ARTICLE

Structural basis for adhesion G protein-coupled
receptor Gpr126 function
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Many drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and
alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key
functions in diverse biological processes including neurodevelopment, embryogenesis, and
tumorigenesis. However, their structures and mechanisms of action remain unclear, ham-
pering drug development. The aGPCR Gpr126/Adgrg6 regulates Schwann cell myelination,
ear canal formation, and heart development; and GPR126 mutations cause myelination defects
in human. Here, we determine the structure of the complete zebrafish Gpr126 ECR and reveal
five domains including a previously unknown domain. Strikingly, the Gpr126 ECR adopts a
closed conformation that is stabilized by an alternatively spliced linker and a conserved
calcium-binding site. Alternative splicing regulates ECR conformation and receptor signaling,
while mutagenesis of the calcium-binding site abolishes Gpr126 function in vivo. These
results demonstrate that Gpr126 ECR utilizes a multi-faceted dynamic approach to regulate
receptor function and provide relevant insights for ECR-targeted drug design.
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ulticellular organisms rely on cellular communication

to carry out critical biological processes, and numerous

cell-surface receptors utilize their extracellular regions
(ECRs) to modulate these cellular-adhesion and signaling events.
For example, the ECRs of integrins, epidermal growth factor
receptor (EGFR), and several G protein-coupled receptors
(GPCRs) change conformation upon ligand binding, which pro-
pagates signals across the membrane!~®. Targeting the essential
ECRs of receptors with antibody-like drugs to trap the ECRs in
distinct conformations, or to modulate ECR-ligand interactions
has been an effective way to treat diseases caused by defective
proteins. Currently, the anti-cancer drug cetuximab targets EGFR
to prevent an activating extended ECR conformation!?, and the
drug etrolizumab blocks ligand binding to the ECRs of integrins
in order to treat inflammatory bowel diseases!!. Remarkably,
earlier this year, the migraine preventive drug erenumab, which
blocks ligand binding to the ECR of calcitonin receptor-like
receptor, became the first antibody drug against a GPCR to be
approved by the Food and Drug Administration!®13, Despite
these and other breakthroughs, there are many essential receptors
in the human genome that are not currently drugged, including
the 32 adhesion GPCRs (aGPCRs), a diverse and understudied
family of GPCRs with critical roles in synapse formation, angio-
genesis, neutrophil activation, embryogenesis, and more!4-16,

Like all GPCRs, aGPCRs have canonical signaling seven-
transmembrane (7TM) domains!”-18, However, unlike most other
GPCRs, aGPCRs have large ECRs, which can extend up to almost
6000 amino acids (aa) and consist of various adhesion domains
that mediate cell-cell and cell-matrix interactions!®. In addition,
during biosynthesis, aGPCRs are uniquely autoproteolysed within
a conserved GPCR Autoproteolysis INducing (GAIN) domain of
the ECR that is juxtaposed to the 7TM?2Y, resulting in a fractured
receptor that nevertheless remains tightly associated at the cell
surface?1-22,

Although their protein architectures remain largely unknown,
functional studies have shown that aGPCR ECRs can regulate
receptor function and that antibody-like synthetic proteins that
target the ECRs can modulate downstream signaling®22-25. A
current model for aGPCR regulation suggests that transient
interactions between the ECR and 7TM directly regulate receptor
signaling®?2-2>. There are also numerous reports that aGPCRs
use their ECRs to mediate functions in a 7TM-independent
manner26-3, Another non-mutually exclusive model for aGPCR
activation posits that ligand binding to the ECR can exert force
and cause dissociation at the autoproteolysis site, revealing a
tethered peptide agonist, which then activates the receptor31-34,
Clearly, the ECRs of aGPCRs have significant and diverse roles
but remain poorly understood at a molecular level due to the
scarcity of structural information, such as interdomain interac-
tions, protein architecture, and identities of extracellular domains,
which would provide insight into their mechanisms of action.

Gprl126/Adgrg6 is one of the better studied aGPCRs and is
essential for Schwann cell (SC) myelination and other func-
tions®>-37. In vertebrate peripheral nervous system (PNS) devel-
opment, the myelin sheath surrounding axons is formed by SCs
and functions to facilitate rapid propagation of action poten-
tials®8. Disruption of myelination is associated with disorders
such as Charcot-Marie-Tooth disease, which is characterized by
muscle weakness3>40. In gpri26-mutant zebrafish, SCs fail to
express genes critical for myelination during development and are
not able to myelinate axons due to deficient G-protein signaling.
Additional studies have shown that this regulatory function of
Gprl26 is conserved in mammals#142 and that Gpr126 also plays
a role in myelin maintenance through communication with the
cellular prion protein3. In humans, GPR126 mutations are linked
to several cancers and other diseases*4~48, including adolescent

idiopathic scoliosis*® and arthrogryposis multiplex congenita, a
disorder characterized by multiple joint contractures®®. Further-
more, Gprl26 is required for inner ear development in zebra-
fish3> and GPR126 is required for heart development in mouse37,
and it has been shown that the latter function is ECR-dependent
and does not require the 7TM30. While the biological significance
of Gpr126 has become indisputable over recent years, the mole-
cular mechanisms underlying Gpr126 functions remain unclear.

Gprl26 has a large ECR consisting of 839 aa. Prior to the
current study, four domains in the ECR of Gpr126 had been
identified through sequence-based bioinformatics: Complement
Clr/Cls, Uegf, Bmpl (CUB), Pentraxin (PTX), Hormone
Receptor (HormR), and GAIN20>1:52, However, a 150 aa region
between PTX and HormR, could not be assigned to a known
structural fold. Furin, a Golgi-localized protease, is reported to
cleave human and mouse GPR126 in this region®!, although any
effect on protein architecture is unclear because of the unspecified
structure. In addition, alternative splicing occurs in
Gpr126/GPR126, resulting in Gpr126/GPR126 isoforms that vary
in their ECRs®!»>3. Alternative splicing of exon 6 was observed in
human and zebrafish3%°1, producing isoforms that either include
(S1 isoform, henceforth referred to as +ss) or exclude (S2 iso-
form, henceforth referred to as —ss) a 23 aa segment found within
the unknown region between PTX and HormR. A genetic variant
in GPRI126 leading to decreased inclusion of exon 6 was recently
found to be associated with adolescent idiopathic scoliosis®*.
Thus, determining the ECR structure, conformation, and other
possible unexplored features will be instrumental in under-
standing Gpr126 function.

