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Abstract

Chronic pain is a complex neuropsychiatric disorder, characterized by sensory, cognitive, and 

affective symptoms. Over the last two decades, researchers have made significant progress towards 

understanding the impact of mesolimbic dopamine circuitry in acute and chronic pain. These 

efforts have provided insights into the circuits and intracellular pathways in the brain reward center 

that are implicated in sensory and affective manifestations of chronic pain. Studies have also 

identified novel therapeutic targets as well as factors that impact treatment responsiveness. 

Dysregulation of dopamine function in the brain reward center may further promote comorbid 

mood disorders and vulnerability to addiction. This review discusses recent clinical and preclinical 

findings on the neuroanatomical and neurochemical adaptations triggered by prolonged pain states 

in the brain reward pathway. Furthermore, this discussion highlights evidence of mechanisms 

underlying comorbidities between pain, depression, and addiction.
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Introduction

The mesolimbic system is a central nervous system circuit in which dopaminergic inputs 

from the ventral tegmental area (VTA) innervate brain regions involved in executive, 

affective, and motivational functions, including the prefrontal cortex (PFC), amygdala, and 

nucleus accumbens (NAc). Dysfunctions within this system can contribute to 

neuropsychiatric diseases, including major depression disorder (MDD) and addiction (1–3). 

Emerging evidence points to a critical role of the mesolimbic system in the perception and 

modulation of chronic pain symptoms (4–9), highlighting the importance of this pathway in 

pain therapeutics.
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Understanding the function of the brain reward pathway under chronic pain states can also 

provide insight into clinically detrimental comorbidities, such as depression and addiction 

vulnerability. Indeed, clinical research has demonstrated substantial comorbidity between 

pain and depression, with one study estimating a prevalence of 30% comorbidity (10). 

Considering that approximately 9% and 20% of the U.S. population suffers from depressive 

or chronic pain disorders, respectively, this increased potential for comorbidity is not trivial 

(11, 12). Notably, patients with debilitating mental conditions, such as MDD, have a higher 

comorbid presence of chronic pain, with each of these conditions positively reinforcing the 

other (13–18). Managing chronic pain is challenging because symptoms often vary between 

patients, while the currently available medications target only a subset of symptoms. 

Furthermore, we have limited knowledge of the gender- and age-related mechanisms of pain 

modulation.

The misuse of opioid analgesics has also been a major concern in pain management. 

Morphine, oxycodone, and other synthetic opioids show limited efficacy in the treatment of 

chronic pain, they promote hyperalgesia, and they contain the risk of physical dependence 

and addiction (19–24). The 300% increase in opioid analgesic prescriptions for chronic non-

cancer pain patients between 2000 and 2010 has contributed to the substantial rise in the 

incidence of physical dependence and substance use disorders (19–25). Based on the 

existence of affective and nociceptive comorbidities related to the mesolimbic system, it falls 

within reason that this network could underlie vulnerabilities to addiction and depression in 

chronic pain patients (26).

Mesolimbic Functional Magnetic Resonance Imaging (fMRI) in Chronic Pain 

Patients Compared to Depression and Addiction Populations

Functional imaging studies have been fundamental in documenting the impact of pain 

conditions on the brain reward circuitry (see Figure 1). By reviewing the literature on 

depression and addiction, below we summarize structural and functional commonalities 

between these conditions that may underlie comorbidities in chronic pain populations. 

Specifically, we focus on the ventral tegmental area (VTA), nucleus accumbens (NAc), 

prefrontal cortex (PFC), anterior cingulate cortex (ACC), and the amygdala, which play 

major roles in managing executive decision-making, emotional perception, and motivational 

drive.

Ventral Tegmental Area.

Normal mesolimbic function and affective processes, such as reward- mediated drive, are 

highly dependent on dopaminergic neurotransmission emanating from the VTA (27–29). 

Fibromyalgia and trigeminal neuralgia patient populations demonstrate a reduction in gray 

matter volume and decreased VTA activity (30, 31). Researchers have found that chronic 

migraine is associated with decreased connectivity between the extended amygdala and the 

VTA, which are both areas significantly involved in the management of executive function 

and emotional responses (32). Interestingly, studies on MDD populations have reported 

increased VTA connectivity to the ACC, a structure involved in pain processing (33). 

