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ARTICLE INFO ABSTRACT

Cognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often
remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training
(CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting
its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring.
Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction.
By integrating information not only about lesion extent and localization, but also regarding the integrity of the
unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction
models in order to tailor cognitive intervention for patients, especially in a chronic phase.

Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the
hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better
on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain.
In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital ad-
mission, NIHSS <7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In
addition, patients were randomized to one of two groups receiving either active or sham transcranial direct
current stimulation (tDCS). We tested for main effects of brain age gap (estimated age — chronological age) on
cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if
longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our
results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and
reliable in stroke patients. However, no significant association between brain age and both performance and
response to cognitive training were found.
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1. Introduction

Stroke is among the most common causes of acquired cognitive
disabilities during adulthood, with a projected increase in prevalence
over the next decades due to the aging population (Feigin et al., 2014;
Feigin et al., 2017). Despite recent reductions in stroke-related mor-
talities, largely due to major improvements in acute health care and

treatment (Zhang et al., 2012) many stroke survivors suffer from long-
term and pervasive cognitive deficits (Barbay et al., 2018; Barker-
Collo et al. 2010; Cumming et al., 2014; Haacke et al., 2006;
Nakling et al., 2017; Patel et al., 2002) that often remain unnoticed by
the health care system due to its typically delayed manifestation
(Jacova et al., 2012; Kalaria et al., 2016).

Previous studies and treatment programs have largely targeted
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Table 1

Demographics and sample characteristics. "MMSE and MoCA scores at inclusion. 2NIHSS score at hospital discharge. Only one patient suffered from intracerebral

hemorrhage (Kolskar et al., 2019; Ulrichsen et al., 2019).

NeuroImage: Clinical 25 (2020) 102159

Training sample Cam-CAN

Healthy controls

Test sample StrokeMRI Baseline

Stroke patients

Longitudinal

Stroke patients

Mean (SD) Range Mean (SD) Range Mean (SD) Range
Total N (% females) 628 (51.6%) 68 (27.9%) 54 (25.9%)
Age 54.2 (18.3) 18-87 67.98 (10.24) 24.3-81.8 69.72 (7.46) 47.8-82.0
Education (in years) - - 14.32 (3.78) 7-30 14.38 (3.75) 9-30
MMSE! - - 27.91 (1.97) 22-30 28.00 (1.87) 22-30
MoCA' - - 25.70 (3.15) 14-30 25.92 (2.77) 17-30
Months since stroke 26.67 (9.13) 6-45 25.74 (9.17) 6-45
NIHSS? 1.31 (1.52) 0-7 1.33 (1.53) 0-7

TOAST classification for ischemic stroke>

Stroke location

Large artery artherosclerosis (23)
Cardioembolism (7)

Small vessel occlusion (21)
Other (17)

Right (30)

Left (22)

Brain stem / Cerebellum (9)
Bilateral (7)

Large artery artherosclerosis (20)
Cardioembolism (6)

Small vessel occlusion (18)
Other (10)

Right (23)

Left (18)

Brain stem / Cerebellum (8)
Bilateral (5)

patients in the acute and sub-acute phase, as it has been assumed that
recovery and cognitive rehabilitation are more likely to be successful
during a limited time window following the insult (Zucchella et al.,
2014). Whereas the temporal aspects of cognitive interventions fol-
lowing stroke is important, evidence suggests that recovery can also
occur in chronic stages, i.e. years after the insult (Berthier et al., 2011;
Moss and Nicholas 2006). As a result, there is an increasing need for
developing and validating tools that can be used to predict long-term
outcome and for monitoring of the effects of cognitive rehabilitation
after stroke (Hope et al., 2013).

Advanced neuroimaging techniques based on magnetic resonance
imaging (MRI) offer a range of candidate markers for disease mon-
itoring and outcome prediction. In addition to providing detailed in-
formation about the localization and extent of the lesion, which re-
present key clinical information in the acute phase, imaging techniques
allow for a characterization of the structural and functional integrity of
the whole brain, including areas not directly damaged by the stroke
(Kalaria et al., 2016; Werden et al., 2017). This information is highly
relevant in a cognitive rehabilitation context, where the potential for
improvement and recovery are not only defined by the lesion itself, but
by the integrity and efficiency of the unaffected brain regions (Ihle-
Hansen et al., 2014). Further, it is widely acknowledged that the brain
systems supporting cognitive functions are broadly distributed, sup-
porting a network-based conceptualization of the functional neuroa-
natomy of cognitive functions. Hence, lesions in widely different parts
of the brain may result in overlapping cognitive symptoms, depending
on the brain networks involved (Guggisberg et al., 2019). A direct
implication of this is that both the degree of cognitive impairment and
the individual potential for improvement in response to intervention
may be less dependent on the exact characteristics of the lesion than the
structural integrity of the unaffected brain networks.

Here, we test this concept by utilizing multivariate brain age pre-
diction using machine learning and sensitive measures of brain mor-
phometry. Briefly, combining a wide array of informative brain imaging
features in a prediction model allows for an accurate prediction of the
age of an unseen individual (Franke et al., 2012; Franke et al., 2010).
The degree to which the model under- or over-estimate the individual's
age has been shown to be sensitive to a variety of health- related
characteristics, including cognitive function and mortality (Boyle et al.,
2019; Cole and Franke 2017; Cole et al., 2018; Richard et al., 2018),
and brain age prediction using MRI data has recently been shown to be
sensitive both to the clinical manifestation and polygenic risk of various
brain disorders (Hogestol et al., 2019; Kaufmann et al., 2019).

Based on the notion that brain age prediction offers a sensitive

summary measure of brain integrity, we first tested whether brain age is
sensitive to cognitive function in chronic stroke patients. Next, to assess
the predictive value of brain age prediction in a cognitive rehabilitation
context, we tested if brain age prior to the intervention is associated
with response to an intensive computerized cognitive training (CCT)
program. As a follow-up analysis to a previous study (Kolskér et al.,
2019) reporting no robust beneficial effects of transcranial direct brain
stimulation (tDCS) on cognitive improvement, we assessed if any ben-
eficial effects of tDCS (active vs sham) would be dependent on brain
age. Finally, we tested to which degree longitudinal changes in brain
age during the course of the intervention are sensitive to treatment
response. We hypothesized that (1) brain age prediction would con-
stitute a reliable and sensitive method for characterizing individual
level brain health. We further anticipated that (2) patients with a re-
latively young-appearing brain age (which may imply higher cognitive
or brain reserve) would show better cognitive function at baseline, and
(3) would show larger improvements in task performance. Lastly, to the
extent that intensive cognitive training shows beneficial effects on
cognitive performance and the brain (Engvig et al., 2010), we hy-
pothesized that (4) cognitive gains would be reflected in longitudinal
changes in brain age during the course of the intervention.

We tested these hypotheses in a group of 54 chronic patients who
suffered mild stroke (> 6 months since hospital admission, NIHSS < 7
at hospital discharge) invited to take part in a randomized, double blind
study aimed to test the utility of tDCS in combination with CCT to
improve cognitive performance following stroke (Kolskar et al., 2019;
Ulrichsen et al., 2019). For unbiased brain age prediction, we utilized a
large independent training set, and employed stringent procedures for
multiple comparison correction to increase the robustness of the results.

2. Materials and methods

Table 1 summarizes key clinical and demographic information for
the patient group. Fig. 1 depicts the timeline of the intervention, in-
cluding histograms depicting the time range between MRI assessments.
Patients were recruited with the main aim of testing the clinical feasi-
bility of combining CCT and tDCS to improve cognitive function in
chronic stroke patients. Description of the extent and localization of
individual patient lesions, as well as recruitment procedures are de-
tailed in (Kolskar et al., 2019). Supplementary Figure 1 depicts a
heatmap of the lesion location across 68 patients a heatmap where the
voxel value reflects the number of participants having a lesion in that
voxel. Briefly, patients admitted to the Stroke Unit at Oslo University
Hospital and at Diakonhjemmet Hospital, Oslo, Norway during
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Fig. 1. Timeline of the intervention.

2013-2016 were invited to participate through letters. Stroke was de-
fined as any form of strokes of either ischemic or hemorrhagic etiology;
transient ischemic attacks (TIA) were excluded. Additional exclusion
criteria included MRI contraindications and other neurological diseases
diagnosed prior to the stroke.