In this study, we determine the high-resolution crystal struc-
ture of the full-length ECR of zebrafish Gpr126, which reveals five
domains, including a newly identified Sperm protein, Enter-
okinase and Agrin (SEA) domain, in which furin-mediated
cleavage would occur in the human and mouse homologs.
Intriguingly, the ECR is in an unexpected closed conformation
that is reminiscent of the inactive closed conformation of the
ECRs from EGFR and integrin families. This closed conformation
is sustained by an alternatively spliced linker, while insertion of
the alternatively spliced site gives rise to dynamic open-like ECR
conformations and increases downstream signaling. A second
feature that also mediates the closed conformation is a newly
identified calcium-binding site at the tip of the ECR. Strikingly,
zebrafish carrying point mutations at this site have both myeli-
nation defects and malformed ears, demonstrating the critical role
of the ECR in Gpr126 function in vivo. These results altogether
show that the ECR of Gpr126 has multifaceted roles in regulating
receptor function, a feature that is likely true for other aGPCRs,
and that will form the basis for further investigations in the efforts
to drug aGPCRs.

Results

Structure of the full-length ECR of Gpr126. To determine the
structure of the ECR of Gprl26, the full-length ECR (—ss) from
zebrafish Gprl26 (T39-S837) was expressed and purified from
insect cells using the baculovirus expression system. Zebrafish
Gprl26 (Fig. 1a) has high sequence identity (47%) to its human
homolog but its ECR has a fewer number of N-linked glycosy-
lation sites (15 predicted in zebrafish, 26 in human) and no furin-
cleavage site (Supplementary Fig. 1A), and thus yields a more
homogeneous sample (Supplementary Fig. 1B, C). Crystals of
both native and selenomethionine (SeMet)-labeled zebrafish
Gprl126 ECR (—ss) were obtained and diffracted to 24A (Sup-
plementary Fig. 1D), and the structure was determined by SeMet
single-wavelength anomalous diffraction (SAD) phasing (Sup-
plementary Table 1).
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Fig. 1 Crystal structure of the full extracellular region of Gpr126. a Domain organization of Gpr126, indicating the ECR and 7TM regions. The unknown
region includes a splice site. Cleavage sites (furin cleavage, autoproteolysis) are indicated by dashed lines. Domains are colored dark blue (CUB), cyan
(PTX), gray (unknown region), yellow (HormR), red (GAIN), and purple (7TM). Domain boundaries are indicated below. SP indicates signal peptide. b
Structure of the full ECR of (—ss) Gpr126. Domains are colored as in a except for the newly identified SEA domain (green). Domains are numbered (1-5)
from N to C-terminus. Calcium ion in CUB domain is indicated as a green sphere. Dashed lines represent disordered residues. N-linked glycans are shown
as green sticks. ¢ Schematic of full-length Gpr126. The previously unknown region (SEA domain and linker region) is labeled. Autoproteolysis in GAIN

domain is indicated by an asterisk and the last beta-strand of the GAIN domain is colored gray. d Representative negative-stain EM 2D class average of
Gpr126 (—ss) ECR. Scale bar (white) represents 50 A. Domains are assigned and colored according to color scheme noted above. The dashed line

represents the linker region.

The structure, with overall dimensions of 110 x 80 x 35 A,
revealed the presence of five domains (Fig. 1b, c), of which only
four were identified previously. The N-terminal region of the
protein is composed of the CUB domain followed very closely by
the PTX domain. The 150 aa unknown region after the PTX
domain was revealed to be a 22 aa linker that is partially
disordered, the 23 aa alternatively spliced region (not present in
crystal structure construct), and a structured domain which spans
105 aa and was identified as a SEA domain through the Dali
server>. The Gpr126 SEA domain adopts a ferredoxin-like alpha/
beta sandwich fold, common to SEA domains from other
proteins. Interestingly, analysis of the structure as well as
sequence alignments between zebrafish and human showed that
furin cleavage in humans would occur in the SEA domain
(Supplementary Fig. 1A). Finally, the SEA domain is followed by
the HormR and GAIN domains, the latter of which is
autoproteolyzed as expected (Supplementary Fig. 1E). The
HormR and GAIN domain structures are similar to previously-
solved HormR+ GAIN domain structures from other
aGPCRs?>20, with the exception of the relative orientation
between HormR and GAIN. There is a 90° rotation of the

HormR domain with respect to the GAIN domain (Supplemen-
tary Fig. 1F) in Gpr126 compared to previously-solved HormR +
GAIN structures from rLphnl and hBAI320. In addition, Gpr126
was observed to have at least ten sites of glycosylation throughout
all domains of the ECR except the PTX domain (Fig. 1b).

Gpr126 (—ss) ECR adopts a closed conformation. Unexpect-
edly, the structure revealed a compact, closed conformation
where the most N-terminal CUB domain interacts with the more
C-terminal HormR and GAIN domains (Fig. 1b). To ensure that
this conformation is not a crystallization artifact, we utilized both
negative-stain electron microscopy (EM) and small-angle X-ray
scattering (SAXS) to confirm that the closed confirmation is
observed for Gpr126 in solution. Negative-stain 2D class averages
of Gpr126 ECR showed a V-shaped protein architecture (Fig. 1d).
The individual domains in the 2D class averages were assigned
according to size and are consistent with the closed architecture
of the crystal structure. In addition, we measured the radius of
gyration (R,) of the ECR using SAXS to confirm that the closed
conformation exists in solution. The observed R, (41.1 £0.1 A) is
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Fig. 2 Closed conformation of Gpr126 is mediated by CUB-HormR-linker interactions. a Structure of the full ECR of (—ss) Gpr126. b Close-up view of the
CUB-HormR interface. Resides at the interface are shown as sticks. The calcium ion is shown as a bright green sphere. ¢ Close-up view of the calcium-
coordination site within CUB domain. The water molecule is shown as a blue sphere. The residues are shown as sticks. CUB residues are colored dark blue
and HormR residue is colored yellow. Residue labels are colored according to their roles in CUB-HormR interaction: red (E89, D97, D134) represents
calcium coordination by side-chain residue, blue (5136, V137) represents calcium coordination by main-chain carbonyl group, purple (F135) represents a
hydrophobic residue in CUB-HormR interface, and orange (Y61) represents a residue that stabilizes calcium-coordinating residue D97. Calcium
coordination is shown as bright green dashed lines. CUB-HormR interaction is shown as yellow dashed lines. The interaction between Y61 and D97 is
shown as a magenta dashed line. d Sequence alignment of partial Gpr126 CUB domain from various species, highlighting important conserved residues:
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stabilized loop inserted between CUB and HormR domains. The disulfide bond is colored bright orange and is indicated by an arrow. The dashed line

represents disordered residues in the linker region.

consistent with the calculated R, of the closed-conformation
crystal structure model (42.6 A) and inconsistent with that of an
extended model of Gpr126 ECR in which the CUB domain points
away, rather than toward, the center of the molecule (R, = 52.2 A)
(Supplementary Fig. 1G). Taken together, these results: show that
Gprl26 ECR is in a closed conformation in solution, demonstrate
that this conformation is not an artifact of crystal-packing con-
tacts, and suggest that this closed conformation may play an
important role in Gpr126 function.