Decreased VTA activity also has been observed in MDD patients (33). The contribution of 
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reduced VTA activity to mesolimbic affective disorders is supported by the finding that deep 

brain stimulation (DBS) of the VTA is effective in treating chronic, refractory cluster 

headaches and treatment-resistant depression (TRD) (34–36). Alterations in VTA-NAc 

connectivity have also been observed in individuals suffering from substance abuse 

disorders, during active use as well as during abstinence phases; such changes may further 

impact executive or affective pain-processing centers (26, 37, 38). Specifically, changes in 

VTA-NAc connectivity in individuals suffering from substance abuse disorders occur in an 

opposite direction to those observed in individuals suffering from depression, as 3-day 

abstinent cocaine users show increased effective connectivity from the VTA to the NAc and 

medial PFC (mPFC) (37). However, another study found decreased functional connectivity 

between the VTA and NAc of active cocaine users (38). Differences between these studies 

may be related to the abstinent versus active status of the patients, or to the form of 

connectivity analyzed (effective connectivity analyzes a unidirectional influence of one brain 

area over another, while functional connectivity provides a broader bidirectional relationship 

between two regions).

Nucleus Accumbens.

The NAc projects to various executive, emotional, and motor regions and is considered a 

master regulator of motivational drive (39, 40). Although a decrease in NAc gray matter 

volume occurs in states of chronic pain (as with heroin addiction), the activity in this region 

collectively increases (31, 41–43). Human imaging studies also have helped elucidate the 

neurobiological mechanisms contributing to the transition from acute to chronic pain, which 

is fundamental for the development of efficient treatment tools. As shown by a longitudinal 

brain imaging study that followed subacute back pain patients for one year, increased 

functional connectivity of the NAc with the PFC predicts pain persistence, suggesting that 

this circuit contributes to the transition to chronic pain (44). A different study on chronic 

back pain patients indicated that the higher incidence of white matter and functional 

connections within the dorsal medial PFC (dmPFC)-amygdala-NAc circuit, and the observed 

reductions in amygdala volume, represent risk factors for pain persistence. This work 

demonstrated that the opioid receptor delta 1 (OPRD1) rs678849 single nucleotide 

polymorphism (SNP) is associated with amygdala volume, and the opioid receptor mu 1 

(OPRM1) rs1799971 SNP is associated with incidence of connections within the dmPFC-

amygdala-NAc white matter network (45). Interestingly, the status of NAc-PFC connectivity 

also contributes to depression and addiction, although these conditions arise from a net 

decrease in functional connectivity (33, 46, 47). Small-scale clinical studies have 

demonstrated promising efficacy of NAc DBS for depression and sustained heroin 

abstinence (48–51), suggesting that such approaches may be used for the treatment of 

comorbid conditions.

Prefrontal Cortex.

The PFC is a major component of the mesolimbic circuit, which affects several structures 

involved in pain perception, motivational drive, substance seeking, and anxiodepressive 

states (52–58). A resting-state fMRI study with rheumatoid arthritis patients revealed that 

prolonged pain states are associated with increased connectivity between the insula and the 

PFC (59). Using fMRI, Baliki et al. demonstrated that chronic back pain results in increased 
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PFC activity, and this activity is strongly related to pain intensity (60). The degree of change 

in BOLD (blood-oxygen-level-dependent) signal in the mPFC and the ACC were highly 

correlated with the severity of spontaneous pain in chronic back patients. In contrast, the 

level of insular activation was significantly associated with duration (years) of pain (60). A 

reduction in PFC thickness has also been reported in chronic pain populations (61, 62). 

Interestingly, effective treatment of low back pain (spinal surgery or facet joint injections) 

reverses the anatomical and functional maladaptations in ACC circuits (62). Since studies 

using repetitive transcranial magnetic stimulation (rTMS) and DBS of the PFC demonstrate 

significant and rapid improvement of fibromyalgia-induced chronic pain and TRD, along 

with a reduction of cue-evoked heroin cravings, it is possible that such therapeutic 

interventions may successfully manage comorbidities between these disorders (63–65).