Approximately 250 patients responded to the letter to either decline
the invitation or express their interest, of which 72 completed the first
assessment and 54 patients completed the full protocol (Kolskar et al.,
2019; Ulrichsen et al., 2019); including three MRI brain scan sessions,
three sessions with cognitive assessments, one EEG assessment, and
seven CCT sessions in addition to 10 CCT sessions performed at home.

Four patients were excluded from the analysis in the current study.
Two were excluded based on poor quality or incomplete MRI data, one
based on incomplete cognitive assessment at baseline and one due to
lack of confirmed stroke. The remaining 68 patients were included in
the brain age estimation and associations with baseline cognitive per-
formance (age = 24.3-81.8, mean = 67.98, SD = 10.24, 19 females).
All 54 patients who completed the training sessions were included in
the remaining analyses (age = 47.8-82.0, mean = 69.72, SD = 7.46,
14 females).

Training set for brain age prediction

The healthy controls used as training set for the age prediction
model were obtained from the Cambridge centre for Ageing and
Neuroscience (Cam-CAN) sample (http://www.mrc-cbu.cam.ac.uk/
datasets/camcan/; (Shafto et al., 2014; Taylor et al., 2017)). Briefly,
volunteers were recruited to Cam-CAN through a large-scale colla-
borative research project funded by the Biotechnology and Biological
Sciences Research Council (BBSRC, grant number BB/H008217/1), the
UK Medical Research Council and University of Cambridge. For more
information, see http://www.cam-can.org. Data from 628 individuals
(age = 18-87, mean = 54.2, SD = 18.3, 324 females) were included in
the training set (Richard et al., 2018).

Cognitive assessment at baseline

Similar to our recent study (Richard et al., 2018), cognitive per-
formance at baseline was assessed with a set of neuropsychological and
computerized tests assumed to be sensitive to cognitive aging, including
the Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005),
the vocabulary and matrix subtests of the Wechsler Abbreviated Scale
of Intelligence (WASI; Wechsler 1999), the California Verbal Learning
Test (CVLT-IL; Delis et al., 2000), and the Delis-Kaplan Executive
Function System (D-KEFS) color word interference test (Stroop;
Delis et al., 2001). We included several computerized tests from the
Cognitive Assessment at Bedside for iPAD (CABPad; Willer et al., 2016),
including motor speed, verbal fluency (phonological and semantic),
working memory (forward and backward memory span), spatial Stroop
(executive control of attention), spatial attention span, and symbol digit
coding tests. Further, a computerized test based on the Theory of Visual
Attention (TVA; Bundesen 1990; Bundesen and Habekost 2008;
Dyrholm et al., 2011) provided measures of visual short-term memory
capacity (K), processing speed (C), and perceptual threshold (t,). Sev-
eral variables were highly correlated, and we used the clustering so-
lution from Richard et al. (2018), which included seven broad cognitive
domains. Cluster 1 reflected memory and learning (CVLT, attention
span, MoCA), cluster 2 visual processing speed (TVA-parameters C and
to), cluster 3 verbal skills (phonological and semantic flow), cluster 4
attentional control and speed (spatial Stroop), cluster 5 executive
control and speed (color-word Stroop), cluster 6 reasoning and psy-
chomotor speed (matrix, symbol coding and motor speed, visual short-
term memory capacity (TVA-parameter K)), and cluster 7 working
memory (forward and backward memory span). Briefly, the clusters
were computed using normalized sum scores of highly correlated test
scores. Prior to calculating summary scores based on the seven clusters
mentioned above, we used outlierTest from the car package (Fox and
Weisberg 2011) to identify the most extreme observations based on a
linear model, including age and sex. 17 observations were identified as
outliers based on a Bonferroni corrected p < 0.05 and treated as
missing values, we then replaced these extremes and imputed the 75


http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.cam-can.org

G. Richard, et al.

missing values (2.63% of the scores were missing/incomplete) using
predictive mean matching (pmm) method from the mice package in R
(multivariate imputation by chained equations; Buuren & Groothuis-
Oudshoorn 2011).

CCT protocol

All patients completed a computerized working memory training
program consisting of 25 online training sessions (Cogmed Systems AB,
Stockholm, Sweden). Similar to our recent study (Kolskér et al., 2019),
we used data from 17 of the 25 training sessions over a period of three
to four weeks, corresponding to approximately five weekly training
sessions. Seven sessions were carried out at the hospital, of which six
were in combination with tDCS (either sham or active stimulation). On
average, patients received two training sessions with tDCS per week
with a minimum of one day between each session. The remaining 10
training sessions were home-training. Each training session took ap-
proximately 45 min in which the participant completed eight different
exercises. In total, 10 different tasks targeting verbal and visuospatial
working memory were used, i.e. Grid, Hidden, Cube, Sort, Digits, 3D
Cube, Twist, Assembly, Rotating and Chaos. The difficulty level of each
task is adapted to the participant's performance, and in general, for
each task, it takes approximately two sessions for the difficulty level to
be appropriately adjusted to the individual level of performance. Thus,
we discarded the two first training sessions of each task from our
analysis. In addition, we included only tasks with a minimum of three
training sessions after exclusion of the two first sessions, discarding
Assembly and Chaos from further analysis.

tDCS protocol

The tDCS protocol has been described in details in a prior publica-
tion (Kolskar et al., 2019). Participants were randomly assigned to an
active or a sham condition, using an in-house Matlab script to randomly
generate a code for each participant while ensuring that each block of
20 participants was balanced across conditions. Both the participant
and the experimenter remained blinded throughout the experiment.
Stimulation was delivered during the first 20 min of the CCT sessions
using a battery-driven direct current stimulator (Neuroconn DC-STIM-
ULATOR PLUS, neuroConn GmbH, Illmenau, Germany), through
5 X 7 cm rubber pads using the following parameters: DC cur-
rent = 1 mA, total duration = 20 min, ramp-up = 120 s, fade-
out = 30 s, and current density = 28.57 uA/cm? The sham stimulation
followed the factory settings which include a ramp-up and a fade-out
period. Based on previous literature (Au et al., 2016; Pope and Miall
2012), we used the 10-20 system for the electrode location, with the
anodal electrode covering F3 and the cathodal electrode placed over
02, and fixated with rubber bands. The pads were covered with high-
conductive gel (Abralyt HiCl, Falk Minow Services Herrsching, Ger-
many) to keep the impedance threshold under < 20 kQ. For security
reason, the device has an absolute impedance threshold of 40 kQ.
Following each stimulation period, participants were asked to fill in a
side-effect form. In addition, after the last stimulation session, they
were asked to make a guess whether they thought they received active
stimulation or sham stimulation and the reason for their guess.

MRI acquisition

Patients were scanned on a 3T GE 750 Discovery MRI scanner with a
32-channel head coil at Oslo University Hospital. Paddings were used to
reduce head motion. T1-weighted data was acquired using a 3D IR-
prepared FSPGR (BRAVO) with the following parameters: repetition
time (TR): 8.16 ms, echo time (TE): 3.18 ms, inversion time (TI):
450 ms, flip angle (FA): 12°, voxel size: 1 X 1 X 1 mm, field of view
(FOV): 256 x 256 mm, 188 sagittal slices, scan time: 4:43 min.

Cam-CAN participants were scanned on a 3T Siemens TIM Trio
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scanner with a 32-channel head-coil at Medical Research Council (UK)
Cognition and Brain Sciences Unit (MRC—CBSU) in Cambridge, UK.
High-resolution 3D T1-weighted data was acquired using a magneti-
zation prepared rapid gradient echo (MPRAGE) sequence with the fol-
lowing parameters: TR: 2250 ms, TE: 2.99 ms, TI: 900 ms, FA: 9°, FOV
of 256 X 240 x 192 mm; voxel size =1 mm? isotropic, GRAPPA accel-
eration factor of 2, scan time 4:32 min (Shafto et al., 2014).

MRI processing

All T1-weighted images were processed using FreeSurfer 5.3
(http://surfer.nmr.mgh.harvard.edu; (Dale et al., 1999)) including
brain extraction, intensity normalization, automated tissue segmenta-
tion, generation of white and pial surfaces (Dale et al., 1999). All re-
constructions were visually assessed and corrected as appropriate, and
data with excessive motion or other major artefacts were discarded.