As the closed conformation of Gpr126 (—ss) ECR was shown
to exist both in solution and in the crystal lattice, we next wanted
to explore the interactions that contribute to this protein
architecture. Close examination of the crystal structure revealed
two interaction sites that mediate the closed conformation, the
first of which is a direct interaction between domains that are at
opposite ends of the ECR and the second is an indirect interaction
formed between two domains through a loop that holds them
together (Fig. 2a).

First, a direct interaction exists at the tip of the CUB domain
(close to the N-terminus), which points inward towards the
center of the molecule and lies in the interface between GAIN and
HormR. Residues in the HormR domain (H516, F533, P534,
Y535) interact with each other through pi-pi stacking (sandwich),
promoting interaction with F135 on the CUB domain through
additional (T-shaped) pi-pi stacking to stabilize the CUB-HormR
interaction (Fig. 2b).

Surprisingly, examination of the 2Fo-Fc electron density map
showed that there is density within the CUB domain at this

interface that does not belong to any amino acid residue
(Supplementary Fig. 2A). This density is coordinated by the
side-chain groups of E89, D97 (bidentate) and D134, main-chain
carbonyl groups of S136 and V137, as well as a water molecule for
a complex with coordination number 7 in a pentagonal
bipyramid geometry (Fig. 2c). The geometry and distances
between the density and the coordinating residues in Gprl26
are consistent with calcium coordination®®. Several CUB domains
from extracellular proteins are reported to coordinate calcium,
including Gpr126°7, and some have been discovered to use this
coordination to mediate ligand binding®’-¢! (Supplementary
Fig. 2B). For example, the Cls protein uses its CUB calcium-
binding site to bind to ligand Clq and initiate the classical
pathway of complement activation®!, and the Lujo virus
recognizes a calcium-binding site on the CUB domain of the
neurophilin-2 receptor in order to gain cell entry>®. The calcium-
coordinating residues are all conserved in the Gprl26 CUB
domain (among GPR126 proteins from various species (Fig. 2d)
as well as among calcium-binding CUB domains from other
proteins (Supplementary Fig. 2C)), suggesting that the density is
indeed calcium. Importantly, the calcium coordination aligns the
coordinating residues E89 and D134 on the surface of the CUB
domain such that they can interact with K536 on the HormR
domain (Fig. 2¢), contributing to the closed conformation.

In addition to the direct CUB-HormR interaction, a second
interaction site is formed by a disulfide-stabilized loop, which
provides a bridge between the CUB and HormR domains.
Although 13 (C355-A367) of the 22 aa (C355-P376) in the linker
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region are disordered in the structure, the rest were able to be
resolved and they form a small loop stabilized by a disulfide bond
between C369 and C375 (Fig. 2e). This loop is located directly N-
terminal to the SEA domain and is inserted between the CUB and
HormR domains, effectively bridging the two domains and likely
contributing to the stabilization of the closed conformation. The
cysteines that form the disulfide bond are conserved among all
except four of the 94 species analyzed in this study (Supplemen-
tary Fig. 2D and Supplementary Data 1), suggesting that this
disulfide bond plays an important role in Gpr126 function. The
five residues (ASGLG) flanked by the cysteines are small and
flexible, accommodating the formation of the disulfide loop as
well as insertion into the small pocket between CUB and HormR.

Alternative splicing modulates Gprl126 ECR conformation.
Gprl26 is alternatively spliced, producing several isoforms that
may modulate protein function. Skipping of exon 6 results in
deletion of 23 aa in zebrafish (28 aa in human) and is of particular
interest because these amino acids reside in the previously
unknown region of Gprl26 ECR. The 23 aa region is rich in
serine/threonine residues (10 out of 23) and contains a predicted
N-linked glycosylation site, which suggests that this region may
be a highly O- and N-link glycosylated stalk. From analysis of the
crystal structure (—ss isoform, in which the 23 aa are deleted), we
determined that the splice site is directly between the regions
encoding the disulfide-stabilized loop and the SEA domain
(Fig. 3a). Because the disulfide-stabilized loop makes contacts that
are important for the closed conformation of Gpr126 ECR (—ss)
(Fig. 2e), we hypothesized that the (+ss) isoform would disrupt
the closed conformation and have a different, more open
conformation.

To test whether Gpr126 ECR (+ss) and (—ss) have different
conformations, the two proteins were purified and analyzed using
negative-stain EM. Single particles were classified into 2D class
averages and the class averages were further categorized into
groups to facilitate interpretation of different conformations. The
class averages for the (—ss) isoform, categorized into five main
orientations (Fig. 3b), were consistent with the closed conforma-
tion of the crystal structure (Fig. 1b). However, the class averages
for the (+ss) isoform (Fig. 3c) showed a diverse population of
ECR molecules, as they contain additional more open-like
conformations (group vi, 21% of particles, Fig. 3d) as well as
closed conformations that were observed in the (—ss) isoform
(Fig. 3¢, d). Furthermore, individual (+ss) particles showed the
presence of open conformations (Fig. 3e), including a fully
extended conformation, which could not be classified into a
distinct class average during image processing. These results are
consistent with our hypothesis that the (4ss) ECR conformation
is different from that of (—ss) and suggest that the addition of 23
aa extends the linker in (+ss), likely disrupting the indirect and
direct CUB-HormR interactions and preventing the stable closed
conformation that is observed in (—ss) (Fig. 3f).

The negative-stain EM data are consistent with SAXS
experiments showing that the R, of zebrafish Gpr126 ECR
(+ss) is larger than that of (—ss) with a more dramatic change in
R, observed between the human GPR126 isoforms (Supplemen-
tary Fig. 3A-F and Supplementary Table 2). Size-exclusion
chromatography elution profiles for both zebrafish and human
constructs also showed that (+ss) elutes earlier compared to
(—ss), indicative of a larger size and different shape (Supple-
mentary Fig. 3G, H).

Alternative splicing modulates Gpr126 receptor signaling. To
determine whether the two isoforms also exhibit different levels
of signaling, receptor activity was measured for both isoforms

using a G protein signaling assay. Human GPR126 has been
shown previously to couple to and activate Ga, leading to pro-
duction of cAMP#2, Therefore, we used a cAMP signaling assay in
which HEK293 cells were co-transfected with a full-length zeb-
rafish Gpr126 construct and a reporter luciferase that emits light
upon binding to cAMP. Cell-surface expression levels of the
constructs were quantified by flow cytometry analysis of cells
stained by antibodies against N-terminal FLAG-tags (Fig. 4a and
Supplementary Fig. 4A, B, C), and basal signaling results (Fig. 4b)
were normalized to expression level (Fig. 4c).

