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Abstract

Many time-to-event studies are complicated by the presence of competing risks. Such data are 

often analyzed using Cox models for the cause-specific hazard function or Fine and Gray models 

for the subdistribution hazard. In practice, regression relationships in competing risks data are 

often complex and may include nonlinear functions of covariates, interactions, high-dimensional 

parameter spaces and nonproportional cause-specific, or subdistribution, hazards. Model 

misspecification can lead to poor predictive performance. To address these issues, we propose a 

novel approach: flexible prediction modeling of competing risks data using Bayesian Additive 

Regression Trees (BART). We study the simulation performance in two-sample scenarios as well 

as a complex regression setting, and benchmark its performance against standard regression 

techniques as well as random survival forests. We illustrate the use of the proposed method on a 

recently published study of patients undergoing hematopoietic stem cell transplantation.
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I Introduction

Many time-to-event studies in biomedical applications are complicated by the presence of 

competing risks: a patient can fail from one of several different causes, and the occurrence of 

one kind of failure precludes the observation of another kind. With little loss in generality, 

the event kinds are often categorized as a cause of interest (cause 1) or a competing event 

from any other cause (cause 2). If a patient experiences the cause 2 competing event, they 

are no longer at risk of experiencing the cause 1 event after the competing event time. This is 

different from censoring, where a patient who is censored or lost to follow-up is still 

potentially able to experience either event kind after the censoring time. Several approaches 

to modeling such data have been proposed which target different parameters. Historically, 
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Cox regression models were used to model each cause-specific hazard function λk(t) as a 

specified function of covariates.1 However, unlike survival analysis (without competing 

risks), there is not a one-to-one correspondence between the cause-specific hazard function 

for cause 1 and the cumulative incidence function F1(t) which is defined as the probability of 

failing from cause 1 before time t. In fact, F1(t) depends on the cause-specific hazards for all 

failure causes. Indirect inference on the cumulative incidence function can be obtained by 

combining the estimates of the cause-specific hazard functions as in Andersen et al.2. 

Alternatively, Fine and Gray3 proposed a proportional subdistribution hazards regression 

model leading to direct inference on the cumulative incidence function. Others have 

proposed regression methods that more directly model the cumulative incidence through a 

link function.4,5

In practice, regression relationships in competing risks data are often complex. These can 

involve nonlinear functions of covariates, interactions, high-dimensional parameter spaces 

and nonproportional cause-specific or subdistribution hazards. Model misspecification can 

lead to poor predictive performance. Several solutions have been proposed to address these 

complexities and focus on improved prediction in the survival setting. In the survival data 

setting without competing risks, these include variable selection using lasso-type 

penalization,6-8 flexible prediction models using boosting with Cox-gradient descent,9-11 

random survival forests12 and our previous work with Bayesian Additive Regression Trees 

(BART) described further below.13 Support vector machines14 have also been used in the 

survival setting to determine a function of covariates which is concordant with the observed 

failure times; however, this only leads to a ranking of risk profiles and does not directly 

provide predictions of survival probabilities that are often of clinical interest.

In the competing risks setting, there are fewer modeling approaches proposed to alleviate the 

above mentioned modeling concerns. Penalized variable selection for the Fine and Gray 

model15,16 and an extension of random survival forests17 have been considered. In this 

article, we describe a new approach to flexible prediction modeling of competing risks data 

using BART that allows for complex functional forms of the covariates, does not require 

restrictive proportional or subdistribution hazards assumptions, can account for high-

dimensional parameter spaces, and can accomplish inference on a wide variety of model 

functionals of interest at little additional overhead in mathematical or computational effort.

BART18 is an ensemble of trees model which has been shown to be efficient and flexible 

with performance comparable to or better than competitors such as boosting, lasso, MARS, 

neural nets and random forests. In addition, recent modifications to the BART prior have 

been proposed that maintain excellent out-of-sample predictive performance even when a 

large number of additional irrelevant regressors are added.19 Finally, the Bayesian 

framework naturally leads to quantification of uncertainty for statistical inference of the 

cumulative incidence functions or other related quantities. Because of its tree-based 

structure, BART can effectively address interactions among variables including, in our case, 

interactions with time to allow for nonproportional hazards.

Our method re-expresses the nonparametric likelihood for competing risks data in a form 

suitable for BART. We use a discrete time likelihood framework since it can be handled by 
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existing BART software. We examine two different ways of re-expressing this likelihood 

that leads to two different BART competing risks models. In both cases, two BART models 

are needed to adequately reflect the relationships between covariates and the relevant model 

parameters. We can employ existing BART software by suitably partitioning the data for 

each BART component.

We present our work in the following sequence. In section 2, we review the BART prior 

along with our previous extension of BART to survival data. In section 3, we propose two 

ways of adapting BART to competing risks analysis with currently available software. 

Section 4 contains simulation studies that demonstrate the capable performance of BART vs. 

other methods analyzing competing risk data sets including various proportional and 

subdistribution hazards cases in a two sample setting. We also demonstrate the BART 

model’s ability to accommodate data from complex regression settings. In section 5, we 

present a health care application that illustrates the advantages of the proposed methodology. 

We summarize our contribution and describe some planned future developments in section 

6.

2 BART methodology

As BART is based on a collection of regression tree models, we begin with a simple 

example of a regression tree model. We then describe how BART uses an ensemble of 

regression tree models for a numeric outcome. We discuss how the BART model for a 

numeric outcome is augmented to model a binary outcome. This binary BART model will be 

directly utilized in our competing risk models by the transformation of the survival data into 

a sequence of binary indicators. Finally, we review how the BART model can be adapted to 

handle high dimensional predictors.

Suppose yi represents the numeric outcome for individual i, and xi is a vector of covariates 

with the regression relationship yi = g(xi; T, M) + ei where i = 1, … , N. Notationally, g(xi; 

T, M) is a binary tree function with components T and M that can be described as follows. T 
denotes the tree structure consisting of two sets of nodes: interior branches and terminal 

leaves. Each branch is a decision rule that is a binary split based on a single covariate. M = 

{μ1, … , μb} is made up of the function values of the leaves. Each leaf is a numeric value: 

the value being the corresponding output of g when the branch rules applied to xi uniquely 

determine the branch “climbing” route to a single leaf. Examples of two trees are shown in 

Figure 1 wherein branches appear as diamonds, and leaves as dots. Trees effectively 

partition the covariate space into rectangular regions, and these alternative representations 

are also shown in the figure.