For StrokeMRI, images were processed with the longitudinal
Freesurfer pipeline (Reuter and Fischl 2011; Reuter et al., 2012), which
substantially increases reliability and power (Reuter et al., 2012). For
each individual dataset, we extracted mean cortical thickness, area and
volumes from 180 regions of interests (ROIs) per hemisphere based on a
surface-based atlas (Glasser et al., 2016), yielding 1080 structural brain
features per individual.

Age prediction

Based on a recent implementation (Kaufmann et al., 2019), brain
age estimation was performed both using global and regional features
as input. The regional brain age estimations were based on lobesStrict
segmentation (occipital, frontal, temporal, parietal, cingulate and in-
sulate) from Freesurfer (Dale et al., 1999). Overall, one global and 12
hemisphere specific lobe-based models were trained to estimate age in
628 healthy controls from the Cam-CAN cohort, using the same pipeline
as previously described (Richard et al., 2018). We used xgboost package
(extreme gradient boosting) (Chen and Guestrin 2016; Chen et al.,
2017) in R with the following parameters: learning rate (eta) = 0.1,
nround = 1500, gamma = 1, max_depth = 6, subsample = 0.5, to build
the prediction models. For each model, the performance was estimated
using a 10-fold cross-validation procedure within the training set.

Next, we tested the performance of our trained models by predicting
age in unseen subjects in the test sample. More specifically, we calcu-
lated the Pearson correlation between the predicted and the chron-
ological age, as well as the mean absolute error (MAE) in years. For
each individual and for each model, we calculated the brain age gap
(BAG), i.e. the difference between the estimated and chronological age,
yielding 13 BAGs per individuals. Next, in order to account for age-
related bias in the age prediction (Le et al., 2018), we used linear
modeling to regress out the main effect of age, age® and sex from each
BAG, resulting in 13 residualized BAG (BAGR) used in the calculation of
MAE and further analyses.

In some instances, the stroke lesions directly interfered with the
cortical reconstruction process in Freesurfer, which inevitably influ-
ences the estimated morphometric parameters in the relevant part of
the brain. In order to assess the influence of the stroke lesion on the
brain age estimates, we used outlierTest from the car package (Fox and
Weisberg, 2011) to identify the most extreme morphometric estima-
tions based on a linear model, including age, age® and sex. We identi-
fied 479 observations (0.24% of all observations) as extreme and re-
placed them using predictive mean matching (pmm) method from the
mice package in R (multivariate imputation by chained equations;
Buuren and Groothuis-Oudshoorn 2011). Next, we estimated brain age
using the resulting data frame containing imputed estimations and
compared it with the original estimations. Subsequent analyses were
performed both with and without the outliers included. Briefly, the
estimated brain age based on the original Freesurfer estimations and
the estimations after imputing realistic values to replace outliers
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Table 2

Pearson correlation between estimated brain age and chronological age with
their 95% confidence intervals on the test sample at baseline (stroke patients
from StrokeMRI sample) for each model, and the MAE calculated from BAGR.

Models r LowerCI UpperCI MAE
Global

all.T1 0.550 0.358 0.697 5.506
median 0.579 0.395 0.718 4.271
Regional

left_frontal 0.448 0.234 0.620 5.799
right_frontal 0.403 0.182 0.585 5.663
left_parietal 0.413 0.194 0.593 6.287
right_parietal 0.460 0.248 0.629 6.086
left_occipital 0.221 —0.019 0.436 7.642
right_occipital 0.206 —0.034 0.423 6.953
left_temporal 0.416 0.198 0.596 7.588
right_temporal 0.455 0.242 0.625 5.733
left_cingulate 0.086 —0.156 0.317 6.953
right_cingulate 0.439 0.224 0.613 8.804
left_insula 0.309 0.076 0.510 7.732
right_insula 0.366 0.140 0.556 6.277

resulted in nearly identical outcomes. (See supplemental results for the
analyses performed after removing the outliers.)

In addition to the global model including all T1 features, we cal-
culated a robust brain age based on the median of the 12 regional brain
ages.

Processing of Cogmed data

For each participant and for each included task, we used linear
modeling to quantify the changes in performance across the training
period, i.e. the cognitive improvement, using performance as dependent
variable and session number as independent variable (Kolskar et al.,
2019). In addition, we used the generic function predict in R
(Chambers and Hastie 1992) to estimate the baseline score and the final
score using the resulting individual linear models for each trained task.
To derive a common score across the trained tasks, we performed a
principal component analysis (PCA) on the performance improvement
scores and we used the first component as the individual's performance
improvement (Kolskar et al., 2019). All test scores were zero-centered
and standardized prior to running the PCA.

Statistical analysis

Statistical analyses were performed using R version 3.3.3
(2017-03-06) (R Core Team 2017). We assessed the reliability of the
age estimations using intra-class coefficient (ICC) using ICCest function
from the ICC R package (Wolak et al., 2012) across the two baseline
MRI and across all three MRI sessions.

To test if patients with relatively younger-appearing brain age show
better cognitive performance at baseline, we employed linear models
with the seven summary scores based on the clustering solution from
(Richard et al., 2018) as independent variable and each BAGR as the
dependent variable, including age and sex as covariates. To test if pa-
tients with relatively younger-appearing brain age would show larger
improvement in task performance, we employed linear models with
Cogmed performance gain score derived from the PCA as independent
variable and each BAGR as dependent variable, including age and sex as
covariates. For transparency, we report both uncorrected p-values and
p-values adjusted using false discovery rate (FDR; Benjamini and
Hochberg 1995) from the p.adjust function from the stats R package
(R Core Team 2017). We have previously reported no significant ben-
eficial effects of tDCS on cognitive improvement in response to the
intervention (Kolskar et al., 2019). Here, as a follow-up analysis, we
added tDCS group (sham vs experimental) as an additional variable and
tested for interactions between tDCS and BAGR on training gain to
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assess if any beneficial effects of tDCS would be dependent on BAGR.
Lastly, in order to assess if cognitive improvements in response to
intensive cognitive training is associated with reduced brain age during
the course of the intervention, we tested for associations between
cognitive performance and BAGR by time interaction in a longitudinal
context using linear mixed effects models (LME). For each trained task,
we used the estimated baseline and final scores from the individual
linear models, and we used BAGR from scan number 2 and 3 as time-
point one and two, respectively. Estimated task performance was en-
tered as dependent variable, with BAGR, time, BAGR by time interac-
tion, age and sex as fixed factors, and participant as random factor.

3. Results
Brain age predictions

Ten-fold cross-validation on the training sample (Cam-CAN) re-
vealed relatively high correlations between chronological and predicted
age for each of the 13 models, confirming reasonable model perfor-
mance. Supplementary Fig. 2 shows Pearson correlation with con-
fidence intervals between estimated brain age and chronological age
within the training sample for each of the 13 trained models ranging
from r = 0.84 (CI = 0.81-0.86) for the full model to r = 0.61
(CI = 0.56-0.66) for the model based on right cingulate features.

Table 2 shows Pearson correlation between estimated brain age and
chronological age with their 95% confidence intervals on the test
sample at baseline (stroke patients) for each model, in addition to the
MAE calculated from BAGR. The correlations ranged from r = 0.58
(CI = 0.40-0.72, MAE = 4.27) for the most comprehensive model
based on the median of the 12 regional models to r = 0.09
(CI = —0.16-0.32 MAE = 7.29) for the left cingulate model. See
Suppl. Table 1 for the model performance after replacing outliers by
imputed values.

Table 3 shows ICC with their confidence intervals for each model for
the two baselines and for the three timepoints ranging from 0.89
(CI = 0.82-0.94) for the right parietal model to 0.68 (CI = 0.50-0.80)
for the left cingulate model across the two baseline assessments, and
ranging from 0.86 (CI = 0.79-0.91) for the right parietal model to 0.70
(CI = 0.57-0.80) for the left cingulate model across the three time-
points. See Suppl. Table 2 for the estimation after replacing outliers by
imputed values.