Cells transfected with either (—ss) or (+ss) Gpr126 had higher
cAMP levels compared to cells transfected with an empty vector
(EV) (Fig. 4¢c), demonstrating that basal activity of Gpr126 can be
detected in this assay. As a positive control, a synthetic peptide
agonist that targets the 7TM activated zebrafish Gprl26 and
human GPR126 signaling to a level consistent with similar,
previously-published experiments on human GPR12632 (Supple-
mentary Fig. 4D) and did not activate signaling in EV-
transfected cells.

However, the closed-conformation (—ss) Gprl26 signaled
significantly less compared to the more dynamic (+ss) Gpr126
(Fig. 4c), and this result was consistent between both zebrafish
and human constructs (Supplementary Fig. 4C and Fig. 4d-f).
This suggests that the additional amino acids in the linker region
of the ECR as a result of alternative splicing plays a role in
modulating the activity of Gpr126 and that the ECR of Gpr126 is
coupled to receptor signaling. Taken together with the negative-
stain EM results, the (—ss) and (4ss) Gprl26 isoforms are
distinct in terms of ECR conformation dynamics, as well as G
protein signaling activity.

In addition, we mutated calcium-binding site residues D134A/
F135A in the (—ss) isoform, which we predicted would disrupt
the closed conformation. Using negative-stain EM, we observed
open ECR conformations for this construct (Supplementary
Fig. 4E-G), similar to the wild-type (+ss) isoform (Fig. 3c and
Supplementary Fig. 4H). The calcium-binding site mutation did
not increase or decrease the cAMP signaling for the (—ss) Gprl26
isoform, which suggests that the ECR conformation is not solely
responsible for regulation of receptor signaling. However, the
same mutation in the (+ss) isoform resulted in lower cAMP
levels compared to wild-type (+ss) (Supplementary Fig. 4I). Cell-
surface expression levels of these mutant Gprl26 constructs in
HEK293 cells were similar or higher than wild-type constructs,
excluding the possibility that lower signaling was due to improper
protein folding or trafficking (Supplementary Fig. 4I). Altogether,
these results might be explained by a complex, rather than a
simple and straightforward, model of regulation for receptor
signaling and suggest a possible functional role for the calcium-
binding site.

Calcium-binding site is critical for PNS myelination in vivo.
Functional sites on proteins are usually highly evolutionarily con-
served. We used the ConSurf server® to perform surface con-
servation analyses on a diverse set of 94 Gpr126 protein sequences.
The conservation score for each residue was mapped onto the
Gprl26 ECR structure (Supplementary Fig. 5A), which revealed
that the most conserved domain in the ECR is the CUB domain.
Importantly, the calcium-binding site is absolutely the most highly
conserved patch within the CUB domain and within the entire
Gprl26 ECR (Fig. 5a). The calcium-binding site is universally
conserved among all species analyzed, which suggests that the
calcium-binding site has an essential role in Gpr126 function.
We next wanted to test whether the residues in the calcium-
binding site are important for Gprl26 function in vivo. Gprl26
has previously been shown to regulate both PNS myelination and
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on negative-stain EM are depicted as cartoons. The splice site is shown in magenta. Black arrows with dashed lines indicate dynamic ECR conformation.

ear development in zebrafish through elevation of cAMP3>36.
Zebrafish gpr126 mutations that impair G protein signaling result
in abolished myelination of the peripheral axons by SC and cause
“puffy” ears?8323536.63 GPR126 has been shown to have a role in
heart development in mouse3’, supported by additional studies in
zebrafish?8:3003, Gpr126 activity in zebrafish can be readily
measured by analyzing the expression of myelin basic protein
(mbp), which encodes a major structural component of the
myelin sheath and is essential for PNS myelination, and by
assessing ear and heart morphologies of the fish. To determine
whether the calcium-binding site is important for these functions,
two amino acids in the site, D134 and F135, were targeted and
mutated to alanines using CRISPR/Cas9-mediated homologous
recombination. D134 directly coordinates the calcium ion and
F135 is an adjacent hydrophobic residue which forms one arm of

the calcium—bindin% pocket (Figs. 2c, 5a). As a result, the mutant
zebrafish, gpr126°#464, harbor D134A and F135A mutations
(Fig. 5b, Supplementary Fig. 5B). These mutations created a
BstUI restriction enzyme site, which was used to genotype
individual zebrafish (Fig. 5¢). Expression of gpri26 is unaffected
in gpri26*464 mutants (Supplementary Fig. 5C, D). Strikingly,
compared to wild-type siblings, the gpr1265/464-mutant zebrafish
developed the pufty ears (Fig. 5d, e) that are indicative of a defect
in Gprl26-mediated G protein signaling, though they do not
appear to have heart defects (Supplementary Fig. 5E-T). In
addition to the ear phenotype, mutant zebrafish did not express
mbp, indicative of failed PNS myelination (Fig. 5f, g, Supple-
mentary Fig. 5U, V). These results show that D134 and F135 in
the calcium-binding pocket of Gpr126 are essential for ear and SC
development in vivo.
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Fig. 4 Alternative splice isoforms of Gpr126 modulate receptor signaling. a Cell-surface expression levels for empty vector (EV), zebrafish Gpr126 splice
isoforms, measured using flow cytometry to detect binding of anti-FLAG antibody to cells expressing FLAG-tagged Gpr126. The Gpr126 cell-surface
expression levels are normalized to the control EV signal. Data are shown as MFI (mean fluorescence intensity). Error bars are not shown because
expression levels are presented as median fluorescence intensities of 10,000 cells for each population of transfected cells, for a single flow cytometry
experiment representative of at least three independent experiments. b Basal signaling measured by the cAMP signaling assay. Data are shown as fold
increase over EV of RLU (relative luminescence units). € Basal cAMP signaling normalized to cell-surface expression. ns, P> 0.05; *P < 0.05; **P < 0.07;
***P < 0.001; ****P < 0.0007; by one-way ANOVA and Tukey's multiple comparisons test. Data in b and ¢ are presented as mean £ SEM, n=3, and are
representative of at least three independent experiments. d-f Same as a-c but for human GPR126 splice isoforms. Source data are provided as a Source

Data file.