BART employs an ensemble of such trees in an additive fashion, i.e. it is the sum of m trees 

where m is typically large such as 50, 100 or 200. Figure 1 shows a simple example of 

adding two trees. Note this sum of trees leads to a finer rectangular partition of the covariate 

space compared to each individual tree; here the value in each rectangular region is the sum 

of the leaves in each tree corresponding to that region. The model can be represented as
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yi = μ0 + f(xi) + ei where ei ∼iid N(0, σ2)

f(xi) = ∑
j = 1

m
g(xi; T j, Mj)

(1)

where μ0 is typically set to ȳ. To proceed with the Bayesian paradigm, we need priors for the 

unknown parameters. We specify the prior for the error variance as σ2 ∼prior vλχ2(v); details 

on specification of the parameters ν and λ are discussed in Chipman et al.18 And, 

notationally, we specify the prior for the unknown function, f, as

f ∼prior BART(m, μ0, τ, α, γ) (2)

and describe it as made up of two components: a prior on the complexity of each tree, Tj, 

and a prior on its terminal nodes, Mj ∣Tj. Using the Smith-Gelfand generic bracket notation20 

as a shorthand for writing a probability density or conditional density, we write 

[f] = ∏j [Tj][Mj ∣ Tj]. Following Chipman et al.,18 we partition [Tj] into three components: 

the tree structure, or process by which we build a tree creating branches; the choice of a 

splitting covariate given a branch; and the choice of cut-point given the covariate for that 

branch. The probability of a node being a branch vs. a leaf is defined by describing the 

probabilistic process by which a tree is grown. We start with a tree that is just a single node, 

or root, and then randomly “grow” it into a branch (with two leaves) by the probability α(1 

+ d)−γ where d represents the branch depth, α ∈ (0, 1) and γ ≥ 0. We assume that the choice 

of a splitting covariate given a branch, and the choice of a cut-point value given a covariate 

and a branch are both uniform. We then use the prior [Mj ∣ Tj] = ∏ℓ = 1
bj [μjℓ] where bj is the 

number of leaves for tree j and μjℓ ∼prior N(0 τ2
m ). Here τ = 0.5

κ  is parameterized in terms of a 

tuning parameter κ with default value of κ = 2 (as recommended in Chipman et al.18 and as 

used in the BART R package21). This gives f(x) ~ N(0, τ2) for any x since f(x) is the sum of 

m independent Normals. Along with centering of the outcome, these default prior 

parameters are specified such that each tree is a “weak learner” playing only a small part in 

the ensemble; more details on this can be found in Chipman et al.18

For data sets with a large number of covariates, P, Linero19 proposed replacing the uniform 

prior for selecting a covariate with a sparse prior. We refer to this alternative as the DART 

prior (the “D” is a mnemonic reference to the Dirichlet distribution). We represent the 

probability of variable selection via a sparse Dirichlet prior as [s1, …, sP] ∼prior  Dirichlet(θ/P, 

… , θ/P) rather than the uniform probability 1/P. The prior parameter θ can be fixed or 

random. Linero19 recommends that θ is random and specified via θ
θ + ρ ∼prior Beta(a, b) with 

the following sparse settings: ρ = P, a = 0.5 and b = 1. The distribution of θ, especially the 

parameters ρ and a, controls the degree of sparsity: a = 1 is not sparse while a = 0.5 is sparse 

and further sparsity can be achieved by setting ρ < P. This Dirichlet sparse prior helps the 

BART model naturally adapt to sparsity when P is large; both in terms of improving 

predictive performance as well as identifying important predictors in the model. Note that 
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alternative variable selection methods exist for BART such as a permutation-based approach 

due to Bleich and Kapelner22 that is available in the bartMachine R package23; however, 

we focus on the optional choice of incorporating the Dirichlet sparse prior into BART in 

subsequent competing risks models.

To apply the BART model to a binary outcome, we use a probit transformation

Pr(y = 1 ∣ x) ≡ p(x) = Φ(μ0 + f(x))

where Φ is the standard normal cumulative distribution function and f ~ BART(m, μ0, τ, α, 

γ). To estimate this model, we use the approach of Albert and Chib24 and augment the 

model with latent variables zi

yi = Izi ≥ 0

zi = μ0 + f(xi) + ei

f(xi) = ∑
j = 1

m
g(xi; T j, Mj)

f ∼prior BART(m, μ0, τ, α, γ)

(3)

where the indicator function Iz≥0 is one if z ≥ 0, zero otherwise; and ei ∼iid N(0, 1). The Albert 

and Chib method provides draws of f from the posterior via Gibbs sampling, i.e. draw z∣f, f 
∣z, etc.

The model just described can be readily estimated using existing software for binary BART. 

It provides inference for the function f(x) through Markov Chain Monte Carlo (MCMC) 

draws of f from which the corresponding success probabilities, p(x) = Φ(μ0 + f(x)), are 

readily obtained. Here μ0 is typically set to Φ−1(ȳ). In the binary probit case, we let τ = 3
κ , so 

that there is 0.95 prior probability that f(x) is in the interval (−3, 3) giving a reasonable range 

of values for p(x). Note that Logistic latents, rather than Normal latents, could also be used 

for the binary outcome setting, and a Logistic implementation is also available in the BART 
package. However, because we are doing a prediction model and not focusing on parameter 

estimates like odds ratios, it is unclear whether probit or Logistic is more useful, so we have 

proceeded with the simpler and more computationally efficient probit framework.

Sparapani et al.13 adapted binary probit BART to the survival setting using discrete-time 

survival analysis.25 We review this in detail, since a similar discrete-time approach is used 

here for the competing risks setting. Survival data are typically represented as (ti, δi, xi) 

where ti is the event time, δi is an indicator distinguishing events (δ = 1) from right-

censoring (δ = 0), xi is a vector of covariates, and i = 1 , … , N indexes subjects. We denote 

the J distinct event and censoring times by 0 < t(1) < … < t(J) < ∞ thus taking t(j) to be the 

jth order statistic among distinct observation times and, for convenience, t(0) = 0. Now 
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consider event indicators yij for each subject i at each distinct time t(j) up to and including 

the subject’s observation time ti = t(ni) with ni = #{j: t(j) ≤ ti} or ni = arg maxj{t(j) ≤ ti}. This 

means yij = 0 if j < ni and yini = δi. We then denote by pij probability of an event at time t(j) 
conditional on no previous event. N.B. pij is the discrete hazard function. The likelihood has 

the form

L(p ∣ y) = ∏
i = 1

N
∏
j = 1

ni
pij

yij(1 − pij)1 − yij (4)

where the product over j is a result of the definition of pij’s as conditional probabilities, and 

not the consequence of an assumption of independence. Since this likelihood has the form of 

a binary likelihood for yij, we can apply the probit BART model where pij = Φ(μ0 + f(t(j), 
xi)). Note the incorporation of t into the BART function f(t, x) allows the conditional 

probabilities to be time-varying, similar to a nonproportional hazards model.