Anterior Cingulate Cortex:

Evidence suggests that the ACC and the periaqueductal gray (PAG) form a central network 

that is primarily involved in spontaneous pain, and that the connectivity between these 

regions is increased in chronic pain patients (66, 67). This hypothesis is substantiated by the 

practice of treating patients exhibiting comorbid neuropathic pain and MDD with bilateral 

anterior cingulotomy, which effectively relieves symptoms associated with both disorders 

(68). Indeed, studies have shown that the serotonin-norepinephrine reuptake inhibitor 

(SNRI) Milnacipran is effective for treating fibromyalgia patients, likely because of its 

ability to decrease functional connectivity within the ACC-insular cortex-PAG network (69). 

Enhanced ACC activity has been associated with chronic pain and depression, whereas 

decreased ACC gray matter volume coincides with these two conditions as well as with 

heroin dependence (70–75). Notably, clinical trials suggest that interrupting abnormal ACC 

signaling by DBS or transcranial direct current stimulation has promise for the management 

of neuropathic pain, TRD, and cue-evoked cocaine cravings (76–78).

Amygdala:

Nuclei of the amygdala help regulate emotional stress and pain perception (79–81). Elevated 

baseline activity in the amygdala is associated with fibromyalgia- and inflammatory bowel 

syndrome-induced chronic pain and depression. By contrast, reductions in amygdala gray 

matter volume have been noted across the comorbidities discussed above (82–84). The 

amygdala also appears to modulate affective abnormalities associated with chronic pain, 

such as catastrophizing, through exaggerated and abnormal functional connectivity with the 

central executive network (85). This is important because catastrophizing can further 

exacerbate chronic pain conditions and increase the likelihood of poor clinical outcomes (86, 

87). Similar to the observations in chronic pain patients, studies have found that using oral 

morphine for one month leads to persistent decreases in amygdala gray matter volume (88). 

Other reports show decreased functional connectivity between the amygdala and the ACC in 

heroin-addicted individuals (89, 90). We expect that future work on the impact of pain-

addiction comorbidities on the function of this circuitry will fill a major gap in our 

understanding of addiction mechanisms.
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Common Clinical Alterations in Mesolimbic Dopamine Neurotransmission 

Among Chronic Pain-related Comorbidities

Both pre- and post-synaptic stages of dopaminergic neurotransmission are compromised 

during chronic pain (91, 92), as well as in other affective disorders (see Figure 2). In 

accordance with reduced VTA activity in chronic pain patients, a pilot study found that 

chronic pain states diminish the pre-synaptic metabolism of dopamine in the VTA, as well as 

in the anterior cingulate gyrus and the insular cortex (91). Furthermore, chronic back pain 

patients demonstrate blunted dopamine release in response to noxious challenges (92). 

Positron emission tomography (PET) imaging studies in chronic back pain and fibromyalgia 

patients have demonstrated a reduction in ventral striatal dopamine receptor subtype 2 and 

subtype 3 (D2/D3R) binding (92, 93). These studies also found that the reduction in 

dopamine receptor availability correlates with lower thermal pain thresholds. By contrast, a 

Serine-9-Glycine mutation in the DRD3 gene, which is known to increase D3R activity, 

restores thermal pain thresholds to healthy control levels (94). Activity-lowering 

polymorphisms in dopamine metabolism genes, such as DAT-1 (dopamine transporter-1) and 

MAO-A (monoamine oxidase-A), have been associated with increased sensitivity to noxious 

cold (95). Crucially, activity-reducing mutations in dopamine-clearing genes, such as COMT 

(catechol-O-methyltransferase), also appear to modify pain sensitivity by changing 

functional responses of μ-opioid receptors in the NAc and other pain-modulating circuits. 

Such maladaptations may ultimately impact pain tolerance and affective states (96).