Table 4 and Table 5 show summary statistics from the linear models
testing for associations between cognitive performance at baseline and
Cogmed performance gain, respectively, and BAGR, including age and
sex in the models. As expected, we found a main effect of age on cog-
nitive performance at baseline. However, the analyses revealed no
significant associations between cognitive performance at baseline and
BAGR after FDR correction for multiple comparisons. Amongst the non-
significant findings, the strongest associations were found between
cluster 5 (executive control and speed) and the right cingulate, cluster 7
(working memory) and the right cingulate, and cluster 4 (attentional
control and speed) and the right temporal BAGR. Further, we did not
find any significant associations between performance improvement
score and BAGR, nor main effect of age, nor sex on the performance
improvement score after FDR corrections. Amongst the non-significant
findings, the strongest associations with Cogmed performance gain
were found for the left frontal and left parietal models, indicating
higher cognitive gain for participants with lower BAGR (younger-ap-
pearing brains relative to their chronological age).

Table 6 shows summary statistics from the linear mixed effects
models testing for longitudinal associations between cognitive perfor-
mance and BAGR, including age and sex in the models. The analyses
revealed robust main effects of session and age, indicating increasing
performance during the course of the intervention, and generally lower
performance with increasing age. Beyond this, we did not find any
significant associations between performance and BAGR, nor BAGR by
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Table 3

Intra-class correlation (ICC) with their confidence interval of the estimated brain age for the two baseline scans (scan one and two), and for the three timepoints (scan

one, two and three).
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Baseline (scan 1 and 2)

All time points (scan 1 to 3)

Models ICC LowerCI UpperCI ICC LowerCI UpperCI
Global

BAGR all T1 0.788 0.661 0.871 0.783 0.686 0.859
BAGR_median 0.887 0.813 0.932 0.831 0.750 0.891
Regional

BAGR _left_frontal 0.790 0.664 0.872 0.812 0.724 0.879
BAGR_right_frontal 0.761 0.622 0.854 0.74 0.628 0.829
BAGR left_parietal 0.803 0.684 0.880 0.805 0.714 0.874
BAGR _right parietal 0.891 0.819 0.935 0.856 0.786 0.908
BAGR left_occipital 0.823 0.715 0.893 0.815 0.728 0.881
BAGR _right_occipital 0.786 0.658 0.870 0.811 0.723 0.878
BAGR left_temporal 0.800 0.679 0.878 0.807 0.718 0.876
BAGR _right_temporal 0.726 0.572 0.831 0.754 0.646 0.839
BAGR left_cingulate 0.677 0.503 0.799 0.700 0.577 0.801
BAGR _right_cingulate 0.814 0.700 0.887 0.802 0.711 0.872
BAGR left_insula 0.809 0.693 0.884 0.802 0.711 0.872
BAGR right_insula 0.791 0.666 0.873 0.789 0.693 0.863

time interaction after FDR correction for multiple comparisons.
Amongst the non-significant findings, the five strongest associations
were found between the left occipital and Digits, the left frontal and
Cube and 3D Cube, the left parietal and Hidden, and the right insula and
Twist and the eight strongest BAGR by time interactions were found
between the left occipital and Digits, the left frontal and Cube and 3D
Cube, the left parietal and Hidden, the right insula and Twist and Ro-
tating, and the left temporal and Cube and 3D Cube.

4. Discussion

Cognitive deficits are important predictors for outcome, in-
dependence and quality of life in stroke survivors, and computerized
cognitive training has been suggested among the candidate interven-
tions that may alleviate them. However, the lack of widely adapted
tools for stratification, outcome prediction and treatment monitoring
prevent an adequate assessment of the effectiveness of such training.
Advanced brain MRI provides various candidate markers for disease
monitoring and outcome prediction, integrating lesion specific in-
formation and characterization of the integrity of the unaffected parts
of the brain, which is highly relevant for cognitive functions and long-
term outcome. Here, we used brain age prediction based on brain
morphometry and machine learning to test the hypotheses that patients
with younger-appearing brains relative to their chronological age
would show preserved cognitive function and show more beneficial
treatment response compared to patients with relatively older-ap-
pearing brains.

Based on the notion that brain age prediction offers a sensitive
summary measure of brain integrity, we first tested the prediction ac-
curacy and then the reliability in a longitudinal context. The estimated
performance of the 13 trained models within the training set using a 10-
fold cross-validation procedure suggested a relatively good model fit,
with correlations ranging from 0.84 to 0.61 for the model based on all
T1 features and for the right cingulate model respectively. Further, the
models estimated brain age on the test sample also suggested an ac-
ceptable model fit with some regional differences in performance with
MAE ranging from 5.50 to 8.80 for the most comprehensive model
based on all T1 features and for the model based on right cingulate
features respectively. In addition, the age estimation based on the
median of the 12 regional models achieved the highest performance
with a Pearson correlation of r = 0.58 (CI = 0.40-0.72, MAE=4.27).

In line with a recent implementation in patients with MS
(Hogestol et al., 2019), our results demonstrated high reliability across
all timepoints for the global and regional models with ICC ranging from

0.70 to 0.86 for the right occipital and the right parietal models re-
spectively. The brain age estimation based on the median of the 12
regional models was amongst the most reliable models with an ICC of
0.89. across the two baselines and 0.83 across all timepoints, out-
performing the estimation based on all T1 features.

A particular challenge in clinical neuroimaging is that lesions may
directly interfere with automated processing and brain segmentations
at the site of the lesions. Here, to test for the influence of brain lesions
on BAGR estimation and reliability, we used outlier detection on the
individual features level to identify extreme observations and replace
those extremes by more realistic or probable values by means of im-
putation using predictive mean matching. Comparisons between brain
age from the raw and imputed feature sets revealed only minimal in-
fluence of outliers on both brain age estimates and reliability.
Importantly, this suggests that our model predictions are robust to gross
segmentation errors caused by the lesions, which supports the feasi-
bility of automated brain age prediction in patient groups with brain
disorders and lesions.

To test the hypotheses that patients with low BAGR at baseline show
better cognitive function and a more positive treatment response, we
used seven summary scores derived from a set of neuropsychological
and computerized tests at baseline and the performance gain during the
course of the intensive training period. After corrections for multiple
comparisons, linear models revealed no significant associations be-
tween BAGR and summary scores from the baseline assessment or
performance gain. In line with a few previous studies (Boyle et al.,
2019; Hogestol et al., 2019), region specific models revealed putative
associations between summary scores for executive control and speed,
working memory and the right cingulate BAGR, as well as, attentional
control and speed and the right temporal BAGR, suggesting better
cognitive performance with lower BAGR. In addition, regional analysis
revealed non-significant putative associations between performance
gain and left frontal and left parietal BAGR, indicating more positive
treatment response for patients with lower BAGR.

In order to assess if cognitive gains in response to intensive cogni-
tive training are reflected in longitudinal changes in brain age during
the course of the intervention, we tested for interactions between BAGR
and session on cognitive performance using linear mixed effects models.
Our analyses revealed a few putative associations between BAGR and
Cogmed performance, and also session by BAGR interactions on cog-
nitive performance in a longitudinal context. However, none of these
associations and interactions remained significant after correction for
multiple comparisons, and the direction of the associations, if any, did
not seem to converge. Hence, our results did not provide support for our
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Table 4

Summary statistics of the associations between cognitive performance at baseline and BAGR, including age and sex using linear models. Cluster 1: memory and
learning. Cluster 2: visual processing speed. Cluster 3: verbal skills. Cluster 4: attentional control and speed. Cluster 5: executive control and speed. Cluster 6:
reasoning and psychomotor speed. Cluster 7: working memory. The reported p-values are uncorrected values, and no main effect of BAGR remained significant after
FDR correction.