Identification of a proteolytic SEA domain in human GPR126.
As mentioned earlier, the previously unknown region in the
Gpr126 ECR contains a structured domain, which we revealed to
be a SEA domain (Fig. 6a). Gpr126 SEA superimposes well over
known SEA domains from Mucin-1 and Notch-26495, which are
cleaved (via autoproteolysis and furin, respectively), both in the
same loop between beta-strand 2 and beta-strand 3 (Fig. 6b, c).
Although the GPR126 furin-cleavage site is conserved in many

mammals and birds (Supplementary Data 1, Supplementary
Fig. 1A), with a consensus sequence of (R/K)-X-K-R|, it is not
conserved in zebrafish Gprl26. Using sequence alignments
(Fig. 6d) and homology modeling, we mapped the furin-cleavage
site in human GPR126 (Fig. 6e, Supplementary Fig. 6A) to the
same loop that is cleaved in Mucin-1 and Notch-2, suggesting
that SEA domain cleavage plays similar roles in each of these
proteins. Consistent with a previous study®!, R468A mutations
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Fig. 5 The calcium-binding site is required for Gpr126 function in vivo. a
Surface conservation analysis (green, variable; purple, conserved) of CUB
domain. The calcium-binding site is circled in magenta. D134 and F135 are
indicated by arrows. b D134 and F135 were both mutated to alanines
through homologous recombination of a 150 bp ssODN containing a 5 bp
mutation (red nucleotides). € Genotyping assay for the gpri26sti464

lesion. The 5 bp mutation introduces a BstUI restriction enzyme binding
site. d 4 dpf wild-type larva compared to e 4 dpf gpri26sti464/5t1464 |arya
with puffy ears (arrowheads). Scale bars (black) represent 100 pm. f 4 dpf
wild-type larvae express mbp throughout the posterior lateral line nerve
(PLLn, arrowhead), whereas g 4 dpf gpr126st464/5t1464 |arva lack mbp
expression along the PLLn (arrowhead). Scale bars (black) represent 100
pm. Asterisks indicate CNS.

abolish furin cleavage in both human GPR126 (—ss) and (+ss)
isoforms (Supplementary Fig. 6B, C). In addition, these mutant
GPR126 constructs were transfected into HEK293 cells and were
detected on the cell surface (Supplementary Fig. 6D), and
therefore, the importance of furin cleavage is likely not primarily
important for proper expression and trafficking.

To our knowledge, SEA and GAIN are the only known protein
domains that are proteolyzed and remain associated even after
proteolysis. In proteins like Mucins and Notch, the cleaved SEA
domain remains intact®>%® and shear forces likely unfold the
domain and separate the protein into two fragments®”-68. The
Gprl126 SEA domain shows several noncovalent interdomain
interactions, particularly between all four of the beta-strands that
form a beta-sheet (Fig. 6f). The separation of the human GPR126
furin-cleaved SEA domain into two fragments does not readily
occur immediately following cleavage as the cleaved protein
resists ~ separation when  purified by size-exclusion

chromatography (Supplementary Fig. 6B), similar to the afore-
mentioned SEA domains as well as to GAIN domain autopro-
teolysis. Instead, the two fragments likely stay associated
noncovalently until a disruptive event, such as ligand binding
and mechanical force, unfolds the SEA domain and leads to
separation or shedding of the region N-terminal to the furin-
cleavage site (CUB, PTX, linker, half of SEA) and the C-terminal
region (half of SEA, HormR, GAIN, 7TM).

Discussion

aGPCRs make up the second largest family of GPCRs with 32
members in humans and are essential for numerous biological
processes such as synapse formation, cortex development, neu-
trophil activation, angiogenesis, embryogenesis, and many more.
Recent studies have shown that the ECRs of aGPCRs play
important roles in these functions; however, the relative lack of
information about the structures of ECRs and their mechanisms
of activation hampers further studies toward drugging these
receptors. Here we show that the large ECR of Gpr126, an aGPCR
with critical functions in PNS myelination, ear development, and
heart development, adopts an unexpected closed conformation
where the most N-terminal CUB domain interacts with the more
C-terminal HormR domain. The structure of the Gpr126 ECR
revealed that the closed conformation is mediated through a
calcium-binding site as well as a disulfide-stabilized loop. Inter-
estingly, the residues involved in these intramolecular interactions
are highly conserved among Gpr126 sequences, including that of
zebrafish, raising questions about their role in Gprl26 function.

Alternative splicing is a mechanism to increase the functional
diversity of metazoan genomes and has been repeatedly demon-
strated to play a role in the regulation of brain function. For
example, alternative splicing contributes to the functional diver-
sification of DSCAMs, protocadherins, calcium channels, neur-
exins, and neuroligins®®-72. It is also proposed that alternative
splicing may cause a large conformational change in the ECR of
the synaptic protein teneurin, since alternative splicing allows the
protein to act as a switch in regulating ligand binding despite the
ligand-binding site being distant from the seven aa alternatively
spliced site”3. Since gpri26 is alternatively spliced in the region
encoding the ECR, we examined the functional differences
between isoforms. Our negative-stain EM and SAXS results
suggest that alternative splicing between the regions encoding the
PTX and SEA domains in gpr126 perturbs the closed con-
formation and generates a population of ECR conformations that
range from closed to extended (Fig. 7a). Several of the inserted
residues resulting from alternative splicing are predicted to be
sites of glycosylation. These glycosylation sites as well as the state
of the other glycosylation sites may contribute to the change in
ECR conformation. Our signaling assay results also show that
alternative splicing leads to changes in basal receptor activity,
which suggests that the architecture and conformation of aGPCR
ECRs play more important roles in their functions than pre-
viously thought. However, the signaling assay results showing
that the change of Gprl26 ECR conformation is not solely
responsible for changes in signaling may be confusing and con-
tradictory. Rather, a more complex model that combines changes
in ECR conformation with exposure of potential functional sites
due to these changes may be key for alternative splicing-mediated
regulation.

Importantly, we identified the calcium-binding site in Gpr126
as a potential functional site. Our in vivo results showed that
zebrafish carrying two point-mutations in the calcium-binding
site have defective SC and ear development, suggesting that the
calcium-binding site is essential for the in vivo functions of
Gprl26 (Fig. 7b). Since a subset of CUB domains from other
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lines represent backbone hydrogen bonds between beta sheets.

proteins coordinate calcium in order to mediate ligand-binding®’,
one possibility for the critical function of the calcium-binding site
in Gpr126 may be to act as a ligand-binding site as well, although
future experiments will need to be performed to validate this
hypothesis.

The structure also revealed the presence of a SEA domain. In
human and other species, a furin-cleavage site is mapped to this
domain but this cleavage site is not conserved in zebrafish.
Therefore, the function of the furin-cleavage may play a role in
GPR126 that is not conserved in zebrafish. Cleaved SEA domains
from other proteins have been shown to stay intact until a force is
applied and pulls apart the fragments®7:8, Similarly, GPR126
may regulate its activity by furin-dependent shedding in addition
to the established GAIN-autoproteolysis-dependent shedding.
Moreover, the released extracellular fragments may act as diffu-
sible ligands and bind to other cell-surface receptors, but further
studies need to be done to test this model. Other aGPCRs that
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have SEA domains in their ECRs include ADGRF1/GPR110 and
ADGRF5/GPR116747>, Although these SEA domains are not
cleaved by furin, they do contain the GSVVV (or GSIVA) motif
that leads to autoproteolytic cleavage in the same loop (between
beta-strand 2 and beta-strand 3) that is cleaved by furin in
GPR126. Therefore, SEA domain cleavage, whether by autopro-
teolysis or by furin, is a common feature in several aGPCRs and
may have similar roles in regulating receptor function.