As opposed to the downregulation of inhibitory postsynaptic mechanisms in the chronic pain 

population, MDD patients can display an upregulation of D2/D3R availability, although 

evidence varies between studies. This conclusion would potentially support the finding that 

fibromyalgia patients with comorbid depression have higher ventral striatum D2/D3R 

binding potential than a non-depressed comparison group (93, 97, 98). Furthermore, Cannon 

et al. noted a depression-related reduction of excitatory D1R expression in the caudate, 

which strongly innervates the ACC, highlighting the importance of balanced dopamine 

activity in regulating affective processing (99). Similar to observations from chronic pain 

patients, the dopamine metabolism genes DAT-1 and COMT play a critical role in mediating 

susceptibility to depression. One study found that activity-enhancing polymorphisms in 

these genes protect against negative emotionality, further supporting the role of dopamine in 

resilience to affective disorders (100). Overall, evidence suggests that polymorphisms 

leading to a reduction in dopamine neurotransmission promote both chronic pain and 

depression. Notably, tricyclic antidepressants and SNRIs promote the activity of dopamine 

and effectively ameliorate sensory and affective symptoms of neuropathic pain (15, 101). 

Given the slow onset and several side effects of antidepressants, there is a pressing need for 

novel fast-acting therapeutic interventions that promote dopaminergic activity in the brain 

reward pathway.

Similar to chronic pain and depression, D2/D3R function plays a critical role in addiction 

vulnerability. [11C]raclopride D2/D3R binding potential in heroin-dependent subjects both at 

baseline and after methylphenidate treatment is significantly lower than that of control 

subjects, particularly in the limbic striatum, caudate, and putamen (102). Researchers have 
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also observed a decrease in striatal D2R in opiate-dependent individuals upon naloxone-

precipitated withdrawal (103). The DRD2 rs1800497 polymorphism, which attenuates D2R 

activity, also has been linked to vulnerability to heroin addiction (104). In accordance with 

reported changes in dopamine transport in MDD and chronic pain, patients on methadone 

maintenance or prolonged heroin abstinence also demonstrate lower presynaptic DAT 

activity in the striatum (105). In the next few years, the use of advanced PET imaging tools 

is expected to enhance our knowledge on the genetic and neurochemical substrates of 

chronic pain and its affective comorbidities.

Chronic Pain-induced Alterations in the Mesolimbic Pathway: Insights from 

Preclinical Studies

Studies on Neuronal Circuits

Several rodent studies have demonstrated that noxious stimuli affect the release of dopamine 

in the brain reward center. Consistent with observations in human studies, chronic pain states 

in rodents lead to a reduction in NAc dopamine release and pain relief is associated with 

increased dopamine levels in the NAc shell (106). In preclinical settings, compounds with 

pain-alleviating properties promote place preference when mice are conditioned to 

environmental cues. Pain relief promotes place preference in studies using the spared nerve 

injury (SNI) model of neuropathic pain, the complete Freund’s adjuvant model of 

inflammatory pain, as well as models of post-surgical, cancer, and osteoarthritic pain (107). 

Thus, place preference to drugs with analgesic (but not rewarding) properties, such as 

lidocaine or the alpha-2 adrenoreceptor agonist clonidine, provides a valid model for 

evaluating spontaneous pain in rodents (108).

As mentioned earlier, there is major neurophysiological overlap between pain and 

depression (10, 17). Consistent with evidence from human studies, hypodopaminergic states 

in rodent models of neuropathic pain are associated with depression-like behaviors and 

reduced motivation (109–114). These affective deficits are linked to long-term depression of 

excitatory synaptic transmission in the medium spiny neurons of the indirect pathway (114).