Clusters Models Bagr (t (p)) Age (t (p)) Sex (t (p))
Cluster1 all T1 0.152 (0.880) —4.884 (<0.001) —2.200 (0.032)
Cluster1 median —0.095 (0.925) —4.886 (<0.001) —2.220 (0.030)
Cluster1 left frontal —0.032 (0.975) —4.886 (<0.001) —2.201 (0.031)
Cluster1 right_frontal —0.795 (0.43) —4.933 (<0.001) —2.169 (0.034)
Cluster1 left_parietal —0.356 (0.723) —4.879 (<0.001) —2.227 (0.030)
Cluster1 right_parietal 0.466 (0.643) —4.902 (<0.001) —2.187 (0.032)
Cluster1 left_occipital —0.797 (0.429) —4.957 (<0.001) —2.281 (0.026)
Clusterl right_occipital 0.478 (0.634) —4.846 (<0.001) —2.182 (0.033)
Clusterl left_temporal —0.283 (0.778) —4.893 (<0.001) —2.232 (0.029)
Clusterl right_temporal —0.495 (0.622) —4.906 (<0.001) —2.246 (0.028)
Clusterl left_cingulate 1.018 (0.313) —4.910 (<0.001) —2.146 (0.036)
Cluster1 right_cingulate —0.330 (0.742) —4.843 (<0.001) —2.230 (0.029)
Cluster1 left_insula —0.898 (0.373) —4.921 (<0.001) —2.322 (0.024)
Cluster1 right_insula —0.651 (0.518) —4.922 (<0.001) —2.176 (0.033)
Cluster2 all T1 0.277 (0.783) —3.716 (<0.001) 1.853 (0.069)
Cluster2 median 0.263 (0.793) —3.723 (<0.001) 1.848 (0.069)
Cluster2 left_frontal 0.120 (0.905) —3.721 (<0.001) 1.821 (0.073)
Cluster2 right_frontal —0.754 (0.454) —3.753 (<0.001) 1.884 (0.064)
Cluster2 left_parietal 0.304 (0.762) —3.729 (<0.001) 1.840 (0.070)
Cluster2 right_parietal —0.012 (0.991) —3.718 (<0.001) 1.830 (0.072)
Cluster2 left_occipital 0.122 (0.903) —3.700 (<0.001) 1.838 (0.071)
Cluster2 right_occipital —0.931 (0.355) —3.806 (<0.001) 1.782 (0.08)
Cluster2 left_temporal 1.283 (0.204) —3.752 (<0.001) 1.927 (0.058)
Cluster2 right_temporal 0.345 (0.731) —3.713 (<0.001) 1.851 (0.069)
Cluster2 left_cingulate 0.498 (0.62) —3.716 (<0.001) 1.870 (0.066)
Cluster2 right_cingulate —0.431 (0.668) —3.679 (<0.001) 1.833 (0.072)
Cluster2 left_insula —0.482 (0.632) —3.728 (<0.001) 1.773 (0.081)
Cluster2 right_insula —0.658 (0.513) —3.750 (<0.001) 1.880 (0.065)
Cluster3 all T1 —0.497 (0.621) —2.96 (0.004) —3.072 (0.003)
Cluster3 median —0.529 (0.599) —2.947 (0.004) —3.068 (0.003)
Cluster3 left_frontal 0.986 (0.328) —2.996 (0.004) —3.119 (0.003)
Cluster3 right _frontal —0.744 (0.460) —2.977 (0.004) —2.997 (0.004)
Cluster3 left_parietal —0.808 (0.422) —2.935 (0.005) —3.063 (0.003)
Cluster3 right_parietal 0.796 (0.429) —2.971 (0.004) —2.995 (0.004)
Cluster3 left_occipital —0.608 (0.545) —2.992 (0.004) —3.079 (0.003)
Cluster3 right_occipital 0.243 (0.809) —2.919 (0.005) —3.013 (0.004)
Cluster3 left_temporal 0.264 (0.793) —2.945 (0.004) —3.016 (0.004)
Cluster3 right_temporal —0.901 (0.371) —2.985 (0.004) —3.096 (0.003)
Cluster3 left_cingulate —0.462 (0.646) —2.959 (0.004) —3.066 (0.003)
Cluster3 right_cingulate —1.708 (0.092) —2.87 (0.006) —3.118 (0.003)
Cluster3 left_insula —1.207 (0.232) —2.987 (0.004) —3.183 (0.002)
Cluster3 right_insula —1.909 (0.061) —3.086 (0.003) —2.983 (0.004)
Cluster4 all T1 —1.687 (0.096) —4.182 (<0.001) —0.170 (0.866)
Cluster4 median —1.990 (0.051) —4.166 (<0.001) —0.142 (0.887)
Cluster4 left_frontal —0.833 (0.408) —4.060 (<0.001) 0.043 (0.966)
Cluster4 right _frontal —0.838 (0.405) —4.106 (<0.001) 0.034 (0.973)
Cluster4 left_parietal —1.325 (0.190) —4.076 (<0.001) —0.040 (0.968)
Cluster4 right_parietal —1.471 (0.146) —4.112 (<0.001) —0.106 (0.916)
Cluster4 left_occipital —1.884 (0.064) —4.303 (<0.001) —0.155 (0.878)
Cluster4 right_occipital —1.334 (0.187) —4.213 (<0.001) —0.103 (0.918)
Cluster4 left_temporal —0.280 (0.780) —4.069 (<0.001) —0.032 (0.974)
Cluster4 right_temporal —2.063 (0.043) —4.243 (<0.001) —0.125 (0.901)
Cluster4 left_cingulate 0.023 (0.982) —4.063 (<0.001) —0.015 (0.988)
Cluster4 right_cingulate —1.316 (0.193) —4.003 (<0.001) —0.029 (0.977)
Cluster4 left_insula —0.042 (0.967) —4.064 (<0.001) —0.021 (0.983)
Cluster4 right_insula —0.637 (0.527) —4.094 (<0.001) 0.026 (0.979)
Cluster5 all T1 —1.318 (0.192) —4.442 (<0.001) —2.098 (0.040)
Cluster5 median —1.427 (0.158) —4.415 (<0.001) —2.077 (0.042)
Cluster5 left_frontal 0.570 (0.571) —4.388 (<0.001) —2.000 (0.050)
Cluster5 right_frontal —0.82 (0.415) —4.404 (<0.001) —1.917 (0.060)
Cluster5 left_parietal 0.464 (0.644) —4.381 (<0.001) —1.955 (0.055)
Cluster5 right_parietal —0.449 (0.655) —4.362 (<0.001) —1.986 (0.051)
Cluster5 left_occipital —0.417 (0.678) —4.386 (<0.001) —1.988 (0.051)
Cluster5 right_occipital —1.995 (0.050) —4.639 (<0.001) —2.145 (0.036)
Cluster5 left_temporal —1.263 (0.211) —4.430 (<0.001) —2.052 (0.044)
Cluster5 right_temporal —1.827 (0.072) —4.515 (<0.001) —2.103 (0.039)
Cluster5 left_cingulate 1.429 (0.158) —4.405 (<0.001) —1.874 (0.066)
Cluster5 right_cingulate —2.387 (0.020) —4.351 (<0.001) —2.067 (0.043)
Cluster5 left_insula —1.840 (0.070) —4.487 (<0.001) —2.202 (0.031)
Cluster5 right insula 0.655 (0.515) —4.354 (<0.001) —2.006 (0.049)
Cluster6 all T1 —0.008 (0.993) —5.334 (<0.001) —2.252 (0.028)

(continued on next page)
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Clusters Models Bagr (t (p)) Age (t (p)) Sex (t (p))

