Skip to main content
. 2020 Jan 10;10:115. doi: 10.1038/s41598-019-56809-w

Table 4.

Sensitivity and specificity of 1H NMR metabolomics models to detect Bovine Respiratory Disease in feedlot cattle defined with six reference diagnosis methods.

Diagnosis method Dataset Sensitivity Specificity Accuracy AUCa N leavesb N componentsc Component Number
Metabolite ID
Visual Diagnosis Training 0.81 0.93 0.87 0.87 2 1 92
Validation 0.82 0.87 0.85 0.85 2 1 Unknown (Singlet at 5.39 ppm)
Temperature Diagnosis Training 0.76 0.88 0.85 0.82 2 1 34
Validation 0.52 0.77 0.69 0.65 2 1 Phenylalanine
Lung Auscultation Diagnosis Training 0.80 0.73 0.77 0.76 2 1 123
Validation 0.77 0.45 0.64 0.61 2 1 Lactate
Clinical Diagnosis Training 0.77 0.85 0.79 0.81 2 1 227
Validation 0.79 0.54 0.70 0.67 2 1 Glutamine
Visual-Clinical Diagnosis Training 0.99 0.88 0.93 0.94 4 3 55, 211, 158
Validation 0.88 0.74 0.81 0.83 4 3 Tyrosine, Citrate, Hydroxybutyrate
Lung Lesion Diagnosis Training 0.76 0.97 0.92 0.90 6 5 219, 130, 292, 305, 25
Validation 0.38 0.89 0.74 0.71 6 5 Citrate, Unknown, Unknown, Leucine, Unknown

aAUC = Area Under the Curve.

bN leaves = number of leaves in final pruned tree.

cN components = number of components or metabolite components selected in final pruned tree by the classification tree analysis.