetMergeBin returns a bin

corresponding to the bell-shaped region; otherwise, at most b(lright − lleft)/wc +1 bins will be

returned. For simplicity, the pseudocode of GetMergeBin is omitted. Note that the function

GetMergeBin only merges adjacent bins within a bell-shaped region. This mechanism makes

the next-level histogram match the original intensity distribution of the image well.

On the basis of the above functions, Function 2 –GetAHH (Get Adaptive Hierarchical-

Histograms) is used to generate a hierarchical-histogram for each plane of R, G, and B of the

image, and the pseudocode is as follows.

Fig 3. The image Moon: (a) original image, (b) initial segmented result (225 colors), (c) final segmented result (4 colors).

https://doi.org/10.1371/journal.pone.0226345.g003
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Function 2. GetAHH(I, w).
Input: an RGB color image I; bin merge threshold w;
Output: hierarchical-histogram for each plane of R, G, and B of the
image;
(1) for each color plane i 2 {R, G, B} of image I
(2) Histsi = ;; //store a hierarchical-histogram;
(3) Calculate wi according to Eq 8;
(4) Generated the first-level histogram Hi;
(5) Append Hi to Histsi;
(6) valleys = Getvalleys(Hi);
(7) H0i ¼ GetNextHistðH; valleys;wiÞ
(8) while Hi0 6¼ H do
(9) Append H0i to Histsi;
(10) Hi ¼ H0i;
(11) valleys = Getvalleys(Hi);
(12) H0i ¼ GetNextHistðH; valleys;wiÞ
(13) return Histsi for each i 2 {R, G, B}

For each color plane of the image, a hierarchical-histogram is generated starting with the

first-level histogram, and the next-level histograms are iteratively generated until the new-level

histogram has no change.

For an RGB color image, there are different widths of valid intensity between each plane of

R, G, and B. Taking Fig 2‘s image ofMoon as an example, the (first-level) histogram of the Blue

plane has a wide distribution of valid intensity, and the (first-level) histogram of the Green

plane has a relatively narrow distribution of valid intensity. Therefore, different threshold val-

ues w should be set for different color planes. A reasonable threshold w should be given a rela-

tively large value for a color plane with a wide width of valid intensity and a relatively smaller

value for a color plane with a narrow width of valid intensity. For different color planes, the

threshold wi can be calculated as follows.

wi ¼ w�
SPANi

L
; for i 2 fR;G;Bg;

SPANi ¼ argmaxð0�l�L� 1hiðlÞ 6¼ 0Þ � argminð
0�l�L� 1

hiðlÞ 6¼ 0Þ:

ð8Þ

According to Eq 8, wi is calculated as the value of wmultiplied by the scale factor
SPANi
L ,

where SPANi is the difference between the max valid intensity and min valid intensity of the

color plane i. In this manner, a relatively larger threshold wi is applied for a color plane with a

wide width of intensity. However, for some images, there are only a very small number of pix-

els distributed at lower intensities or higher intensities of a color plane, which makes a rela-

tively larger threshold wi be applied to the color plane. To avoid noise trouble, we use the

SPANi of Formula (9) to replace the SPANi of Formula (8).

SPANi ¼ argmax
0�l�L� 1

ð

PL� 1

l hiðlÞ
n

> 0:01Þ � argmin
0�l�L� 1

ð

Pl
0
hiðlÞ
n

> 0:01Þ ð9Þ

In expression 9, the threshold value of 0.01 means the SPANi is the difference between the

max valid intensity and min valid intensity, excluding the top 1 percent and bottom 1 percent

of pixels, which improves the robustness of the calculation of SPANi.
Once the hierarchical-histograms for each R, G, and B plane are generated, the top-level his-

tograms in the hierarchical-histograms are used to segment the image. Concretely, for a color

plane i, every pixel with an original intensity value range of [lm−1R, lmR]) is set to the intensity

value of lm, where lm−1R, lmR and lm come from the (m − 1)th andmth elements (bins) in the

top-level histogram Hi, that is,H[m] = [h(lm), lm, lmR] andH[m + 1] = [h(lm−1), lm−1, lm−1R].