Taken together, our results suggest that Gpr126 is a complex
protein that makes use of its many domains to regulate its
function. In addition to the autoproteolysis-dependent activation
mechanism (Supplementary Fig. 7A), Gprl26 wuses other
mechanisms to regulate its function including modulation of the
ECR conformation. In the closed conformation, Gpr126 signals
less compared to when the ECR is in a more dynamic, open
conformation, which may be regulated by alternative splicing
(Fig. 7a). Alternative splicing which deletes the CUB domain3?
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may also regulate receptor function (Supplementary Fig. 7B).
Mutation of the calcium-binding site leads to signaling defects
in vitro and to ear and PNS defects in vivo (Fig. 7b)). In addition,
furin cleavage may allow GPR126 another mode of activation that
is common to other receptors and adhesion GPCRs.

The Gprl26 closed conformation and hidden calcium-binding
site is conceptually similar to EGFR. EGFR is in a closed, compact
inactive conformation until ligand binding leads to a conforma-
tional change that extends the protein and reveals a hidden
functional site that is important for its activation!®7°, Because
this mechanism is key for drugging EGFR, the conceptual simi-
larity provides an opportunity to also drug Gpr126. Drugs that
alter the ECR conformation of Gpr126 or block functional sites,
such as the calcium-binding site, may be useful for treating
Gprl26-associated diseases. The ECRs of other aGPCRs are
major players in mediating receptor functions as well. For
example, using its ECR, ADGRA2/GPR124 regulates isoform-
specific Wnt signaling’’-80, the C. elegans ADGRLI/LAT-1
controls cell division planes during embryogenesis, and
ADGRBI1/BAIl and ADGRL3/Lphn3 mediate synapse formation
through interaction with other cell-surface proteins31-84. Thus,
the ECRs of other aGPCR family members are also promising
drug targets to treat numerous diseases once mechanistic details
about their regulatory functions are understood.

Methods

Cloning and purification of Gpr126/GPR126 from insect cells. The ECRs
(residues T39-S837) of zebrafish Gpr126 and ECRs (residues C38-A853) of human
GPR126, along with C-terminal 8XHis-tags, were cloned into the pAcGP67a
vector. The following primers were used for amplification of zebrafish Gpr126: F:
5-CGCATTCTGCCTTTGCGGCGAGCACCAGCTGCAATGTGGT-3’ and R: 5-
GAATTCTAGAAGGTACCCGGTTAGTGGTGGTGATGGTGATGATGATGA
GCTCTAGAGACATCCATTAGGATGCC-3’. The following primers were used
for amplification of human GPR126: F: 5-TCTGCCTTTGCGGCGAGCACCA

GCTGTAGGGTTGTCCTGAGCAACCCG-3’ and R: 5-GTGGTGGTGATGGTG
ATGATGATGGGACCGTGGCAGATCCATAAGCAC-3’. Human GPR126
R468A mutant ECRs were generated using the QuikChange method (Agilent) with
primers: F: 5-GACAAGATTAAGGTGAAGGCGTCTTTGGAGGACGAGCC-3’
and R: 5-GGCTCGTCCTCCAAAGACGCCTTCACCTTAATCTTGTC-3'.

All proteins were expressed using the baculovirus method. Sf9 cells (Thermo
Fisher, 12659017) were co-transfected with the constructed plasmid and linearized
baculovirus DNA (Expression Systems, 91-002) using Cellfectin II (Thermo Fisher,
10362100). Baculovirus was amplified in Sf9 cells in SF-900 III medium
supplemented with 10% FBS (Sigma-Aldrich, F0926). High Five cells (Thermo
Fisher, B85502) at a density of 2.0 x 10° cells ml~! in Insect-XPRESS medium
(Lonza, 12-730Q) were infected with high-titer baculovirus and incubated for 72 h
at 27 °C. All subsequent steps are conducted at 25 °C. The cells were pelleted at
900 x g for 15 min and the conditioned medium containing the secreted
glycosylated proteins were collected. To the medium were added final
concentrations of 50 mM Tris pH 8, 5mM CaCl,, and 1 mM NiCl,. The mixture
was stirred for 30 min and then centrifuged at 8000 x g for 30 min. The clarified
supernatant was incubated with nickel-nitrilotriacetic agarose resin (Qiagen,
30250) for 3 h. The resin was collected with a glass Buchner funnel and washed
with HBS buffer (10 mM HEPES pH 7.2, 150 mM NaCl) containing 20 mM
imidazole. Purified protein was eluted with HBS buffer containing 200 mM
imidazole and run on size-exclusion chromatography (Superdex 200 10/300 GL;
GE Healthcare) in HBS buffer.

Selenomethione-labeled Gpr126 (—ss) ECR was expressed as previously
described®. Briefly, High Five cells in Insect-XPRESS medium were adapted to
ESF921 medium (Expression Systems, 96-001-01). The cells were subsequently
centrifuged at 100 x g for 15 min and resuspended in ESF921 methionine-free
medium (Expression Systems, 96-200). The cells were expanded in the same
medium and then infected at a density of 2.0 x 10¢ cells ml~! with high-titer
baculovirus. At 10 h post-infection, 100 mg Seleno-L-methionine (Sigma-Aldrich,
$3132) was added to each liter of cell culture. At 36 h post-infection, another 150
mg Seleno-L-methionine was added to each liter of cell culture. The cells were
harvested 72 h post-infection and the purification process was the same as
described above.

X-ray crystallography. Purified Gpr126 (—ss) ECR (both native and SeMet-
labeled) was crystallized at 3 mg mL~! in 50 mM potassium dihydrogen phosphate,
20% (w/v) PEG 8000. Both native and SeMet-labeled datasets were collected to 2.4
A at the Advanced Photon Source at Argonne National Laboratory (beamline 23-
ID-D). The datasets were processed with HKL2000 and an initial model was

10 NATURE COMMUNICATIONS | (2020)11:194 | https://doi.org/10.1038/s41467-019-14040-1 | www.nature.com/naturecommunications


https://www.ncbi.nlm.nih.gov/nuccore/B85502
www.nature.com/naturecommunications

ARTICLE

determined by SAD phasing using Crank2 in CCP4. Refinement was performed
with both REFMAC5 (CCP4) and phenix.refine (PHENIX).