Cluster6 median —0.278 (0.782) —5.334 (<0.001) —2.275 (0.026)
Cluster6 left_frontal 0.176 (0.860) —5.339 (<0.001) —2.268 (0.027)
Cluster6 right_frontal —1.132 (0.262) —5.415 (<0.001) —2.211 (0.031)
Cluster6 left_parietal —0.128 (0.898) —5.329 (<0.001) —2.263 (0.027)
Cluster6 right_parietal 0.309 (0.758) —5.342 (<0.001) —2.239 (0.029)
Cluster6 left_occipital —1.046 (0.300) —5.443 (<0.001) —2.350 (0.022)
Cluster6 right_occipital —0.179 (0.858) —5.333 (<0.001) —2.268 (0.027)
Cluster6 left_temporal 0.673 (0.503) —5.346 (<0.001) —2.227 (0.030)
Cluster6 right_temporal —0.280 (0.781) —5.343 (<0.001) —2.273 (0.026)
Cluster6 left_cingulate 0.825 (0.412) —5.347 (<0.001) —2.202 (0.031)
Cluster6 right_cingulate —1.443 (0.154) —5.291 (<0.001) —2.310 (0.024)
Cluster6 left_insula —1.027 (0.308) —5.385 (<0.001) —2.378 (0.020)
Cluster6 right_insula 0.013 (0.990) —5.332 (<0.001) —2.256 (0.028)
Cluster7 all T1 0.206 (0.838) —5.298 (<0.001) —1.473 (0.146)
Cluster7 median —0.431 (0.668) —5.303 (<0.001) —1.524 (0.132)
Cluster7 left_frontal 0.636 (0.527) —5.333 (<0.001) —1.544 (0.128)
Cluster7 right_frontal 0.003 (0.998) —5.298 (<0.001) —1.495 (0.140)
Cluster7 left_parietal —0.378 (0.707) —5.292 (<0.001) —1.506 (0.137)
Cluster7 right_parietal 0.151 (0.881) —5.303 (<0.001) —1.486 (0.142)
Cluster7 left_occipital —0.595 (0.554) —5.344 (<0.001) —1.541 (0.128)
Cluster7 right_occipital —1.219 (0.227) —5.441 (<0.001) —1.591 (0.117)
Cluster?7 left_temporal 0.799 (0.427) —5.317 (<0.001) —1.458 (0.150)
Cluster7 right_temporal —0.336 (0.738) —5.311 (<0.001) —1.515 (0.135)
Cluster7 left_cingulate —0.572 (0.569) —5.323 (<0.001) —1.541 (0.128)
Cluster7 right_cingulate —2.241 (0.028) —5.312 (<0.001) —1.576 (0.120)
Cluster7 left_insula 0.989 (0.326) —5.335 (<0.001) —1.391 (0.169)
Cluster7 right_insula —0.234 (0.816) —5.307 (<0.001) —1.479 (0.144)

Table 5 about the individual determinants and heterogeneity of the aging brain

Summary statistics of the associations between Cogmed performance gain and
BAGR, including age and sex using linear models. The reported p-values are
uncorrected values, and no main effect of BAGR remained significant after FDR
correction.

Models Bagr (t (p)) Age (t (p)) Sex (t (p))
Global
BAGR_ all_ T1 —0.383 (0.703) 0.497 (0.622) —0.900 (0.373)

BAGR_median
Regional

BAGR left_frontal
BAGR _right_frontal
BAGR left_parietal
BAGR right _parietal
BAGR _left_occipital
BAGR _right_occipital
BAGR left_temporal
BAGR _right_temporal
BAGR _left_cingulate
BAGR _right_cingulate
BAGR left_insula
BAGR right_insula

0.382 (0.704) 0.453 (0.652) —0.902 (0.371)
2.399 (0.020)
0.241 (0.810)
2.037 (0.047)
0.264 (0.793)
—0.083 (0.934)
0.392 (0.697)
0.159 (0.875)
0.963 (0.340)
0.750 (0.457)
1.150 (0.256)
0.458 (0.649)
0.693 (0.491)

0.285 (0.777)
0.479 (0.634)
0.425 (0.673)
0.493 (0.625)
0.489 (0.627)
0.502 (0.618)
0.484 (0.631)
0.452 (0.653)
0.438 (0.663)
0.436 (0.664)
0.487 (0.629)
0.452 (0.653)

—1.146 (0.257)
—0.913 (0.366)
—0.876 (0.385)
—0.899 (0.373)
—0.899 (0.373)
—0.909 (0.368)
—0.900 (0.372)
—0.925 (0.359)
—0.883 (0.381)
—1.053 (0.297)
—0.882 (0.382)
—0.952 (0.345)

hypothesis that cognitive gains would be reflected in longitudinal
changes in brain age during the course of the intervention.

While this study does not provide strong support for the utility of
brain age estimation as a sensitive measure for cognitive reserve and
potential predictor for training outcomes in stroke patients, our results
suggest that region specific brain age estimations are reliable and might
provide more information than global brain age as a measure of brain
integrity. Future studies are needed to confirm the putative associations
between summary scores for executive control and speed (cluster 5) and
working memory (cluster 7) and the right cingulate BAGR, as well as
summary scores for attentional control and speed (cluster 4) and the
right temporal BAGR; in addition to the weak associations found be-
tween the left frontal and left parietal brain age with the rate of cog-
nitive improvement. In general, these findings are in line with our re-
cent study suggesting that, by capturing distinct measures of brain
aging, tissue specific age prediction models might better inform us

compared to models collapsing several brain compartments
(Richard et al., 2018).

The following methodological considerations should be taken into
account while interpreting the current results. Although our patient
sample was highly heterogenous in terms of localization, extent of the
lesions and stroke etiologies, most of them had small lesions. Further
studies are needed to confirm that the current approach for brain age
prediction based on automated brain morphometry is also feasible for
patients with larger lesions, and how stroke etiologies can impact BAGR
and cognitive improvement, for instance progressive vascular disease
(small vessel and large vessel disease) may affect cognition prior to the
stroke (Ihle-Hansen et al., 2014). In addition, the patients included in
this study suffered from mild to moderate stroke (NIHSS < 7 at hospital
discharge), representing a high functioning group with mild cognitive
deficits and better overall prognosis, limiting the generalizability of our
findings to more severe populations. Although previous studies have
reported links between cognitive function and brain age in healthy
controls, it is conceivable that the current associations would be
stronger had we sampled from a wider distribution in terms of stroke
severity and cognitive symptoms. The lack of control group prevents us
from distinguishing between the time-related changes and training-re-
lated changes (Kolskar et al., 2019), and, although tailored to the
current cognitive intervention regime, a longer interval between time
points might have increased sensitivity to detect relevant associations
between cognitive changes and changes in brain age.

In conclusion, reliable and non-invasive markers of brain health and
cognitive function are needed to help improving the current treatment
programs targeting cognitive deficits following stroke and other brain
disorders. Although the results do not support an immediate clinical
utility of brain age prediction in highly functioning stroke patients, we
speculate that using region specific brain age model as opposed to re-
ducing the whole brain to one summary score might be as reliable and
more informative potential biomarkers of brain integrity and health.
Importantly, our study supports the feasibility of automated brain age
prediction in patient groups with brain disorders and lesions by high-
lighting the high reliability and minimal impact of lesions on brain age
estimations.
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Table 6
Summary statistics from the linear mixed effects models testing for associations between cognitive performance and BAGR by time interaction, including age and sex
in the models. The reported p-values are uncorrected values, and no main effect of BAGR nor BAGR by time interaction remained significant after FDR correction.