Color image segmentation using adaptive hierarchical-histogram thresholding
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After such process, the initially segmentation is completed. It is pretty remarkable that the

obtained top-level histograms correspond to the histogram of each R, G, and B plane of the

segmented image. On the basis of the above, AHHT (Adaptive Hierarchical-Histogram

Thresholding) algorithm for color image segmentation is described as follows.
Algorithm 1. AHHT(Adaptive Hierarchical-Histogram Thresholding)
Input: an RGB color image; bin merge threshold w; small region thresh-
old Tn; distance Td for merging close regions;
Output: the segmented image;
Step 1: Calculate the hierarchical-histogram for each R, G, and B
plane of the image by calling Function 2 –GetAhh;
Step 2: Segment the image by using the top-level histograms obtained
by Step 1;
Step 3: Merge small regions and close regions.

The AHHT algorithm has three main advantages: (1) AHHT adopts a bottom-up strategy to

build the structure of the hierarchical-histogram, which can adaptively identify the thresholds

from valleys; (2) In the process of identifying the thresholds, AHHT does not need to deter-

mine peaks, and only one parameter, w, is involved; and (3) AHHT finds the thresholds with

high efficiency.

Complexity analysis

The computational complexity of the AHHT algorithm is analyzed as follows. An RGB color

image I with n pixels and an intensity scale L for each color space is given. The total computa-

tion time includes that consumed in each of three major steps.

In the first step, the hierarchical-histogram for each color plane is computed. The complex-

ity of generating all three first-level histograms is O(3n). The complexity of generating all three

second-level histograms is O(3L). The complexity of generating all threemth-level histograms

is O(3Lm), where Lm is the average number of bins in the three (m − 1)th-level histograms.

Because a hierarchical-histogram only includes a limited number of histograms, the time

required to generate the first-level histograms is far greater than the rest of the time required

to generate the others. The complexity of step 1 can thus be considered as O(3n). In the second

step, every pixel is distributed into the corresponding bin and assigned the intensity value of

the bin by using the three top-level histograms. It is given that the number of bins in every top-

level histogram is k. This process requires approximately 3kn operations, and the complexity

of step 2 can be considered as O(3kn). The third step is the Region-Merging process. Suppose

that r1 is the number of regions before merging and that r2 is the number of regions merged.

The complexity of calculating the difference between regions is Oð3r2
1
Þ, and the complexity of

merging the regions is O(3r2n). Therefore, the complexity of step 3 is Oð3ðr2
1
þ r2nÞÞ. To sum-

marize, the expected time complexity of the AHHT algorithm is Oð3ðknþ r2
1
þ r2nÞÞ. It is

worth mentioning that the histon-based and roughness-index-based algorithms need to calcu-

late the Euclidean distance 24n times to find the thresholds. By contrast, the AHHT algorithm

has substantially reduced the time consumption.

Experimental results

As two variations of histogram-based techniques, the histon-based and roughness-index-based

techniques have been demonstrated to achieve better segmentation results. In this study, the

performance of the proposed AHHT technique is compared with them. The experiments are

performed on Berkeley Segmentation Data Set 300 (BSDS300) as well as Berkeley Segmenta-

tion Data Set 500 (BSDS500). Each image is 481 × 321 pixels. For each image, a set of ground

Color image segmentation using adaptive hierarchical-histogram thresholding
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truths compiled by the human observers is provided. All the images are normalized to have the

longest side equivalent to 320 pixels.

All of these techniques include three major steps, and each one of the steps offers similar

functionality. For the histon-based and roughness-index-based techniques, all parameters

involved are set the same as those used in the original papers [31,33]. Concretely, in step 1, two

parameters are involved for finding the significant peaks: (1) the peak is greater than 20% of

the average value of all peaks; and (2) the distance between two peaks is greater than 10. In

the post-processing step (step 3), two parameters Tn and Td for region merging are involved.