With the data prepared as described above, the BART model for binary data treats the 

conditional probability of the event in an interval, given no events in preceding intervals, as a 

nonparametric function of the time t and the covariates x. Conditioned on the data, the 

algorithm in the BART package21 generates samples, each containing m trees, from the 

posterior distribution of f. For any t and x then, we can obtain posterior samples of

p(t, x) = Φ(μ0 + f(t, x))

and the survival function

S(t(j) ∣ x) = Pr(t > t(j) ∣ x) = ∏
l = 1

j
(1 − p(t(l), x)), j = 1, …, k

BART models with multiple covariates do not directly provide a summary of the marginal 

effect for a single covariate, or a subset of covariates, on the outcome. Marginal effect 

summaries are generally a challenge for nonparametric regression and/or black-box models. 

We use Friedman’s partial dependence function26 with BART to summarize the marginal 

effect due to a subset of the covariates, xS, by aggregating over the complement covariates, 

xC, i.e., x = [xS, xC]. The marginal dependence function is defined by fixing xS while 

aggregating over the observed settings of the complement covariates in the cohort as follows

fS(xS) = N−1 ∑
i = 1

N
f(xS, xiC) (5)

Consider the marginal survival function SS(t∣xS) = N−1∑iS(t∣xS, xiC). Other marginal 

functions can be obtained in a similar fashion. Marginal estimates can be derived via 

functions of the posterior samples such as means, quantiles, etc.
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3 Competing risks and BART

Competing risks data are typically represented as (ti, δi, ϵi, xi) where ϵi ∈ {1, 2} denotes the 

event cause and, similar to before, ti is the time to the event or censoring time, δi is an 

indicator distinguishing events (δ = 1) from right-censoring (δ = 0), xi is a vector of 

covariates, and i = 1, … , N indexes subjects.

As before, we denote the J distinct event and censoring times by 0 < t(1) < … < t(J) < ∞, and 

let ni = arg maxj{t(j) ≤ ti}. The simplest way of representing the discrete time competing 

risks model is through a sequence of multinomial events yijk = I(ti = t(j), ϵi = k), i = 1, … , N; 

j = 1, … ni; k = 1, 2 along with their corresponding conditional probabilities pijk = P(ti = t(j), 
ϵi = k∣ti ≥ t(j), xi) that are interpreted as the probability of an event of cause k at time t(j) 
given the patient is still at risk (has not yet experienced either cause of event) and given their 

covariates. Now, by successfully conditioning over time, we can write the likelihood as

L(p ∣ y) = ∏
i = 1

N
∏
j = 1

ni
pij1

yij1pij2
yij2(1 − pij1 − pij2)1 − yij1 − yij2 (6)

Remark: the pijk are essentially a function of time, t, the patient’s covariates, xi, and their 

interactions forming a general class of models which includes proportional cause-specific/

subdistribution hazards models as special cases.

Since the likelihood matches that of a set of independent multinomial observations, one 

could directly apply BART models to the multinomial probabilities.27 However, multinomial 

BART implementations are not as widely available, and their current approaches require 

estimation of the same number of BART functions as multinomial categories. We propose 

two alternative representations of the likelihood that facilitate direct use of the more 

prevalent binary probit BART implementations. Furthermore, our proposals are more 

computationally efficient by utilizing fewer BART functions to model the outcomes (two 

BART functions instead of three for a standard competing risk framework with two 

competing events).

Next, we present two methods, Method 1 and 2, for estimating this model. The model space 

for these two computational methods is the same. Yet, for any particular data set, this will 

lead to two different cumulative incidence function estimates. The differing estimates occur 

because the BART prior is applied to two different parameterizations of the model. However, 

since both models are flexible, we anticipate (and have observed) similar results.

3.1 Method 1

In this method, we rewrite the likelihood as
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L(p ∣ y) = ∏
i = 1

N
∏
j = 1

ni pij1
pij1 + pij2

yij1 pij2
pij1 + pij2

yij2
(pij1 + pij2)yij1 + yij2(1 − pij1 − pij2)1 − yij1 − yij2

= ∏
i = 1

N
∏
j = 1

ni
pij .

yij . (1 − pij . )1 − yij . ∏
i:δi = 1 i

ui(1

− ψi)1 − ui

(7)

where pij· = pij1 + pij2, yij· = yij1 + yij2, ui = I(ϵi = 1) and ψi = P(ϵi = 1∣ti, δi = 1). This 

likelihood separates into two binary likelihoods, so that we can fit two separate BART probit 

models for pij· and ψi, using the corresponding binary observations yij· and ui respectively. 

Specifically, we assume

yij . = Izij ≥ 0
zij = μy + fy(t(j), xi) + eij
fy ∼ BART(m, μy, τ, α, γ)

(8)

for the first model and

ui = Izi ≥ 0
z i = μu + fu(ti, xi) + e i
fu ∼ BART(m, μu, τ, α, γ)

(9)

for the second model. Conceptually, the first BART model is equivalent to a BART survival 

model for the time to the first event, while the latter BART model accounts for the 

probability of the event being of failure cause 1 given that an event occurs.

The algorithms in existing BART software provide for samples from the posterior 

distribution of fy and fu given the data. Similarly, samples from the posterior distribution of 

py(t, x) = Φ(μy + fy(t, x)) and ψ(t, x) = Φ(μu + fu(t, x)). Inference on the event-free survival 

distribution follows directly from py(t, x) as in Sparapani et al.13 using the expression

S(t(j) ∣ x) = ∏
l = 1

j
(1 − py(t(l), x)), j = 1, …, k

Inference on the cumulative incidence for cause 1 can be carried out using the expression

F1(t(j) ∣ x) = ∑
l = 1

j
S(t(l − 1) ∣ x)ψ(t(l), x)

With these functions in hand, one can easily accomplish inference for other quantities of 

interest based on the cumulative incidence function, such as conditional quantiles28 defined 

as Q1(τ∣x) = inf{t : Fk(t∣x ≥ τ)}. Analogous expressions for the cumulative incidence for the 

competing causes are also directly available. Note that Method 1 can easily be extended to 

multiple causes, i.e. cause 1 vs. cause 2 vs. cause 3, etc.
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3.2 Method 2