Negative-stain electron microscopy. Uranyl formate (0.75%) solution was freshly
prepared by adding 5 mL boiling water to 37.5 mg uranyl formate (Electron
Microscopy sciences, 22450). After stirring for 5 min in the dark, 10 uL 5 M NaOH
was added and stirred for an additional 5 min. The solution was syringe filtered
(Millipore, SLGV033RS) and stored in the dark. Purified Gpr126 (—ss), (+ss), and
(—ss) D134A/F135A ECR constructs were diluted to ~5 ug mL~! and applied to
glow-discharged EM grids (Electron Microscopy Sciences, CF400-Cu,) using a
conventional negative-stain protocol®®. To the grid was applied 2 pL diluted pro-
tein for 30 sec. The protein was blotted off with filter paper (Sigma-Aldrich,
WHA1001110), and then the grid was touched to a 25 uL drop of distilled, filtered
water. The water was blotted off, and the grid was touched to a second 25 pL drop
of water and blotted off. The grid was then touched to a 25 pL drop of 0.75% uranyl
formate for 30 sec and blotted off. The grid was air-dried for 30 sec. The sample
was imaged on a Tecnai G2 F30 operated at 300 kV. Gpr126 —ss (6565 particles),
+ss (2529 particles), and —ss D134A/F135A (3916 particles) were processed using
EMAN2%7,

Small-angle X-ray scattering. SAXS measurements were performed at the
Advanced Photon Source at Argonne National Laboratory (beamline 18-ID) with
an in-line SEC columns (Superdex 200 or Biorad EnRich 5-650 10-300) equili-
brated with 20 mM HEPES, pH 7.4, and 150 mM NaCl. Data were analyzed using
autorg and datgnom using the commands “autorg —sminrg 0.55 -smaxrg 1.1” and
“datgnom ‘I’.dat -r 2’ - skip 3’ -0 ‘1’.out,” respectively, where ‘1’ is the file name,
2 is the R, determined by autorg, and ‘3’ is the number of points removed at low q
as determined from autorg. SAXS curves of molecular models were generated with
Crysol version 2.838.

cAMP signaling assay. Full-length wild-type and mutant Gpr126/GPR126 con-
structs were cloned into pCMV5. All constructs include N-terminal FLAG-tags for
measuring cell-surface expression levels. The following primers were used for
amplification of zebrafish Gpr126: F: 5-GCTGACTACAAAGACGATGACGACA
AGCTTTGCAATGTGGTGCTCACCGACTCCCAGGGC-3" and R: 5-CCTGGCC
AGGCCTCTGGTCCATGAGGCCCCTTATTGCAGGGTACTATCTGCATTACT
GTG-3’. The following primers were used for amplification of human GPR126: F:
5-GCTGACTACAAAGACGATGACGACAAGCTTTGCGCAAACTGTAGGGT
TGTCCTGA-3’ and R: 5-CAGGCCTCTGGTCCATGAGGCCCCTCAACAGGG
GCCAGTTTTCACCAG-3’. Zebrafish Gpr126 D134A/F135A mutant constructs
were generated using the QuikChange method (Agilent) with primers: F: 5-GAT
GGAGGTTTTCTTTAACTCCGCCGCTAGTGTCCAAAAGAAAGGCTTCC-3
and R: 5-GGAAGCCTTTCTTTTGGACACTAGCGGCGGAGTTAAAGAAAA
CCTCCATC-3.

HEK293 cells (ATCC CRL-1573) were seeded in 6-well plates with Dulbecco’s
Modified Eagle Medium (DMEM; Gibco, 11965092) supplemented with 10% FBS
(Sigma-Aldrich, F0926). At 60-70% confluency, the cells were co-transfected with
0.35 pug Gpr126 DNA, 0.35 ug GloSensor reporter plasmid (Promega, E2301), and
2.8 uL transfection reagent Fugene 6 (Promega, PRE2693). After a 24-h incubation,
the transfected cells were detached and seeded (50,000 cells per well) in a white 96-
well assay plate. Following another 24-h incubation, the DMEM was replaced with
100 pL Opti-MEM (Gibco, 31985079) and incubated for 30 min. To each well was
then added 1 uL GloSensor substrate and 11 pL FBS. Basal-level luminescence
measurements were taken after 30 min to allow for equilibration. For activation
assays, the cells were then treated with either 1 mM p14 synthetic peptide
(GenScript, N-THFGVLMDLPRSASEKEK-Biotin-C) or vehicle DMSO for 15 min.
Measurements were taken with a Synergy HTX BioTeck plate reader at 25 °C.

Flow cytometry to measure cell-surface expression of Gpr126. HEK293 cells
were transfected as described above and incubated for 24 h. The cells were then
detached and seeded in a 24-well plate. Following another 24-h incubation, the cells
were detached with citric saline and washed with phosphate-buffered saline (PBS).
The cells were then washed twice with PBS supplemented with 0.1% BSA
(Sigma-Aldrich, A3803). The cells were incubated with mouse anti-FLAG primary
antibody (1:1000 dilution in PBS 4 0.1% BSA; Sigma-Aldrich, F3165) at room
temperature for 30 min and washed twice with PBS + 0.1% BSA. The cells were
then incubated with donkey anti-mouse Alexa Fluor 488 secondary antibody (1:500
dilution in PBS + 0.1% BSA; Invitrogen, A21202) at room temperature for 30 min
and washed twice with PBS + 0.1% BSA. Stained cells were resuspended in PBS +
0.1% BSA and were analyzed with a BD Accuri C6 flow cytometer.

Zebrafish rearing. Zebrafish were maintained in the Washington University
Zebrafish Consortium Facility (http://zebrafish.wustl.edu), and the following
experiments were performed according to Washington University animal proto-
cols. All zebrafish experiments were performed in compliance with institutional
ethical regulations for animal testing and research at Washington University and
Oregon Health and Science University (OHSU). Experiments were approved by the
Animal Care and Use Committee of Washington University School of Medicine
(St. Louis, MO) and the Institutional Care and Use Committee of OHSU (Portland,

OR). The gpr126°1464 zebrafish were generated within the wild-type AB* back-
ground. All crosses were either set up as pairs or harems and embryos were raised
at 28.5°C in egg water (5mM NaCl, 0.17 mM KCl, 0.33 mM CaCl,, 0.33 mM
MgSO,). Larvae were staged at days post fertilization (dpf). gpr126"464 larvae can
be identified at 4 dpf by a puffy ear phenotype.