Opto- and chemogenetic approaches have provided information on the functional role of 

brain reward circuits in affective and sensory pain symptoms. Ren and colleagues utilized 

fluorescent retrograde vectors and patch clamp electrophysiology to demonstrate that 

prolonged peripheral nerve injury using the SNI model leads to elevated intrinsic excitability 

of NAc shell medium spiny neurons of the indirect pathway (115). Long-term neuropathic 

pain states were also associated with a reduction in dendritic number and size, as well as 

with a decrease in extracellular dopamine levels. Furthermore, peripheral nerve injury 

caused a reduction in the spontaneous spiking of VTA dopamine cells projecting to NAc 

medium spiny neurons. Chemogenetic excitation of medium spiny neurons of the indirect 

pathway worsened SNI-induced mechanical allodynia, whereas inhibition alleviated 

allodynia (115). These results further support a role of the indirect dopamine pathway in 

modulating sensory hypersensitivity symptoms of peripheral nerve injury. Pharmacologic 

blockade of calcium-permeable AMPA receptors in the NAc core increased depression-like 

behaviors in models of neuropathic pain (116). The same study demonstrated that delivery 
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of an AMPA receptor potentiator into the NAc ameliorates behavioral manifestations of 

depressive states. Thus, calcium-permeable AMPA receptors and their downstream pathways 

may provide new avenues for the management of pain-induced depression.

In a rat model of peripheral neuropathy, activation of PFC neurons projecting to the NAc 

core increased excitatory postsynaptic potentials and alleviated sensory hypersensitivity 

symptoms (117). In these experiments, light activation of neurons that were infected with 

adeno-associated viruses encoding channelrhodopsin-2 induced action potential spikes 

within the prelimbic PFC of rats. This optogenetic activation alleviated both mechanical and 

cold allodynia. Using the place-conditioning paradigm, the investigators demonstrated that 

optical activation of these neurons relieved pain and promoted a preference for the 

associated compartment. Optical stimulation of the prelimbic PFC also reversed depression-

like behaviors that were observed several weeks after nerve injury. Subsequent experiments 

utilized photoactivation of channelrhodopsin-2-expressing NAc medium spiny neurons to 

confirm that the activation of projections from the prelimbic PFC to the NAc was 

responsible for these effects, pointing to this corticostriatal circuit as an important target of 

neuromodulation therapy. On the contrary, inhibiting rat pyramidal mPFC neurons 

projecting to the NAc core by halorhodopsin exacerbated acute pain symptoms, suggesting a 

role of this circuitry in the endogenous antinociceptive pathway (118). This intervention also 

heightened affective and sensory symptoms of peripheral nerve injury, suggesting that 

therapeutic interventions targeting the activity of this pathway may efficiently alleviate 

chronic pain symptoms.

Rodent models have also demonstrated a role of the ACC in mood disorders triggered by 

chronic pain states. Lesions of the ACC prevent the development of anxiodepressive 

behaviors without impacting hypersensitivity symptoms, whereas optogenetic activation of 

the ACC promotes depressive states (119). A study by Sellmeijer and colleagues applied the 

cuff model of peripheral nerve injury to demonstrate a potent role of the ACC in modulating 

anxiodepressive behaviors (120). Using in vivo electrophysiological recordings, the 

investigators observed an increased firing rate and bursting activity within the ACC at time 

points at which anxiety and depression-like behaviors had developed (120).

Using a rat neuropathic pain model, a recent study demonstrated that inactivation of 

amygdala nuclei alleviates hyperalgesia/allodynia and depression-like behaviors (121). More 

recently, Corder and colleagues combined circuit optogenetics with in vivo calcium imaging 

in mice to investigate the function of an amygdala-NAc circuit in pain-free and neuropathic 

pain states (122). These studies showed that while this amygdala-NAc circuit did not have a 

prominent role in nociceptive thresholds in pain-naïve mice, it played a major role in 

modulating affective pain symptoms in mice suffering from prolonged peripheral nerve 

injury. Inhibiting this pathway with opsins alleviated the aversive components of pain 

without impacting mechanical allodynia (122). Table 1 summarizes key preclinical findings 

on mesolimbic circuits in the modulation of chronic pain symptoms.