In this method, we define pij2 = pij2 ∕ (1 − pij1) as the conditional probability of event 2 at 

time t(j) for patient i given that no cause 1 event occurred at that time, and re-express the 

likelihood as follows

L(p ∣ y) = ∏
i = 1

N
∏
j = 1

ni
pij1

yij1[p ij2(1 − pij1)]yij2(1 − pij1 − p ij2(1 − pij1))1 − yij1 − yij2

= ∏
i = 1

N
∏
j = 1

ni
pij1

yij1(1 − pij1)1 − yij1 ∏
i = 1

N
∏

j:yij1 = 0
p ij2

yij2(1 − p ij2)1 − yij2
(10)

This likelihood also separates into two binary likelihoods, so that we can fit separate BART 

probit models for pij1 and pij2, using the corresponding binary observations yij1 and yij2 

respectively. Specifically, we assume

yij1 = Izij1 ≥ 0
zij1 = μ1 + f1(t(j), xi) + eij1
f1 ∼ BART(m, μ1, τ, α, γ)

(11)

for the first model and

yij2 = Izij2 ≥ 0
zij2 = μ2 + f2(t(j), xi) + eij2
f2 ∼ BART(m, μ2, τ, α, γ)

(12)

for the second model. Conceptually, the first BART function models the conditional 

probability of a cause 1 event at time t(j), given the patient is still at risk prior to time t(j), 
while the second BART function models the conditional probability of a cause 2 event at 

time t(j), given the patient is still at risk prior to time t(j) and does not experience a cause 1 

event. As above, the algorithms in existing BART software provide for samples from the 

posterior distribution of f1 and f2 given the data. Similarly, samples from the posterior 

distribution of p1(t, x) = Φ(μ1 + f1(t, x)) and p2(t, x) = Φ(μ2 + f2(t, x)) can be obtained. 

Samples from the event-free survival distribution are obtained from the expression

S(t(j) ∣ x) = ∏
l = 1

j
(1 − p1(t(l), x))(1 − p2(t(l), x)), j = 1, …, k

Samples from the cumulative incidence for cause 1 can be obtained using the expression

F1(t(j) ∣ x) = ∑
l = 1

j
S(t(l − 1) ∣ x)p1(t(l), x)
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3.3 Data construction

Competing risks data contained in observations (t, δ, ϵ) must be recast as binary outcome 

data; similarly, the corresponding time variable is recast as a covariate in order to fit the 

BART models described in both methods above.29,30 For additional clarification, we give a 

very simple example of a data set with three observations here

(t1, δ1, δ1ϵ1) = (2.5, 1, 1), (t2, δ2, δ2ϵ2) = (1.5, 1, 2), (t3, δ3, δ3ϵ3) = (3, 0, 0)

where t(1) = 1.5, t(2) = 2.5, t(3) = 3.

For observation 1, the patient is at risk at time t(1) = 1.5, but does not experience an event, so 

that y111 = 0, y112 = 0, y11· = 0. This same patient experiences a cause 1 event at time t(2) = 

2.5, so that y121 = 1 and y12· = 1. However, because they experienced a cause 1 event at time 

t(2), the patient is no longer at risk of experiencing a cause 2 event using the Method 2 

formulation of conditional probabilities, so we do not include y122. For observation 1, u1 = 1 

since the patient experienced a cause 1 event at time t1 = t(2). For observation 2, since the 

patient experiences a cause 2 event at time t(1) = 1.5, we define y211 = 0, y212 = 1, y21· = 1, 

and u2 = 0. For observation 3, since the patient is censored at t(3) = 3, all y3jk = 0 for j = 1, 

… , 3 and k = 1, 2, · . Also, there is no u3 defined for this patient since they did not 

experience any kind of event. A summary of the binary indicators and corresponding time 

covariates for each binary observation are summarized in Table 1. Besides time, the 

remaining covariates would contain the individual level covariates, xi, with rows repeated to 

match the repetition pattern of the first subscript of y.

By construction, the size of the data set is expanded from size N to roughly N2 which can be 

problematic when N is large. This computational burden can be reduced by coarsening the 

time scale to K grid points where K << N, e.g. coarsening times in days to either weeks or 

months.

4 Performance of proposed methods

In order to determine the operating characteristics of our new method, we conducted several 

simulation studies and summarized various prediction performance metrics. We start with a 

two-sample setting to establish the face validity of the method to handle competing risks 

data with two groups. We then move on to examine performance in a complex regression 

setting.

4.1 Two sample setting

With a two-sample scenario, several settings are considered to represent standard modeling 

approaches to competing risks data: 1) proportional cause-specific hazards data generated 

from a Cox model; 2) proportional subdistribution hazards data generated from a Fine and 

Gray model; and 3) nonproportional subdistribution setting based on Weibull distributions. 

In each case, we simulate data sets with sample sizes of N = 250, 500, 1000 under 

independent exponential censoring with rate parameters leading to overall censoring 
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proportions of 20% or 50%. Four different parameter settings are considered for each case. 

A total of 400 replicate data sets were generated in each instance.

4.1.1 Case 1: Proportional cause-specific hazards generated by the Cox 
model—For x ∈ {0, 1} and failure cause k ∈ {0, 1}, the cause specific hazard is given by 

λk(t, x) = λ0kexβk where λ0k > 0. The cumulative hazard for any cause of failure is given by 

Λ(t, x) = (λ01exβ1 + λ02exβ2)t, and the cumulative incidence for cause k is given by

Fk(t, x) =
λk(t, x)

λ1(t, x) + λ2(t, x) [1 − e−Λ(t, x)]

The limiting cumulative incidence for cause 1 in group x is

px = F1(∞, x) =
λ01exβ1

λ01exβ1 + λ02exβ2

4.1.2 Case 2: Proportional subdistribution hazards generated by Fine and 
Gray’s model—Under a proportional subdistribution hazards model,3 the cumulative 

incidence functions can be directly specified as in Logan and Zhang31 as

F1(t, x) = 1 − [1 − p0(1 − e−γ0t)]exβ1 (13)

F2(t, x) = (1 − p0)exβ1(1 − e−γ0t) (14)

4.1.3 Case 3: Nonproportional hazards based on Weibull subdistributions—
To simulate this scenario, we describe a data generation process where first the failure cause 

is generated with probability p0 for cause 1 regardless of group, and conditional on the 

failure cause, the failure time is generated from a Weibull distribution with scale parameter 

γ0 and shape parameter exβk. Because the shape parameter is group dependent, this leads to 

different shapes of the cumulative incidence functions, with the same limiting cumulative 

incidence. The resulting cumulative incidence functions have the following form

Fk(t, x) = p0
2 − k(1 − p0)k − 1(1 − e−γ0te

xβk
)

A summary of the parameter settings studied are in Table 2 below.