Unless otherwise stated the results, Tn is set as 0.1%, and Td is set as 20, respectively. For the

proposed AHHT algorithm, only one parameter, the bin merge threshold w, is involved in step

1. In our experiments, w is set as 15, which means that any adjacent pair of bins cannot be

merged if the difference between the two bins is larger than 15. In the same post-processing

step, the two involved parameters are identical to those of the histon-based and roughness-

index-based algorithms to make a fair comparison.

Visual evaluation of segmentation results

In this section, the segmentation results for compared algorithms are visually evaluated by

using 6 of all the segmented images. The segmentation results for the images Birds(#135069),

Church(#126007),Mountain(#14037),Marsh(#92059), Boating(#147021) and Snake(#196073)

are shown in Figs 4–9, respectively. Considering that all of the compared techniques adopt the

same Region-Merging processing, in Figs 4–9, we present the initial segmented result and the

result after region merging for each technique. In Table 1, columns 3–5 present the number of

bands in each plane of R, G, and B of the initial segmented result, and columns 6–7 present the

color number in the initial segmented result and the color number in the postmerging result.

Generally, based on visual evaluation, the AHHT technique produces better segmentation

results.

For the image Birds, Fig 4 shows the initial segmented result and the result after region

merging for the histon-based, roughness-index-based and AHHT techniques. For the histon,

roughness-index- and AHHT techniques, the numbers of colors in the initial segmented

results are 18 (Fig 4b), 73 (Fig 4d) and 308 (Fig 4f), respectively; the numbers of colors in the

final segmented results are 6 (Fig 4c), 10 (Fig 4e) and 13 (Fig 4g), respectively. For the histon-

based technique (Fig 4b and 4c), we can see that there are fewer colors in the segmented

results, which leads to larger homogenous regions in the results. However, the white feathers

of the birds have been mistakenly assigned to the sky by the histon technique. For the rough-

ness-index-based technique (Fig 4d and 4e), the white feathers of the birds have been assigned

to a color close to that of the sky. By contrast, the AHHT technique has successfully avoided

this classification error. Therefore, although the initial segmented results based on the histon

and roughness index produced a lower number of colors, they lose many details of small dis-

tinct regions. It is worth noting that, although all three techniques adopt the same region

merging process, the number of colors in the final segmented result by the histon technique is

obviously less than that of the other two techniques. The reason for this is that, for the histon

technique, there are small color differences between the different regions in the initial seg-

mented result, which in turn cause these different regions to be further merged.

For the image Church, Fig 5 shows the initial segmented result and the result after region

merging for the histon-based, roughness-index-based and AHHT techniques, respectively. For

the histon-based, roughness-index-based and AHHT techniques, the numbers of colors in the

initial segmented result are 210 (Fig 5b), 245 (Fig 5d) and 274 (Fig 5f), respectively; the num-

bers of colors in the final segmented results are 36 (Fig 5c), 35 (Fig 5e) and 40 (Fig 5g),

Color image segmentation using adaptive hierarchical-histogram thresholding
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respectively. In the histon-based segmentation of Fig 5b and 5c, the red mountain ridge in the

distance and the light green of the exterior wall of the building do not match with those in the

original image. In addition, in the histon-based and roughness-index-based segmentations of

Fig 5b–5e, we observed that the very dark color of the gentle mountain slope at the left bottom

corner does not match those in the original image. One can see from the original image (Fig

5a) that there is a clearly green boundary between the gentle mountain slope at the left bottom

corner and the middle mountain. However, this green boundary is almost gone in the seg-

mented results (Fig 5b–5e). Whereas in the AHHT technique of segmentation, as shown in Fig

5f and 5g, we observe that the colors of buildings, mountains, the sky and clouds match exactly

with colors of the corresponding regions in the original image.