Studies on Transcriptional and Epigenetic Adaptations in the Brain Reward Center

Prolonged neuropathic pain states also promote adaptations in gene expression in the mPFC 

and the NAc. Evidence from next-generation RNA sequencing (RNA-Seq) and subsequent 
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bioinformatic analyses suggest that prolonged pain states affect several intracellular 

pathways within the mPFC and the NAc, including G protein, cAMP, and nitric oxide 

signaling, as well as immune, glutamatergic and glucocorticoid pathways (123). Several of 

the identified genes and pathways have documented roles in neuropsychiatric disorders. For 

example, recent studies pointed to the role of brain-derived neurotrophic factor and tumor 

necrosis factor-alpha (TNF-α) in regulating symptoms of chronic pain, depression, and 

addiction (124–127). RNA-Seq studies by Mitsi et al., which used the SNI model to monitor 

gene expression adaptations in response to desipramine treatment, showed that recovery 

from chronic pain states coincides with an upregulation of genes and intracellular cascades 

in neurons of the indirect pathway. In particular, recovery from chronic pain was associated 

with decreased phosphorylation of the transcription factor CREB (c-AMP response element 

binding) and the AMPA receptor subunit GluR1 (128) in the NAc. These studies also 

highlight a negative modulatory role of histone deacetylase 5 on the onset of action and 

efficacy of desipramine, suggesting that targeting histone function in the NAc may 

efficiently accelerate the expression of genes necessary for recovery from sensory and 

affective pain symptoms. Changes in the epigenetic landscape may also play critical roles in 

the transition from acute to chronic pain, the maintenance of pain, or the development of co-

morbid depression. For example, there is a decrease in global gene methylation in the PFC 

six months after peripheral nerve injury, which is a time point at which both sensory deficits 

(mechanical and cold allodynia) and anxio-depressive behaviors are typically observed 

(129). This adaptation is particularly important as DNA methylation and other histone 

modifications may lead to the suppression of genes necessary for synaptic remodeling and 

recovery from chronic pain states (130). In this study, partial recovery from sensory 

hypersensitivity coincided with a return of global DNA methylation to normal levels. Thus, 

interventions in transcriptional or epigenetic processes may provide a powerful avenue for 

pharmacological management of chronic pain and comorbidities. Given the wide presence of 

gene expression modulators, a detailed understanding of the transcriptional and epigenetic 

adaptations underlying chronic pain and comorbidities is crucial for the development of 

medications with limited off-target effects.

Brain Reward Center Modulation of Opiate Actions Under Chronic Pain States

Recent studies assessed the impact of pain on opiate addiction vulnerability using a rat 

model of inflammatory pain in combination with heroin self-administration (131). In this 

study, rats showed decreased sensitivity to self-administration of low heroin doses, but 

increased intake with higher amounts of available heroin (131). It will be important to utilize 

animal models of chronic pain to determine if prior exposure to opioids or prolonged 

treatment regimens that cause physical dependence affect addiction-related behaviors. 

Various laboratories have observed a reduction in morphine reward sensitivity under long-

term pain states. For instance, using the conditioned place preference test researchers have 

shown that the loss of morphine reward sensitivity is accompanied by cellular adaptations in 

the VTA, including adaptations in G protein-coupled extracellular kinase-2 (109, 110). 

Nerve injury in mice is also accompanied by upregulation of TNF-α in the NAc; genetic or 

pharmacologic inactivation of TNF-α restores sensitivity to morphine place preference 

(125). Work from our group demonstrated that three weeks after SNI, mice show a small but 

significant reduction in oxycodone reward sensitivity in the conditioned place preference 
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assay (132). Importantly, blocking intracellular modulators of mu opioid receptor function, 

such as regulator of G protein signaling-9–2, attenuated the rewarding effects of oxycodone 

and prevented the reinstatement of oxycodone place preference (132). Using a peripheral 

nerve injury paradigm, Taylor and colleagues demonstrated a potent role of VTA microglia 

in the rewarding effects of opioids and other drugs that increase dopamine levels in the NAc 

(133). These studies highlight various mesolimbic-related mechanisms that may affect 

sensitivity to the behavioral effects of opioids, and show that chronic pain states do not 

afford protection from physical dependence or addiction.

Future Directions

Substance abuse-related deaths have reached an alarming level, with the National Institutes 

of Health reporting over 70,000 U.S. total deaths in 2017, ~68% of which were attributed to 

opioids (134). With the rising prevalence of chronic pain and depression, this death toll is 

likely to be exacerbated by prescription or comorbidity-related substance abuse (135, 136). 