Each simulated data set was analyzed with both BART competing risks models, Cox 

proportional cause specific hazards models,32 Fine and Gray proportional subdistribution 

hazards model,3 and the Aalen-Johansen nonparametric estimator.33 For brevity, we only 

consider cause 1 which is generally the cause of interest. For each scenario, we examined 

the prediction performance relative to the true cumulative incidence function in terms of bias 

and Root Mean Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 
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50%, 70% and 90%. We also compare the 95% interval coverage probability and 95% 

interval length for the two BART methods. Results are plotted as points against quantile for 

each case and sample combination; note that there are 16 points (eight shown here and eight 

in the supplement) for each case and sample combination: two groups as targets for 

prediction, x = 0, 1; four parameter configurations, a = 1, 2, 3, 4 (shown in Table 2); and two 

censoring rates, 20% (shown here) and 50% (in the supplement), b = 0.2, 0.5. The bias and 

RMSE metrics were assessed at the five chosen quantiles, Q, of the event-free survival 

distribution, e.g. biasNxab = H−1∑ℎ [F1, abℎ(tQ, x) − F1, ab(tQ, x)] where tQ is such that Q = 

F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the simulated data sets. 

Similarly, the 95% interval coverage and length was assessed at the five chosen quantiles, 

e.g. coverageNxab = H−1∑ℎ I(F1, abℎ, 0.025(tQ, x) ≤ F1, ab(tQ, x) ≤ F1, abℎ, 0.975(tQ, x)).

Results for bias and RMSE are shown for Cases 1, 2 and 3 in Figures 2 to 4, respectively 

(20% censoring shown here, 50% censoring in the supplement). In terms of bias, for Case 1, 

as anticipated, the Cox model approach generally has the smallest bias. For Case 2, as 

anticipated, the Fine and Gray method generally has the smallest bias. For Case 3, BART 

Method 2 generally has the smallest bias followed closely by BART Method 1. In terms of 

RMSE, for Case 1, generally all of the methods are quite competitive with respect to RMSE. 

Similarly for Case 2, all of the methods are quite competitive with respect to RMSE. For 

Case 3, the BART methods along with the Aalen-Johansen estimator generally have smaller 

RMSE than Cox and Fine and Gray. N.B. in the simulated data sets at the 90% time quantile 

with 50% censoring rate (coincidentally, approximately 90% quantile of the censoring 

distribution as well), on average there is only one data point at risk in a sample of size 250; 

whereas, for the 20% censoring rate, on average there are about 10 data points: therefore, at 

the 90% quantile with 50% censoring the errors are larger, particularly with BART, since it 

is so heavily data dependent due to data starvation.

Results for coverage probabilities and interval length of 95% posterior intervals are shown 

for Cases 1, 2 and 3 in Figures 5 to 7, respectively (20% censoring shown here, 50% 

censoring in the supplement). For all cases, both of the BART methods have good coverage. 

There appears to be little difference in the width of the intervals between the two BART 

competing risk approaches. In summary, the BART methods perform comparable to the best 

method for each case considered in the two sample setting. This establishes the validity of 

the BART competing risks methodology as a flexible nonparametric estimator of the 

cumulative incidence function in the presence of a binary covariate. No noticeable 

differences in performance were seen between method 1 and method 2; however, method 1 

has an advantage in terms of computation time because the second constructed data set used 

for the second BART function is substantially smaller (as can be clearly seen from ui in 

Table 1).

4.2 Complex regression setting

While the above simulation establishes BART as a nonparametric estimator of the 

cumulative incidence function in the presence of a binary predictor, in practice, we are more 

interested in utilizing these approaches for modeling of competing risks data with more 

complex regression relationships. In this section, we demonstrate the performance of the 
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proposed methods in a complex regression setting, and benchmark it against Random 

Survival Forests.17,34 We generated two simulated data sets for each of the sample sizes; N = 

500, 2000, 5000; for one data set we generated a small number of covariates, P = 10, and the 

other we generated a large number of covariates, P = 1000. This simulation study was 

carried out five times to ensure reproducibility. We base this setting on the Fine and Gray 

model3 since it provides a direct analytic expression for the cumulative incidence functions, 

and we only show the results of cause 1 for brevity. Because we are examining the impact of 

high dimensional predictors, we compare two variants of BART Method 1 against Random 

Survival Forests (RSF). The first variant is standard BART which chooses among the 

variables with a uniform prior. The second variant, which we call DART, substitutes a sparse 

Dirichlet prior for variable selection.

The basics of this setting are provided in Case 2 above. In the cumulative incidence 

expression (13), we set p0 = 0.2 and γ0 = 2.5, but replace xβ1 with f(x) (which was inspired 

by Friedman’s five-dimensional test function35): 

f(x) = 0.5 sin(πx1x(0.5P + 1)) + x2
2 + 0.5x(0.5P + 2) + 0.25x3

2 − 1.25 where

xj ∼ U( − 1, 1) j = 1, …, 0.5P and xj′ ∼ U({ − 1, 1}) j′ = 0.5P + 1, …, P

Note that this prescription provides f(x) ∈ [−1, 1].

The models are fit to the randomly generated training data and applied to an independent test 

sample of size 500 in order to plot the predicted cumulative incidence against the known true 

CIF at the nine deciles of the uncensored true event times. We use Lin’s concordance 

coefficient, rC(a, b) ∈ [−1, 1],36 to assess prediction error: a correlation metric which 

penalizes departures from the diagonal, i.e. rC(a, b) = +1 only when there is a direct linear 

relationship on the diagonal between the elements of the vectors a and b; similarly, rC(a, b) 

= −1 only when there is an inverse linear relationship on the diagonal. Lin’s rC is provided to 

summarize the agreement between the predicted, F1(t, x), and true cumulative incidence 

function, F1(t, x), for cause 1 at the nine deciles combined.

The results of the first simulation study for P = 10 and P = 1000 are shown in Figures 8 and 

9, respectively (the other four simulation studies produced similar results). For P = 10, at N 
= 500, all three methods have roughly equivalent rC around 0.7. When we get to N = 2000, 

DART has a slight advantage over BART and DART/BART have better performance than 

RSF. Similar results were obtained at N = 5000.

For P = 1000, at N = 500, all three methods have roughly equivalent rC around 0.6. When we 

get to N = 2000, DART has a slight advantage over BART and DART/BART have better 

performance than RSF. Similar results were obtained at N = 5000. For RSF, surprisingly, all 

covariate combinations seem to converge on the same limiting cumulative incidence of 

roughly 0.2. This may be due to the inability of RSF to adapt to sparsity as reported by 

Linero19 without an explicit strategy for variable selection. Since only P  variables are 

checked at each split, the likelihood of finding and splitting on important variables is low, 

leading to mostly random splits which would have a similar limiting cumulative incidence. 