Test Models Bagr (t (p)) Session (t (p)) Age (t (p) Sex (t (p)) Bagr:session (t (p))
Grid BAGR all_ T1 —0.478 (0.635) 10.704 (<0.001) —3.538 (0.001) —1.064 (0.292) 0.338 (0.737)
Sort BAGR all T1 —1.409 (0.165) 10.097 (<0.001) —2.642 (0.011) —0.573 (0.569) 1.157 (0.253)
Digits BAGR_all_T1 0.739 (0.463) 10.198 (<0.001) —6.649 (<0.001) —2.507 (0.015) —0.685 (0.496)
Cube BAGR_all_T1 0.053 (0.958) 15.279 (<0.001) —3.047 (0.004) —1.384 (0.172) —0.211 (0.833)
Hidden BAGR_all_ T1 —0.213 (0.832) 9.487 (<0.001) —5.612 (<0.001) —2.764 (0.008) 0.929 (0.357)
Twist BAGR all T1 —0.230 (0.819) 6.202 (<0.001) —3.813 (<0.001) —1.453 (0.152) 0.088 (0.930)
3D Cube BAGR_ all_T1 1.444 (0.155) 6.369 (<0.001) —4.353 (<0.001) —1.574 (0.122) —1.631 (0.109)
Rotating BAGR_all_ T1 0.198 (0.844) 4.307 (<0.001) —3.984 (<0.001) —1.508 (0.138) —0.349 (0.729)
Grid BAGR_median —0.507 (0.615) 10.840 (<0.001) —3.521 (0.001) —1.050 (0.299) 0.116 (0.908)
Sort BAGR_median —1.288 (0.204) 10.063 (<0.001) —2.648 (0.011) —0.610 (0.544) 0.968 (0.338)
Digits BAGR_median 1.091 (0.280) 10.377 (<0.001) —6.590 (<0.001) —2.472 (0.017) —1.165 (0.250)
Cube BAGR_median 0.157 (0.876) 15.422 (<0.001) —3.043 (0.004) —1.376 (0.175) —0.533 (0.596)
Hidden BAGR_median 0.357 (0.722) 9.768 (<0.001) —5.420 (<0.001) —2.665 (0.010) 0.286 (0.776)
Twist BAGR_median 0.520 (0.605) 6.203 (<0.001) —3.816 (<0.001) —1.505 (0.138) —0.614 (0.542)
3D Cube BAGR_median 1.345 (0.185) 6.454 (<0.001) —4.335 (<0.001) —1.522 (0.134) —1.808 (0.077)
Rotating BAGR_median 0.894 (0.376) 4.327 (<0.001) —3.982 (<0.001) —1.538 (0.130) —1.072 (0.289)
Grid BAGR left_frontal 0.298 (0.767) 10.94 (<0.001) —3.574 (0.001) —1.165 (0.249) —0.981 (0.331)
Sort BAGR left_frontal —0.020 (0.984) 10.125 (<0.001) —2.661 (0.011) —0.749 (0.457) —0.624 (0.536)
Digits BAGR left_frontal 1.800 (0.078) 10.527 (<0.001) —6.643 (<0.001) —2.450 (0.018) —1.942 (0.058)
Cube BAGR left_frontal 2.423 (0.019) 16.704 (<0.001) —3.086 (0.003) —1.439 (0.156) —3.187 (0.003)
Hidden BAGR left_frontal 1.343 (0.186) 9.835 (<0.001) —5.277 (<0.001) —2.502 (0.016) —1.278 (0.207)
Twist BAGR left_frontal 1.333 (0.189) 6.316 (<0.001) —3.850 (<0.001) —1.524 (0.134) —1.667 (0.102)
3D Cube BAGR left_frontal 2.274 (0.027) 6.407 (<0.001) —4.419 (<0.001) —1.537 (0.130) —2.380 (0.021)
Rotating BAGR left_frontal 1.496 (0.141) 4.297 (<0.001) —4.025 (<0.001) —1.529 (0.132) —1.526 (0.133)
Grid BAGR right _frontal 0.024 (0.981) 10.660 (<0.001) —3.554 (0.001) —1.117 (0.269) —0.019 (0.985)
Sort BAGR right frontal 0.417 (0.679) 10.034 (<0.001) —2.631 (0.011) —0.681 (0.499) —0.187 (0.853)
Digits BAGR right_frontal —0.428 (0.671) 10.187 (<0.001) —6.666 (<0.001) —2.475 (0.017) 0.324 (0.747)
Cube BAGR _right_frontal 1.340 (0.186) 15.643 (<0.001) —3.027 (0.004) —1.387 (0.171) —1.412 (0.164)
Hidden BAGR right_frontal —0.501 (0.618) 9.721 (<0.001) —5.308 (<0.001) —2.535 (0.014) 0.592 (0.556)
Twist BAGR right_frontal 0.012 (0.990) 6.264 (<0.001) —3.789 (<0.001) —1.503 (0.139) —0.320 (0.750)
3D Cube BAGR right _frontal 1.279 (0.207) 6.294 (<0.001) —4.351 (<0.001) —1.513 (0.136) —1.269 (0.210)
Rotating BAGR right _frontal 0.330 (0.743) 4.298 (<0.001) —3.980 (<0.001) —1.526 (0.133) —0.464 (0.645)
Grid BAGR left_parietal 0.879 (0.384) 10.990 (<0.001) —3.536 (0.001) —1.094 (0.279) —1.331 (0.189)
Sort BAGR left_parietal —0.197 (0.845) 10.109 (<0.001) —2.665 (0.010) —0.661 (0.511) —0.344 (0.733)
Digits BAGR left_parietal 0.968 (0.338) 10.668 (<0.001) —6.620 (<0.001) —2.417 (0.019) —1.482 (0.145)
Cube BAGR left_parietal 0.075 (0.941) 15.499 (<0.001) —3.044 (0.004) —1.377 (0.174) —0.514 (0.610)
Hidden BAGR left_parietal 2.051 (0.046) 10.062 (<0.001) —5.262 (<0.001) —2.544 (0.014) —2.060 (0.045)
Twist BAGR left_parietal 1.535 (0.131) 6.406 (<0.001) —3.804 (<0.001) —1.496 (0.141) —1.775 (0.082)
3D Cube BAGR left_parietal 0.291 (0.772) 6.561 (<0.001) —4.398 (<0.001) —1.493 (0.141) —1.054 (0.297)
Rotating BAGR left_parietal 1.225 (0.227) 4.423 (<0.001) —3.986 (<0.001) —1.521 (0.134) —1.515 (0.136)
Grid BAGR right_parietal —0.990 (0.327) 10.795 (<0.001) —3.558 (0.001) —1.072 (0.289) 0.661 (0.512)
Sort BAGR right_parietal —0.489 (0.627) 9.883 (<0.001) —2.661 (0.010) —0.673 (0.504) 0.248 (0.805)
Digits BAGR right_parietal 0.202 (0.841) 10.461 (<0.001) —6.620 (<0.001) —2.432 (0.019) —0.712 (0.480)
Cube BAGR right parietal —0.327 (0.745) 15.394 (<0.001) —3.058 (0.004) —1.385 (0.172) —0.116 (0.908)
Hidden BAGR right_parietal —0.450 (0.655) 9.734 (<0.001) —5.344 (<0.001) —2.544 (0.014) 0.817 (0.418)
Twist BAGR right_parietal —0.226 (0.822) 6.180 (<0.001) —3.832 (<0.001) —1.487 (0.143) 0.086 (0.932)
3D Cube BAGR right _parietal 0.994 (0.325) 6.366 (<0.001) —4.386 (<0.001) —1.554 (0.126) —1.489 (0.143)
Rotating BAGR right_parietal 0.625 (0.535) 4.309 (<0.001) —3.984 (<0.001) —1.543 (0.129) —0.716 (0.477)
Grid BAGR left_occipital —1.717 (0.092) 11.041 (<0.001) —3.487 (0.001) —1.095 (0.279) 1.794 (0.079)
Sort BAGR left_occipital —0.489 (0.627) 10.050 (<0.001) —2.561 (0.014) —0.664 (0.510) 0.282 (0.779)
Digits BAGR left_occipital 2.399 (0.020) 10.716 (<0.001) —6.684 (<0.001) —2.480 (0.016) —2.383 (0.021)
Cube BAGR _left_occipital —0.202 (0.840) 15.254 (<0.001) —3.083 (0.003) —1.423 (0.161) 0.473 (0.638)
Hidden BAGR left_occipital 0.028 (0.978) 9.630 (<0.001) —5.413 (<0.001) —2.599 (0.012) 0.407 (0.685)
Twist BAGR left_occipital —0.265 (0.792) 6.197 (<0.001) —3.782 (<0.001) —1.483 (0.144) 0.144 (0.886)
3D Cube BAGR _left_occipital 0.340 (0.735) 6.246 (<0.001) —4.33 (<0.001) —1.515 (0.136) —0.510 (0.612)
Rotating BAGR left_occipital —0.718 (0.476) 4.271 (<0.001) —4.005 (<0.001) —1.54 (0.130) 0.899 (0.373)
Grid BAGR _right_occipital —0.632 (0.530) 10.557 (<0.001) —3.532 (0.001) —1.061 (0.294) 0.236 (0.814)
Sort BAGR right_occipital —1.314 (0.195) 9.815 (<0.001) —2.613 (0.012) —0.621 (0.537) 1.026 (0.310)
Digits BAGR _right_occipital 0.595 (0.555) 10.645 (<0.001) —6.638 (<0.001) —2.400 (0.020) —1.355 (0.182)
Cube BAGR _right_occipital —0.982 (0.331) 15.919 (<0.001) —2.993 (0.004) —1.297 (0.200) —0.201 (0.842)
Hidden BAGR right_occipital —0.265 (0.792) 9.655 (<0.001) —5.254 (<0.001) —2.478 (0.016) —0.063 (0.950)
Twist BAGR _right_occipital —0.578 (0.566) 6.114 (<0.001) —3.808 (<0.001) —1.433 (0.158) 0.065 (0.948)
3D Cube BAGR _right_occipital 0.311 (0.757) 6.414 (<0.001) —4.349 (<0.001) —1.470 (0.148) —1.135 (0.262)
Rotating BAGR right_occipital —0.448 (0.656) 4.202 (<0.001) —4.007 (<0.001) —1.480 (0.145) —0.052 (0.959)
Grid BAGR _left_temporal 0.192 (0.849) 10.683 (<0.001) —3.572 (0.001) —1.073 (0.288) —0.517 (0.608)
Sort BAGR _left_temporal —0.300 (0.766) 9.878 (<0.001) —2.656 (0.011) —0.687 (0.495) 0.189 (0.851)
Digits BAGR left_temporal 0.733 (0.467) 10.26 (<0.001) —6.645 (<0.001) —2.469 (0.017) —0.552 (0.583)
Cube BAGR _left_temporal 1.224 (0.227) 16.324 (<0.001) —3.078 (0.003) —1.293 (0.202) —2.241 (0.030)
Hidden BAGR _left_temporal 0.367 (0.715) 9.897 (<0.001) —5.359 (<0.001) —2.665 (0.010) 0.33 (0.743)
Twist BAGR left_temporal 0.160 (0.874) 6.176 (<0.001) —3.829 (<0.001) —1.492 (0.142) —0.18 (0.858)
3D Cube BAGR _left_temporal 1.516 (0.136) 6.551 (<0.001) —4.407 (<0.001) —1.412 (0.164) —2.271 (0.028)
Rotating BAGR _left_temporal 0.480 (0.633) 4.297 (<0.001) —3.988 (<0.001) —1.527 (0.133) —0.403 (0.689)
Grid BAGR _right_temporal 0.116 (0.908) 10.638 (<0.001) —3.552 (0.001) —1.120 (0.268) —0.128 (0.899)