The current situation necessitates a better understanding of structural changes within brain 

networks that manage executive/cognitive function, emotion, and perception. Various studies 

have linked the mesolimbic pathway to chronic pain, depressive, and addictive disorders. 

Given the limited comorbidity-specific preclinical models, human imaging studies provide a 

means to highlight and compare adaptations in the mesolimbic system that are associated 

with the symptomatology of specific diseases. These studies, in turn, can guide the 

development of new models that better reflect the human condition. Comorbidity analyses 

are also crucial for directing therapeutic approaches, such as TMS and DBS (76, 137–139). 

Information from clinical imaging analyses could also provide insight for translational 

research directed towards synaptic and cell type-specific mechanisms of chronic pain and 

comorbid disorders. The identification of circuits and cellular populations of the brain 

reward pathway may guide drug development efforts towards a range of new targets, from 

neuropeptide receptors to epigenetic modifiers. Collectively, these research and 

technological directions will help address a pressing challenge in therapeutics: the 

development of tailored, effective, and safe treatment approaches that reverse 

hypodopaminergic states and other pathological adaptations to chronic pain and related 

comorbidities.
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Figure 1: 
fMRI studies have provided data on structural and functional changes within the mesolimbic 

circuitry underlying chronic pain and depression, independently and within comorbid states. 

This schematic highlights intra-regional changes in collective baseline activity and gray 

matter volume within chronic pain populations, as well as changes in functional connectivity 

within chronic pain, depression, and addiction populations. PFC=prefrontal cortex; 

ACC=anterior cingulate cortex; NAc=nucleus accumbens; VTA=ventral tegmental area; 

Am=amygdala.
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Figure 2: 
Gene mutations underlying alterations in mesolimbic dopamine neurotransmission 

commonly encode proteins involved in dopamine synthesis, clearance, and release, as well 

as pre-synaptic reuptake and post-synaptic receptor binding. This representation shows 

examples of mutations altering the regulation of these genes, along with the respective 

abnormal affective phenotypes. COMT=catechol-O-methyltransferase; MAO-A=monoamine 

oxidase A; DAT=dopamine active transporter; D1/2/3R=dopamine receptor D1/2/3; PT=pain 

tolerance; NA=negative affect; SA=substance abuse risk
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Table 1:

Summary of preclinical findings highlighting the role of different mesolimbic brain regions in the modulation 

of affective and sensory symptoms of chronic pain.

Brain Region Pain Model Intervention Outcome Reference

Nucleus 
Accumbens

Spared Nerve 
Injury

Optogenetic Activation (PFC-NAc 
core circuit)

Alleviated both mechanical and cold 
allodynia, reversed depression-like behaviors 115

Chemogenetic Activation Increased mechanical allodynia 115

Chemogenetic Inhibition Decreased mechanical allodynia 115

Pharmacological blockade of calcium-
permeable AMPA receptors Increased depression-like behaviors 116

Pharmacological activation of calcium-
permeable AMPA receptors Decreased depression-like behaviors 116

Prefrontal 
Cortex

Spared Nerve 
Injury

Electrophysiology (activation of 
mPFC-NAc circuit)

Increased excitatory postsynaptic potential, 
alleviated sensory hypersensitivity 117

Optogenetic Activation Alleviation of both mechanical and cold 
allodynia 117

Optogenetic Inhibition Increased nociceptive sensitivity and aversive 
responsiveness 118

Anterior 
Cingulate 
Cortex

Sciatic Nerve 
Cuff Optogenetic Activation Promoted depressive states 120

In vivo electrophysiology
Increased firing rates and bursting activity 
coinciding with timepoints of development 
of anxiodepressive-like behaviors

120

Amygdala
Chronic 
Constriction 
Injury

Pharmacological inactivation of BLA 
and CeA Nuclei

Reversed hyperalgesia, allodynia and 
depressive-like behaviors 121

Spared Nerve 
Injury

In vivo calcium imaging and 
optogenetics (Amygdala-NAc circuits)

No effect on nociceptive threshold, decreased 
affective pain symptoms 122
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