Fig 4. The image Birds: (a) original image, (b, c) initial segmented result and result after region merging based on

the histon, (d, e) initial segmented result and result after region merging based on the roughness index, (f, g)

initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g004
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For the imageMountain, Fig 6 shows the initial segmented result and the result after region

merging for the histon-based, roughness-index-based and AHHT techniques. For the histon-

based, roughness-index-based and AHHT techniques, the numbers of colors in the initial seg-

mented result are 128 (Fig 6b), 201 (Fig 6d) and 181 (Fig 6f), respectively; the numbers of col-

ors in the final segmented results are 22 (Fig 6c), 27(Fig 6e) and 22 (Fig 6g), respectively. In the

histon-based segmentation of Fig 6b and 6c, the color of the distant mountain in the middle of

the image is a slight violet, and the color of the cloud on the top of the statue is assigned to the

color of pink, which do not match those in the original image. For the roughness-index-based

segmentations of Fig 6d and 6e, the color of the middle sky is violet, and the color of the distant

mountain is assigned to the color of the top sky, which also do not match those in the original

image. However, the AHHT technique prevents the above classification errors. We can see

Fig 5. The image Church: (a) original image, (b, c) initial segmented result and result after region merging based

on the histon, (d, e) initial segmented result and result after region merging based on the roughness index, (f, g)

initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g005
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from Fig 6f and 6g that the AHHT technique yields much better segmentation results, results

in which the colors of clouds, the sky and the distant mountains match those in the original

image.

For the imageMarsh, Fig 7 shows the initial segmented result and the result after region

merging for the histon-based, roughness-index-based and AHHT techniques, respectively. For

the histon-based, roughness-index-based and AHHT techniques, the numbers of colors in ini-

tial segmented result are 125 (Fig 7b), 323 (Fig 7d) and 245 (Fig 7f), respectively; and the num-

bers of colors in final segmented results are 29 (Fig 7c), 31(Fig 7e) and 33 (Fig 7g), respectively.

Fig 6. The image Mountain: (a) original image, (b, c) initial segmented result and result after region merging

based on the histon, (d, e) initial segmented result and result after region merging based on the roughness index,

(f, g) initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g006
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In histon-based segmentation of Fig 7b and 7, we can see that the color of the inner surface is

pink, which does not match the white color of the corresponding regions in the original

image. In addition, although both the histon-based and roughness-index-based techniques

produce more homogenous water surface, there are considerable pixels of the nearshore that

are assigned as part of the water surface. By contrast, in the segmented results (Fig 7f and 7g)

of the AHHT technique, the border between the water surface and the nearshore is nicely

retained. As shown in Fig 7f and 7g, we observe that the colors of the boat, water surface, and

nearshore match the colors of the corresponding regions in the original image.

For the image Boating, Fig 8 shows the initial segmented result and the result after region

merging for the histon-based, roughness-index-based and AHHT techniques. For the histon-

based, roughness-index-based and AHHT techniques, the numbers of colors in the initial seg-

mented result are 290 (Fig 8b), 373 (Fig 8d) and 322 (Fig 8f), respectively; the numbers of col-

ors in the final segmented results are 27 (Fig 8c), 35(Fig 8e) and 46 (Fig 8g), respectively. In the

histon-based segmentation of Fig 8b and 8c, we can see the red and yellow on the top of the

umbrella and the white on the side of the bow, and in the original image, these are changed to

pink. In the roughness-index-based segmentation of Fig 8d and 8e, the yellow and green stripe

on the surface of the bow is causing a slight confusion. By contrast, the AHHT technique

obtains better segmentation results; see Fig 8f and 8g.