(continued on next page)
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Age (t (p))

Sex (t (p))

Bagr:session (t (p))

Test Models Bagr (t (p)) Session (t (p))
Sort BAGR right_temporal —0.530 (0.599) 9.997 (<0.001)
Digits BAGR right_temporal 1.236 (0.222) 10.329 (<0.001)
Cube BAGR _right_temporal 0.791 (0.433) 15.444 (<0.001)
Hidden BAGR _right_temporal 1.014 (0.315) 9.635 (<0.001)
Twist BAGR _right_temporal —0.183 (0.856) 6.233 (<0.001)
3D Cube BAGR _right_temporal 1.417 (0.163) 6.186 (<0.001)
Rotating BAGR _right_temporal —0.168 (0.867) 4.288 (<0.001)
Grid BAGR left_cingulate 0.182 (0.856) 10.635 (<0.001)
Sort BAGR _left_cingulate 0.667 (0.508) 9.662 (<0.001)
Digits BAGR _left_cingulate 0.318 (0.752) 10.09 (<0.001)
Cube BAGR _left_cingulate —1.008 (0.318) 15.291 (<0.001)
Hidden BAGR left_cingulate —0.726 (0.472) 9.718 (<0.001)
Twist BAGR left_cingulate —0.550 (0.585) 6.115 (<0.001)
3D Cube BAGR left_cingulate 0.251 (0.803) 6.225 (<0.001)
Rotating BAGR left_cingulate 0.524 (0.603) 4.161 (<0.001)
Grid BAGR right_cingulate —0.486 (0.629) 10.575 (<0.001)
Sort BAGR right_cingulate 0.034 (0.973) 9.922 (<0.001)
Digits BAGR _right_cingulate 0.266 (0.792) 10.123 (<0.001)
Cube BAGR right_cingulate —0.263 (0.794) 15.110 (<0.001)
Hidden BAGR right_cingulate 0.390 (0.698) 9.694 (<0.001)
Twist BAGR _right_cingulate 0.684 (0.497) 6.138 (<0.001)
3D Cube BAGR right_cingulate 1.072 (0.289) 6.119 (<0.001)
Rotating BAGR right_cingulate 0.262 (0.794) 4.352 (<0.001)
Grid BAGR left_insula 0.704 (0.485) 10.678 (<0.001)
Sort BAGR left_insula —1.289 (0.204) 10.083 (<0.001)
Digits BAGR left_insula 1.611 (0.114) 10.372 (<0.001)
Cube BAGR left_insula 0.282 (0.779) 15.283 (<0.001)
Hidden BAGR left_insula 0.406 (0.686) 9.749 (<0.001)
Twist BAGR left_insula 0.570 (0.571) 6.193 (<0.001)
3D Cube BAGR left_insula 1.625 (0.111) 6.310 (<0.001)
Rotating BAGR left_insula 1.102 (0.276) 4.277 (<0.001)
Grid BAGR right_insula —0.205 (0.838) 10.677 (<0.001)
Sort BAGR _right_insula —0.291 (0.772) 9.912 (<0.001)
Digits BAGR _right _insula —0.749 (0.457) 10.191 (<0.001)
Cube BAGR _right_insula —0.928 (0.358) 15.415 (<0.001)
Hidden BAGR right_insula 0.486 (0.629) 9.671 (<0.001)
Twist BAGR _right _insula 2.631 (0.011) 6.561 (<0.001)
3D Cube BAGR _right_insula —0.859 (0.394) 6.227 (<0.001)
Rotating BAGR right_insula 1.919 (0.061) 4.470 (<0.001)

—2.660 (0.011)
—6.602 (<0.001)
—3.033 (0.004)
—5.331 (<0.001)
—3.789 (<0.001)
—4.397 (<0.001)
—3.991 (<0.001)
—3.531 (0.001)
—2.683 (0.010)
—6.641 (<0.001)
—3.076 (0.003)
—5.376 (<0.001)
—3.860 (<0.001)
—4.348 (<0.001)
—4.013 (<0.001)
—3.564 (0.001)
—2.625 (0.012)
—6.658 (<0.001)
—3.116 (0.003)
—5.264 (<0.001)
—3.846 (<0.001)
—4.48 (<0.001)
—3.955 (<0.001)
—3.568 (0.001)
—2.639 (0.011)
—6.716 (<0.001)
—3.064 (0.004)
—5.526 (<0.001)
—3.848 (<0.001)
—4.350 (<0.001)
—3.982 (<0.001)
—3.546 (0.001)
—2.637 (0.011)
—6.797 (<0.001)
—3.053 (0.004)
—5.345 (<0.001)
—3.843 (<0.001)
—4.392 (<0.001)
—3.970 (<0.001)

—0.679 (0.500)
—2.513 (0.015)
—1.417 (0.162)
—2.620 (0.011)
—1.456 (0.151)
—1.630 (0.109)
—1.506 (0.138)
—1.076 (0.287)
—0.746 (0.459)
—2.440 (0.018)
—1.441 (0.156)
—2.661 (0.010)
—1.546 (0.128)
—1.474 (0.146)
—1.546 (0.128)
-1.112 (0.271)
—0.706 (0.484)
—2.447 (0.018)
—1.39 (0.171)

—2.506 (0.015)
—1.493 (0.142)
—1.511 (0.137)
—1.533 (0.131)
—1.153 (0.254)
—0.663 (0.510)
—2.564 (0.013)
—1.422 (0.161)
—2.753 (0.008)
—1.555 (0.126)
—1.510 (0.137)
—1.530 (0.132)
—1.107 (0.273)
—0.687 (0.495)
—2.417 (0.019)
—1.372 (0.176)
—2.560 (0.013)
—1.656 (0.104)
—1.486 (0.143)
—1.635 (0.108)

0.684 (0.497)
—1.445 (0.155)
—1.110 (0.272)
—0.902 (0.372)
—0.011 (0.991)
—1.332 (0.189)
0.077 (0.939)
—0.369 (0.714)
—0.481 (0.633)
—0.345 (0.731)
1.259 (0.214)
1.235 (0.223)
0.737 (0.465)
—0.504 (0.617)
—0.453 (0.652)
0.353 (0.725)
0.099 (0.921)
—0.333 (0.741)
—0.248 (0.805)
—0.424 (0.674)
—0.737 (0.465)
—1.521 (0.135)
—0.056 (0.956)
—0.543 (0.590)
1.223 (0.227)
—1.274 (0.209)
—0.174 (0.863)
0.280 (0.781)
—0.323 (0.748)
—1.862 (0.069)
—1.143 (0.258)
0.138 (0.890)
0.156 (0.877)
1.071 (0.289)
0.779 (0.440)
—0.252 (0.802)
—2.528 (0.015)
0.889 (0.378)
—2.041 (0.047)
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