Sparapani et al. Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We speculate that this could be mitigated by incorporating variable selection strategies based 

on variable importance measures directly into the algorithm.

5 Application to hematopoietic stem cell transplantation example

In this section, we apply the proposed BART competing risks method to a retrospective 

cohort study data set from the Center for International Blood and Marrow Transplant 

Research (CIBMTR) looking at the outcome of chronic graft-versus-host disease (cGVHD) 

after a reduced intensity hematopoietic cell transplant (HCT) from an unrelated donor37 

between the years 2000 and 2007. Development of cGVHD is the event of interest while 

death prior to development of cGVHD is the competing event. Patients with missing 

covariate data were removed to facilitate demonstration of the methods, so the results should 

be considered as an illustration of the methods rather than a clinical finding. A total of 427 

cGVHD events and 324 competing risk events occurred in the 845 patients in the cohort. 

Thirteen covariates were considered in the analysis, including age, matched ABO blood 

type, year of transplant, disease/stage, matched human leukocyte antigens (HLA), graft type, 

Karnofsky Performance Score (KPS), cytomegalovirus (CMV) status of the recipient, 

conditioning regimen, use of in vivo T-cell depletion, graft-versus-host disease (GVHD) 

prophylaxis, matched donor-recipient sex and donor age, resulting in a total of 21 predictors 

in the X matrix. More details on the variables are available in Eapen et al.37 The time scale 

was coarsened to weeks rather than days to reduce the computational burden.

The BART competing risks Method 2 was fit to this data set with 200 trees, and the default 

settings for the rest of the prior settings, using a burn-in of 100 draws and thinning by a 

factor of 10, resulting in 2000 draws from the posterior distributions for the cumulative 

incidence function given covariates. Based on our simulation studies, we expect Method 1 to 

yield similar results, so we do not show it here. Partial dependence cumulative incidence 

functions can be obtained as in equation (5) for a particular subset of covariates. These can 

be interpreted as a marginal or average cumulative incidence function for that covariate 

level, averaged across the observed distribution of the remaining covariates. In the left panel 

of Figure 10, we show the stacked partial dependence cumulative incidence functions for 

each of two GVHD prophylaxis strategies, Methotrexate (MTX) based or Mycophenolate 

Mofitil (MMF) based. For each strategy, the CIF for cGVHD is shown as the bottom line, 

while the sum of the CIF for cGVHD and for death prior to cGVHD is shown as the upper 

line. These indicate that while there is very little difference in the incidence of cGVHD 

between these strategies overall, there seems to be a higher rate of death without cGVHD in 

the MMF group.

While there appears to be little difference in the CIF of cGVHD between the different 

GVHD prophylaxis strategies overall, it is also worth examining whether this is consistent 

across subgroups. We can use the partial dependence functions to examine the difference in 

CIF of cGVHD by two years between MTX and MMF in various subgroups. These are 

shown as a forest plot in Figure 11. These are generally consistent with the overall findings, 

with most subgroups showing posterior mean differences of less than 5% in the two-year 

CIF of cGVHD, and a few showing differences of up to 7%.
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The BART package can also be used to provide predictions of the difference in cumulative 

incidence between the GVHD prophylaxis regimens for each individual. These are shown in 

Figure 11(b), and show substantially more variability in the individual predictions compared 

to the subgroup mean predictions, as expected.

We examined the variable selection probabilities from fitting the DART model to this data 

set, to identify which variables have the highest posterior probabilities of being selected in 

the trees. Only five variables had at least a 5% mean posterior probability of being selected; 

these were, in order, time (48%), use of MMF as GVHD prophylaxis (7%), use of in vivo T-

cell depletion (6%), use of Flu/Mel conditioning (6%), and AML patients in Primary 

Induction Failure or Relapse (6%). The first four of these were all selected in at least one of 

the trees in at least 90% of the posterior samples, while the last one was selected in 74% of 

the posterior samples. None of the other variables was selected as consistently in at least one 

of the trees.

We compared predictive performance of the proposed BART model to RSF on this BMT 

data using five-fold cross-validation estimates of Brier score and the C statistic from the pec 
R package.38 C statistics at 1 and 2 years were 0.585 and 0.579 for BART and 0.589 and 

0.583 for RSF, while Brier scores at 1 and 2 years were 0.240 and 225 for BART and 0.240 

and 0.225 for RSF, indicating very similar predictive performance. Given the modest sample 

size and number of predictors, this result is consistent with the simulation results indicating 

similar performance of BART and RSF for smaller N and P, while the main advantage of 

BART was observed for larger N and P. Furthermore, BART directly provides measures of 

uncertainty which are not directly available from RSF.

6 Conclusion

In this article, we have proposed a novel approach for flexible modeling of competing risks 

data using BART. Our new methods have some strengths and weaknesses. We find the 

following strengths particularly compelling. The model handles a number of complexities in 

modeling, including nonlinear functions of covariates, interactions, high-dimensional 

parameter spaces, and nonproportional hazards (cause-specific or subdistribution). It has 

excellent prediction performance as a nonparametric ensemble prediction model.

Our formulation allows for the use of off-the-shelf BART software based on binary 

outcomes after restructuring the data as described. Furthermore, we have incorporated the 

competing risks BART models into our state-of-the-art BART R package21 which is 

publicly available on the Comprehensive R Archive Network (CRAN), https://cran.r-

project.org, and distributed under the GNU General Public License.

BART can handle missing data which is often encountered in clinical research studies. For 

example, the BART package imputes one or more missing covariates by record-level hot-

decking imputation39 that is biased towards the null, i.e. non-missing values from another 

record are randomly selected regardless of the outcome. This simple missing data imputation 

method is sufficient for data sets with relatively few missing values. When necessary, more 

advanced missing data imputation approaches are available. The bartMachine R package23 
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incorporates missing data indicators into the training data set allowing for splits on the 

missing indicators; this can improve performance under a pattern mixture model framework. 

An alternative approach uses sequential BART models to impute the missing covariates.40,41

There are some weaknesses of our new approach that might not be immediately obvious. For 

example, these are complex models. While it is not straight forward to directly interpret the 

models themselves, any targets of inference, such as the overall survival or the cumulative 

incidence functions (as shown), are estimable including quantification of uncertainty. With a 

bit of additional effort, one can carry out inference for quantities such as cause-specific and 

subdistribution hazard ratios (not shown).

The methods proposed in this article can be computationally demanding, due to the need to 

expand the data at a grid of event times; although Method 1 is less demanding of the two. 

Nevertheless, we have found that the computation times are competitive with Random 

Survival Forests when you account for bootstrapping by RSF to obtain uncertainty estimates. 