For the image Snake, Fig 9 shows the initial segmented result and the result after region

merging for all comparison techniques. For the histon-based, roughness-index-based and

AHHT techniques, the numbers of colors in the initial segmented result are 10 (Fig 9b), 35

(Fig 9d) and 197 (Fig 9f), respectively; and the numbers of colors in the final segmented results

Fig 7. The image Marsh: (a) original image, (b, c) initial segmented result and result after region merging based

on the histon, (d, e) initial segmented result and result after region merging based on the roughness index, (f, g)

initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g007
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are 5 (Fig 9c), 17 (Fig 9e) and 11 (Fig 9g), respectively. In histon-based segmentation of Fig 9b

and 9c, we can see that there are fewer colors in the segmented results, which leads to larger

homogenous regions in the results. However, the colors of the snake and desert are the same

color, and they do not match their colors in the original image. In addition, the color of the

snake0s shadow is seen as light green instead of black. In case of roughness-index-based seg-

mentation of Fig 9d and 9e, the texture of sand surface is not clearly visible, although the snake

is clearly visible. In contrast, we can see from the AHHT-based segmentation of Fig 9f and 9g

that the colors of the snake, the snake0s shadow and the desert, and the texture of the sand sur-

face match those in the original image.

Fig 8. The image Boating: (a) original image, (b, c) initial segmented result and result after region merging based

on the histon, (d, e) initial segmented result and result after region merging based on the roughness index, (f, g)

initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g008
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The analysis of the above experiments illustrates that the initial segmentation plays a deci-

sive role in the full process of segmentation. AHHT obtains the best visual features in the initial

segmentation, which in turn allows it to produce the best visual features in the end.

In addition, to better analyze the characteristics of the compared techniques, Table 2 pres-

ents the mean number of colors in the initial segmented results and the results after region

merging over all images of the BSDS300 and the BSDS500. Take BSDS500 for example, for the

histon-based, roughness-index-based and AHHT techniques, the mean numbers of colors in

the initial segmented results are 338, 377 and 333, respectively; the mean number of colors in

the final segmented results are 44, 47 and 49, respectively. This illustrates that, although all

compared techniques adopt the same Region-Merging processing, the AHHT technique obtains

Fig 9. The image Snake: (a) original image, (b, c) initial segmented result and result after region merging based on

the histon, (d, e) initial segmented result and result after region merging based on the roughness index, (f, g)

initial segmented result and result after region merging based on AHHT.

https://doi.org/10.1371/journal.pone.0226345.g009
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a slightly larger number of colors in the final segmented results. The reason for this is that, for

the AHHT technique, there are relatively larger differences between the colors in the initial

segmented result, which in turn restricts those colors from being further merged, thus ensur-

ing good segmentation quality.

Quantitative evaluation of segmentation results

In this section, the results of each image segmentation technique are compared using quantita-

tive evaluations, such as the mean square error (MSE), F(I) [37], andQ(I) [38]. TheMSE evalu-

ation function can be described as

MSE ¼
1

M � N

XM

m¼1

XN

n¼1

X

i2fR;G;Bg
ðIðm; n; iÞ � I0ðm; n; iÞÞ2; ð10Þ

where I is the original RGB color image,M × N is the image size, and I0 is the segmented image

of I. In general, a lowerMSE indicates good segmentation quality of the output in the case that

the numbers of regions are close for different segmented results. The evaluation function of

F(I) is defined as follows [37]:

F Ið Þ ¼
1

1000ðM � NÞ
ffiffiffi
R
p XR

j¼1

e2
j
ffiffiffiffiffi
Aj

p ; ð11Þ

Table 1. Comparison of the number of thresholds and the color number in the initial segmented result and the result after merging.

Image Methods Red band Green band Blue band Color number

Initial segmentation After merging

Birds #135069 Histon 3 5 6 18 6

Roughness-index 8 11 13 73 10

AHHT 41 23 17 308 13

Church #126007 Histon 8 8 8 210 36

Roughness-index 12 9 14 245 35

AHHT 13 11 15 274 40

Mountain #14037 Histon 12 13 9 128 22

Roughness-index 15 15 15 201 27

AHHT 21 19 15 181 22

Marsh #92059 Histon 10 5 6 125 29

Roughness-index 17 13 17 323 31

AHHT 13 15 14 245 33

Boating #147021 Histon 11 10 10 290 27

Roughness-index 14 17 17 373 35

AHHT 13 15 16 322 46

Snake #196073 Histon 2 3 4 10 10

Roughness-index 9 9 7 35 17

AHHT 25 25 23 197 11

https://doi.org/10.1371/journal.pone.0226345.t001

Table 2. Comparison between the mean number of colors in the initial segmented result and the result after merging.