Genotyping. To identify carriers of the gpr1265464 allele, the following primers
were used to amplify the 381 base pair (bp) locus of interest: F: 5-GTTGTCG
TCAAGACCGGCAC-3 and R: 5- TCCACCTCCCAGCTACAATTCC-3’. After
amplification by PCR, the product was digested with either DrdI (NEB) at 37 °C or
BstUI (NEB) at 60 °C, and then run on a 3% agarose gel. The mutation both
disrupts a DrdI binding site and introduces a BstUI binding site. DrdI cleaves wild-
type PCR product into 275 and 105 bp products, and the mutant product is 380 bp.
BstUI cleaves mutant PCR product into 274 and 106 bp products, and the wild-
type product is 380 bp. We recommend using BstUI for genotyping. Any larvae
identified with the puffy ear phenotype were always genotyped as gpr126464
homozygous mutant (n = 20/20).

Guide RNA synthesis. Potential gRNA templates were generated by CHOPCHOP
(http://chopchop.cbu.uib.no/). The chosen forward and reverse oligonucleotides,
20 bps upstream of the PAM sequence, were ordered with additional nucleotides
added to the 5" end to permit cloning into the pDR274 vector®”. The oligonu-
cleotide forward sequence used was: 5 - tag gAC TTT AGT GTC CAA AAG
AA - 3’ and oligonucleotide reverse sequence used was: 5’- aaa cTT CTT TTG GAC
ACT AAA GT - 3. 2 uM of each oligonucleotide was mixed in annealing buffer
(10 mM Tris, pH 8, 50 mM NaCl, 1 mM EDTA) and incubated at 90 °C for 5 min,
then cooled to 25 °C over a 45 min time interval. The pDR274 vector was linearized
with Bsal and oligonucleotides were ligated into the vector with T4 ligase (NEB) for
10 min at room temperature. The ligation reaction was transformed into competent
cells and then plated on kanamycin LB plates. Selected colonies were grown, mini-
prepped (Zyppy Plasmid Kits, Zymo Research), and Sanger sequenced. The gRNA
DNA sequence was then PCR amplified from 50 ng uL~! of the plasmid with
Phusion (NEB) and the following primers: F: 5-GTTGGAACCTCTTACGT
GCC-3’ and R: 5’-~AAAAGCACCGACTCGGTG-3". The PCR product was digested
with Dpnl at 37 °C for 1 h, heat inactivated at 80 °C for 20 min, and then purified
with a Qiagen PCR Purification column. RNA was synthesized with a MEGAscript
T7 Transcription Kit (Ambion).

Design of ssODN and microinjections. One-cell stage wild-type embryos were
injected with either 2 or 3 nl of a solution containing ~132 ng uL~! gRNA, ~148 ng
pL~! of Cas9 mRNA (obtained from the Hope Center Transgenic Core at
Washington University in St. Louis), and 60 nguL~! of the ssODN. The 150 bp
ssODN was ordered from IDT and contained a 5 bp mutation (uppercase): 5-atcat
aaacatacccttgcttgtaactgatatggaagcctttcttttggacact CGCCGceggagttaaagaaaacctccatcac
atttccagtggagttgag-3’. Please note that an extra C (bolded), beginning after exon 3,
is present in the ssODN that is not present in the gpr126 reference sequence. The
extra nucleotide was not integrated into the st/464 mutants. At 1 dpf, embryos were
genotyped for disruption of the wild-type DrdI binding site and screened for the
characteristic gpr126 puffy ear mutant phenotype. Mutations that were successfully
transmitted to the F1 offspring were screened for by restriction enzyme digest
analysis. Mutant bands were gel extracted (Qiagen Gel Extraction Kit) and Sanger
sequenced to identify the incorporation of the ssODN containing the mutation of
interest.

Whole mount in situ hybridization. 1 dpf larvae were treated with 0.003% phe-
nylthiourea to inhibit pigmentation until fixation in 4% paraformaldehyde at 4 dpf.
After fixation, larvae pooled in microcentrifuge tubes were dehydrated in methanol
(5 by 5 min washes while nutating) and then stored at —20 °C. To begin in situ
hybridization, larvae were re-hydrated with 50, 70, and 100% 0.2% PBS-Tween:
methanol (5 min washes on a nutator). PBS-Tween washes were then continued (4
by 5 min washes while nutating). Larvae were then treated with 1:900 Proteinase-K
(20 mg/mL) in PBS-Tween for 45 min at room temperature (not on a nutator).
After Proteinase-K treatment, two quick PBS-Tween washes were performed, and
then larvae were post-fixed in 4% paraformaldehyde for 20 min while nutating.
Larvae were then washed with PBS-Tween (5 by 5 min washes on a nutator) and
then incubated in hybridization buffer (Hyb(+)) at 65 °C for at least 1 h in a dry
heat block. The riboprobe of interest in Hyb(+) was then incubated with the larvae
overnight at 65°C in a dry heat block. The following day, larvae were washed in
100% Hyb(+), 75% Hyb(+): 25% 2X SSCTween, 50% Hyb(+): 50% 2X SSCTween,
25% Hyb(+): 75% 2X SSCTween, all preheated to 65 °C, in a dry heat block. Larvae
were then washed with 2X SSCTween (two washes, 30 min each) and 0.2X
SSCTween (two washes, 30 min each) at 65 °C in a dry heat block. Larvae were then
washed with MAB-TritonX-100 for 10 min at room temperature while nutating
and then blocked in blocking solution (2% blocking reagent in MAB + 0.2% Tri-
tonX-100 + 10% sheep serum) for at least 1 h at room temperature on a nutator.
Larvae were then treated with anti-DIG AP Fab fragments (1:2000 — Roche
11093274910) in blocking solution overnight at 4 °C on a nutator. The following
day, larvae were washed with MAB-TritonX-100 (6 by 30 min washes on a nutator)
at room temperature. After a 10 min wash in alkaline phosphatase/NTMT (AP)
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buffer, larvae were moved to a 24-well plate, covered in aluminum foil to prevent
light exposure, and incubated with NBT (2.2 uL mL~!) + BCIP (1.6 yL mL~!) in
AP buffer until the reaction completed. After development of the probe, larvae
were washed with three quick PBS-Tween washes and then passed through 30, 50,
and 70% glycerol washes. A complete protocol with detailed notes is available®.
The previously characterized riboprobes utilized in this study were mbp (GenBank:
AY860977.1)°1, and gpr126, originally synthesized with 5'- ggaattcgtgatggagctggt-
gaacatagc-3” and 5’-agtgtcgactcacttctcatctatcaactcageage-3” primers®°. For mbp,
larvae were scored for either presence or absence of signal expression along

the PLLn.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The accession number for the coordinates and diffraction data for the Gpr126 (—ss) ECR
crystal structure reported in this paper is PDB: 6V55. The SASBDB IDs for the SAXS
experimental data are: SASDFT9, SASDFU9, SDSDFV9, SASDFW9, SASDFX9. The
source data underlying Fig. 4b, ¢, e, f and Supplementary Figures 1B, 4C, H, and 6B, C are
provided as a Source Data file. All other data are available from the corresponding author
on reasonable request
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