For a large number of covariates, P, BART experiences only modest increases in 

computation time, while RSF suffers from substantial increases. Our approach can be 

parallelized, since the chains do not share information besides the data itself; simultaneously 

performing calculations on m chains can lead to substantial improvements in processing 

time (nearly linear for small m, but due to the burn-in penalty for each chain, diminishing 

returns as m increases further; see Amdahl’s law of parallel computing42). Of course, there 

are other computational mitigation strategies like reducing the number of points in the time 

grid. By construction, the size of the data set is expanded from size N to roughly N2 which 

can be problematic when N is large. This computational burden can be reduced by 

coarsening the time scale to K grid points where K << N, e.g. coarsening times in days to 

either weeks or months. We are currently investigating alternative models which do not 

require expansion of the data on a grid of event times.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two trees (left and center), and their sum (lower right only), fitted with two covariates, x1 

and x2. Each tree is represented by branches (diamonds) and leaves (dots) as well as a 

rectangular partition of the covariate space.
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Figure 2. 
Bias (left) and RMSE (right) for case 1 with 20% censoring: N = 250 (first row), N = 500 

(second row), and N = 1000 (third row). Each simulated data set was analyzed with both 

BART competing risks models, Cox proportional cause-specific hazards models, Fine and 

Gray proportional subdistribution hazards model, and the Aalen-Johansen nonparametric 

estimator. For brevity, we only consider cause 1 which is generally the cause of interest. For 

each scenario, we examined the prediction performance in terms of bias and Root Mean 

Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%, 70% and 90%. 

Results are plotted as points against quantile for each case and sample combination; note 

that there are 16 points (eight shown here and eight in the supplement) for each case and 

sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter configurations, 

a = 1, 2, 3, 4 (shown in Table 2); and 2 censoring rates, 20% (shown here) and 50% (in the 

supplement), b = 0.2, 0.5. The bias and RMSE metrics were assessed at the five chosen 

quantiles, Q, e.g. biasNxab = H−1∑ℎ [F1, abℎ(tQ, x) − F1, ab(tQ, x)] where tQ is such that Q = 

F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the simulated data sets.
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Figure 3. 
Bias (left) and RMSE (right) for case 2 with 20% censoring: N = 250 (first row), N = 500 

(second row), and N = 1000 (third row). Each simulated data set was analyzed with both 

BART competing risks models, Cox proportional cause-specific hazards models, Fine and 

Gray proportional subdistribution hazards model, and the Aalen-Johansen nonparametric 

estimator. For brevity, we only consider cause 1 which is generally the cause of interest. For 

each scenario, we examined the prediction performance in terms of bias and Root Mean 

Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%, 70% and 90%. 

Results are plotted as points against quantile for each case and sample combination; note 

that there are 16 points (eight shown here and eight in the supplement) for each case and 

sample combination: two groups as targets for prediction, x = 0, 1; four parameter 

configurations, a = 1, 2, 3, 4 (shown in Table 2); and two censoring rates, 20% (shown here) 

and 50% (in the supplement), b = 0.2, 0.5. The bias and RMSE metrics were assessed at the 

five chosen quantiles, Q, e.g. biasNxab = H−1∑ℎ [F1, abℎ(tQ, x) − F1, ab(tQ, x)] where tQ is 

such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the 

simulated data sets.

Sparapani et al. Page 21

Stat Methods Med Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Bias (left) and RMSE (right) for case 3 with 20% censoring: N = 250 (first row), N = 500 

(second row), and N = 1000 (third row). Each simulated data set was analyzed with both 

BART competing risks models, Cox proportional cause-specific hazards models, Fine and 

Gray proportional subdistribution hazards model, and the Aalen-Johansen nonparametric 

estimator. For brevity, we only consider cause 1 which is generally the cause of interest. For 

each scenario, we examined the prediction performance in terms of bias and Root Mean 

Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%, 70% and 90%. 

Results are plotted as points against quantile for each case and sample combination; note 

that there are 16 points (eight shown here and eight in the supplement) for each case and 

sample combination: two groups as targets for prediction, x = 0, 1; four parameter 

configurations, a = 1, 2, 3, 4 (shown in Table 2); and wo censoring rates, 20% (shown here) 

and 50% (in the supplement), b = 0.2, 0.5. The bias and RMSE metrics were assessed at the 

five chosen quantiles, Q, e.g. biasNxab = H−1∑ℎ [F1, abℎ(tQ, x) − F1, ab(tQ, x)] where tQ is 

such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the 

simulated data sets.
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Figure 5. 
Coverage (left) and width (right) of 95% posterior intervals for case 1 with 20% censoring: 

N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each simulated data 

set was analyzed with both BART competing risks models. For brevity, we only consider 

cause 1 which is generally the cause of interest. For each scenario, we compare the 95% 

interval coverage probability and 95% interval length for the two BART methods. Results 

are plotted as points against quantile for each case and sample combination; note that there 

are 16 points (eight shown here and eight in the supplement) for each case and sample 

combination: two groups as targets for prediction, x = 0, 1; four parameter configurations, a 
= 1, 2, 3, 4 (shown in Table 2); and two censoring rates, 20% (shown here) and 50% (in the 

supplement), b = 0.2, 0.5. The 95% interval coverage and length was assessed at the five 

chosen quantiles, e.g. 

coverageNxab = H−1∑ℎ I(F1, abℎ, 0.025(tQ, x) ≤ F1, ab(tQ, x) ≤ F1, abℎ, 0.975(tQ, x)) where tQ is 

such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the 

simulated data sets.
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Figure 6. 
Coverage (left) and width (right) of 95% posterior intervals for case 2 with 20% censoring: 

N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each simulated data 

set was analyzed with both BART competing risks models. For brevity, we only consider 

cause 1 which is generally the cause of interest. For each scenario, we compare the 95% 

interval coverage probability and 95% interval length for the two BART methods. Results 

are plotted as points against quantile for each case and sample combination; note that there 

are 16 points (eight shown here and eight in the supplement) for each case and sample 

combination: two groups as targets for prediction, x = 0, 1; four parameter configurations, a 
= 1, 2, 3, 4 (shown in Table 2); and two censoring rates, 20% (shown here) and 50% (in the 

supplement), b = 0.2, 0.5. The 95% interval coverage and length was assessed at the five 

chosen quantiles, e.g. 

coverageNxab = H−1∑ℎ I(F1, abℎ, 0.025(tQ, x) ≤ F1, ab(tQ, x) ≤ F1, abℎ, 0.975(tQ, x)) where tQ is 

such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the 

simulated data sets.
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Figure 7. 
Coverage (left) and width (right) of 95% posterior intervals for case 3 with 20% censoring: 