Image Methods Mean number of colors Image Methods Mean number of colors

Initial segmentation After merging Initial segmentation After merging

BSDS300 Histon 316 41 BSDS500 Histon 338 44

Roughness-index 355 42 Roughness-index 377 47

AHHT 327 46 AHHT 333 49

https://doi.org/10.1371/journal.pone.0226345.t002
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and Q(I) is further refined from F(I) by Borsotti et al. as follows [38]:

Q Ið Þ ¼
1

1000ðM � NÞ
ffiffiffi
R
p XR

j¼1

e2
j

1þ logAj
þ

SðAjÞ
Aj

 !2" #

; ð12Þ

where I is the segmented color image of sizeM × N, R is the number of regions of the seg-

mented image, Aj denotes the number of pixels in the jth region. ej is defined as the sum of the

color differences between the RGB color vectors of the pixels of the jth region and the color

vector attributed to the jth region, and S(Aj) represents the number of regions having an area

equal to Aj. Although F(I) and Q(I) are different, both measures are used to penalize segmenta-

tions that form too many regions and have nonhomogeneous regions by assigning them larger

values.

TheMSE, F(I) and Q(I) values of segmentation results are tabulated in Table 3 for the

images shown in Figs 4–9. The smaller the values of these indexes, the better the segmentation

result should be. The bolded values indicate the best results. The comparison results show that

the AHHT technique obtains the bestMSE, F(I) and Q(I) values on the same three images; the

roughness-index-based technique obtains the best F(I) and Q(I) values on the one image. The

direct comparison of these results can be obtained by checking the mean value in the last row

in Table 3. Obviously, the AHHT technique outperforms the roughness-index-based and his-

ton-based techniques by obtaining the relatively small mean values of indexes in segmenting

all of these images.

To better support the abovementioned findings, the mean values ofMSE, F(I) and Q(I)
are tabulated in Table 4 for all images of the BSDS300 and images of the BSDS500. From the

results in Table 4, it is clear that the proposed AHHT technique outperforms the other tech-

niques based on theMSE, F(I) and Q(I) measures.

The above benchmark indices are used to estimate the empirical accuracy of the segmenta-

tion results. They include some human characterizations on the properties of ideal segmenta-

tion requiring no prior knowledge of correct segmentation.

For each image in the BSDS, a set of ground truths compiled by human observers is pro-

vided. Therefore, we intend to compare segmentation results against external criteria. The

Table 3. Comparison MSE, F(I) and Q(I) evaluation function of segmentation results.

Image MSE F(I) Q(I)
Histon Roughness-index AHHT Histon Roughness-index AHHT Histon Roughness-index AHHT

Birds 11.59010 11.53233 8.61797 52.67094 70.64469 42.93231 78.72281 109.90817 65.06391

Church 14.80610 13.21823 12.02938 105.59323 73.15529 72.32908 74.04804 62.60939 69.32062

Mountain 10.39769 9.93918 8.95015 44.98419 43.65162 31.06930 39.11403 38.92950 27.31039

Marsh 14.51536 12.17336 11.83566 105.72585 77.40083 74.04451 84.94691 74.75858 75.07219

Boating 11.00687 9.32096 9.06405 76.88258 42.72762 50.86452 56.00279 37.20927 49.51961

Snake 17.67190 13.49228 9.59335 184.02131 127.79234 52.51785 338.82650 233.31171 82.90309

Mean value 13.33134 11.61272 10.01509 94.97968 72.56207 53.95959 111.94351 92.78777 61.53164

https://doi.org/10.1371/journal.pone.0226345.t003

Table 4. Comparison average of MSE, F(I) and Q(I) on BSDS300 and on BSDS500.

Image Methods MSE (Mean) F(I) (Mean) Q(I) (Mean) Image Methods MSE (Mean) F(I) (Mean) Q(I) (Mean)
BSDS300 Histon 12.13341 69.86678 62.92299 BSDS500 Histon 12.09972 68.85657 61.05272

Roughness-index 11.69978 70.19091 65.72476 Roughness-index 11.70673 68.25779 61.58926

AHHT 10.97841 57.7446 53.18803 AHHT 11.04783 57.97239 51.83581

https://doi.org/10.1371/journal.pone.0226345.t004
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following image segmentation indices were used. The Probability Rand Index (PRI) counts the

fraction of pairs of pixels whose labels are consistent between the computed segmentation and

the ground truth, averaging across multiple ground truth segmentations to account for scale

variation in human perception [39]. The Variation of Information (VOI) is used for quantifi-

cation of the loss of information and the gain between two clusters belonging to the lattice of

possible partitions [40]. The Boundary Displacement Error (BDE) is used for evaluation of the

average displacement error of boundary pixels between two segmented images by computing

the distance between the pixel and the closest pixel in the other segmentation [41]. The Global

Consistency Error (GCE) is used for quantification of the extent to which a segmentation can

be viewed as the refinement of the others [42]. These four measures must be considered all

together to evaluate the performance of a given segmentation algorithm. Higher values of PRI

indicate a large similarity between the segmented images and the ground truth; whereas for

rest of the indices, lower values indicate closer similarity of the segmentation obtained and the

ground truth.

Table 5 presents the average performance indices (PRI, BDE, GCE and VOI) obtained by

the proposed AHHT algorithm compared with Histon and Roughness-index algorithms. As

mentioned above, these three algorithms are histogram-based algorithms. In addition, Table 5

also lists results of some other popular algorithms. The results of Mean-Shift [43], NCuts [44],

FH [45], CTM [12], and MCET_DE [27], were obtained from literature sources [12,27]. For

the three histogram-based techniques of Histon, Roughness-index, and AHHT, we found an

improvement in the results in terms of GCE and VOI with a larger value of Td, in contrast to

that of the PRI measurement, which decreased. Compared with Histon and Roughness-index

algorithms, the AHHT algorithm obtains better values of BDE, GCE and VOI when the same

value of Td is used. From Table 5, it can be seen that the three histogram-based techniques of

Histon, Roughness-index, and AHHT can obtain superior BDE values compared with other

algorithms.

Runtime comparison

The computational efficiency of the algorithm is a key factor that imposes a large influence

upon its practical application. In this section, the efficiencies of the three techniques are com-

pared as the execution time in seconds. Considering that the execution times for all compared

techniques include two parts, Table 6 presents the mean time spent on the initial segmentation,

the mean time spent on the Region-Merging process, and the mean total time (the sum of the

two former) spent on BSDS300 as well as BSDS500.

Table 5. Comparison averages of PRI, BDE, GCE and VOI on BSDS300.

Algorithm PRI BDE GCE VOI

Mean-Shift 0.7550 9.7001 0.2598 2.4770

Ncuts 0.7229 9.6038 0.2182 2.9329

FH 0.7841 9.9497 0.1895 2.6447

CTM(n = 0.2) 0.7617 9.8962 0.1877 2.0236

MCET_DE(Q = 15,LV = 7) 0.7493 9.6597 0.2542 2.1864

Histon(Td = 20) 0.72361 9.476 0.41158 4.246

Histon(Td = 70) 0.63756 9.1357 0.30279 2.6513

Roughness-index(Td = 20) 0.72333 9.4655 0.41292 4.226

Roughness-index(Td = 70) 0.6396 8.7628 0.30521 2.6578

AHHT(Td = 30) 0.71937 9.1668 0.43263 3.4961

AHHT(Td = 70) 0.63414 8.6678 0.29859 2.6386

https://doi.org/10.1371/journal.pone.0226345.t005
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From Table 6, we can see that the mean time of initial segmentation of an image is approxi-

mately 9 seconds for the histon-based and roughness-index-based techniques. By contrast, the

time of initial segmentation of an image is approximately 0.07 seconds for the AHHT tech-

nique, which means that AHHT outperforms the histon-based and roughness-index-based

techniques by up to two orders of magnitude in the matter of efficiency of initial segmentation.