N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each simulated data 

set was analyzed with both BART competing risks models. For brevity, we only consider 

cause 1 which is generally the cause of interest. For each scenario, we compare the 95% 

interval coverage probability and 95% interval length for the two BART methods. Results 

are plotted as points against quantile for each case and sample combination; note that there 

are 16 points (eight shown here and eight in the supplement) for each case and sample 

combination: two groups as targets for prediction, x = 0, 1; four parameter configurations, a 
= 1, 2, 3, 4 (shown in Table 2); and two censoring rates, 20% (shown here) and 50% (in the 

supplement), b = 0.2, 0.5. The 95% interval coverage and length was assessed at the five 

chosen quantiles, e.g. 

coverageNxab = H−1∑ℎ I(F1, abℎ, 0.025(tQ, x) ≤ F1, ab(tQ, x) ≤ F1, abℎ, 0.975(tQ, x)) where tQ is 

such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, … , H are the 

simulated data sets.
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Figure 8. 
Predicted vs. true F1(t, x) for BART, DART, and RSF, with P = 10, at sample sizes of N = 

500, 2000, 5000. At N = 500, all three methods have roughly equivalent rC around 0.7. At N 
= 2000, 5000, DART has a slight advantage over BART and DART/BART have better 

performance than RSF. We demonstrate the performance of the proposed methods in a 

complex regression setting. We base this setting on the Fine and Gray model since it 

provides a direct analytic expression for the cumulative incidence functions, and we only 

show the results of cause 1 for brevity. Because we are examining the impact of high 

dimensional predictors, we compare two variants of BART Method 1 against Random 

Survival Forests (RSF). The first variant is standard BART which chooses among the 

variables with a uniform prior. The second variant, which we call DART, substitutes a sparse 

Dirichlet prior for variable selection. The basics of this setting are provided in Case 2 above, 

except that in the cumulative incidence expression (13), we set p0 = 0.2 and γ0 = 2.5, but 

replace xβ1 with f(x) = 0.5 sin(πx1x(0.5P + 1)) + x2
2 + 0.5x(0.5P + 2) + 0.25x3

2 − 1.25 where 

xj~U(−1, 1) j = 1, … , 0.5P and xj′~U({−1, 1}) jj = 0.5P + 1, … , P. The models are fit to the 

randomly generated training data and applied to an independent test sample of size 500 in 

order to plot the predicted cumulative incidence against the true CIF at the deciles of the 

uncensored true event times, tQ. Lin’s concordance coefficient, rC, is provided to summarize 
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the agreement between the predicted, F1(tQ, x), and true cumulative incidence function, 

F1(tQ, x), for cause 1.
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Figure 9. 
Predicted vs. true F1(t, x) for BART, DART, and RSF, with P = 1000, at sample sizes of N = 

500, 2000, 5000. At N = 500, all three methods have roughly equivalent rC around 0.6. At N 
= 2000, 5000, DART has a slight advantage over BART and DART/BART have better 

performance than RSF. We demonstrate the performance of the proposed methods in a 

complex regression setting. We base this setting on the Fine and Gray model since it 

provides a direct analytic expression for the cumulative incidence functions, and we only 

show the results of cause 1 for brevity. Because we are examining the impact of high 

dimensional predictors, we compare two variants of BART Method 1 against Random 

Survival Forests (RSF). The first variant is standard BART which chooses among the 

variables with a uniform prior. The second variant, which we call DART, substitutes a sparse 

Dirichlet prior for variable selection. The basics of this setting are provided in Case 2 above, 

except that in the cumulative incidence expression (13), we set p0 = 0.2 and γ0 = 2.5, but 

replace xβ1 with f(x) = 0.5 sin(πx1x(0.5P + 1)) + x2
2 + 0.5x(0.5P + 2) + 0.25x3

2 − 1.25 where 

xj~U(−1, 1) j = 1, … , 0.5P and xj′ ∼ U({1, 1})jj = 0.5P + 1, …, P . The models are fit to the 

randomly generated training data and applied to an independent test sample of size 500 in 

order to plot the predicted cumulative incidence against the true CIF at the deciles of the 

uncensored true event times, tQ. Lin’s concordance coefficient, rC, is provided to summarize 
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the agreement between the predicted, F1(tQ, x), and true cumulative incidence function, 

F1(tQ, x), for cause 1.
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Figure 10. 
Partial Dependence Stacked Cumulative Incidence Functions for two different GVHD 

prophylaxis strategies: MTX based or MMF based. Bottom line is the CIF for cGVHD, 

while top line represents the sum of the CIF for cGVHD and for the competing risk of death 

before cGVHD. 95% credible intervals provided at select time points.
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Figure 11. 
Plots of the difference in two-year CIF for cGVHD, with 95% posterior interval, by (a) 

clinically defined subgroup, and (b) individual patient (ordered by mean difference). 

Subgroups are by age, graft type (PB = Peripheral Blood, BM = Bone Marrow), 

conditioning regimen (Flu = Fludarabine, Bu = Busulfan, Cy = Cyclophosphamide, Mel = 

Melphalan), disease/stage (AML = Acute Myelogenous Leukemia, MDS = Myelodysplastic 

Syndrome, NHL = Non-Hodgkin’s Lymphoma, CR = Complete Remission, PIF = Primary 

Induction Failure, REL = Relapse, RA = Refractory Anemia, RAR = RA with Ringed 

Sideroblasts, RAEB = RA with Excess Blasts, RAEBT = RAEB in Transmission), Human 

Leukocyte (HLA) matching between donor and recipient, and donor/recipient gender. 

Negative values indicate MMF has lower incidence of cGVHD.
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Table 1.

Data construction example.

i j t(j)

Method 1 Method 2

yij. ui yij1 yij2

1 1 1.5 0 0 0

2 2.5 1 1 1

2 1 1.5 1 0 0 1

3 1 1.5 0 0 0

2 2.5 0 0 0

3 3.0 0 0 0
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Table 2.

Parameter settings for Cases 1 through 3.

Case λ01 λ02 β1 β2 p0 p1 γ0 γ1

1 1 1 0 0 0.5 0.5

Proportional 1 1 − log 2 log 2 0.5 0.2 2.5

Cox 2 0.5 0 0 0.8 0.8

2 0.5 − log 2 log 2 0.8 0.5

2 0 0.5 2

Subdistribution − log 2 0.5 2

Fine and Gray 0 0.8 2.5

log 2 0.2 2.5

3 0 0 0.5 2

Nonproportional − log 3 log 3 0.5 2

Weibull 0 0 0.8 2.5

− log 3 log 3 0.2 2.5
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