The complexity analysis shows that the major reason for the big difference is the time required

to find the thresholds: the histon-based and roughness-index-based techniques need to calcu-

late the Euclidean distance 24n times; however, the AHHT technique mainly needs 3n instances

of pixel access with no complicated calculation involved. Therefore, the AHHT technique

obtains the great advantage of efficiency in initial segmentation.

The time spent on the Region-Merging process mainly depends on the number of merged

regions. In this process, the differences between the compared techniques are not noticeable.

The full execution time to segment an image mainly depends on the initial segmentation for

the histon-based and roughness-index-based techniques. In contrast, for the AHHT algorithm,

the full execution time to segment an image largely depends on the merging process. From

Table 6, we can see that the AHHT technique obtains significantly faster running speeds.

Conclusion

This paper presents a novel histogram thresholding—Adaptive Hierarchical-Histogram

Thresholding (AHHT), which is an adaptive thresholding algorithm used to perform color

image segmentation. The contributions of the paper include the following. (1) A structure

called hierarchical-histogram has been proposed in the paper. With the aid of hierarchical-his-
togram, the AHHT algorithm can adaptively identify the thresholds at valleys. (2) AHHT does

not need to find the significant peaks. (3) The experimental results show that the AHHT algo-

rithm can obtain better results for color image segmentation. (4) For the simplicity of imple-

mentation, the AHHT algorithm has fast running speed. The experimental results show that

AHHT outperforms the compared algorithms by up to two orders of magnitude in the matter

of efficiency of initial segmentation.

Supporting information

S1 File. Includes the results of AHHT (Td = 20) on each image in BSDS300.

(XLS)

S2 File. Includes the results of AHHT (Td = 20) on each image in BSDS500.

(XLS)

S3 File. Includes the results of AHHT (Td = 30) on each image in BSDS300.

(XLS)

S4 File. Includes the results of Histon (Td = 20) on each image in BSDS300.

(XLS)

Table 6. Mean execution time (in seconds) of different algorithms.

Image Histon Roughness-index AHHT

Initial segmentation Merging process Total Initial segmentation Merging process Total Initial segmentation Merging process Total

BSDS300 8.1459 2.0008 10.14673 9.1763 2.7703 11.9467 0.0685 2.4703 2.5388

BSDS500 9.8467 2.6347 12.4814 8.3534 2.8033 11.1567 0.0681 2.2625 2.3307

https://doi.org/10.1371/journal.pone.0226345.t006
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S5 File. Includes the results of Histon (Td = 20) on each image in BSDS500.

(XLS)

S6 File. Includes the results of PRI,BDE, GCE and VOI.

(XLSX)

S7 File. Includes the results of Roughness(Td = 20) on each image in BSDS300.

(XLS)

S8 File. Includes the results of Roughness(Td = 20) on each image in BSDS500.

(XLS)

S1 Data. Includes the segmented results of AHHT (Td = 30) on each image in BSDS300.

The folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)

S2 Data. Includes the segmented results of AHHT (Td = 70) on each image in BSDS300,

the folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)

S3 Data. Includes the segmented results of Histon (Td = 20) on each image in BSDS300,

the folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)

S4 Data. Includes the segmented results of Histon (Td = 70) on each image in BSDS300,

the folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)

S5 Data. Includes the segmented results of Roughness(Td = 20) on each image in

BSDS300, the folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)

S6 Data. Includes the segmented results of Roughness(Td = 70) on each image in

BSDS300, the folder being used for calculating the metrics of PRI,BDE, GCE and VOI.

(ZIP)
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