Skip to main content
. 2018 Sep 17;20(6):2224–2235. doi: 10.1093/bib/bby085

Table 1.

Parameter settings for the DMR identification methods. Default settings are underlined and in bold font.

Method Implementation Input Parameters Statistics for computing DMR P-value DMR P-value label in output table
Bumphunter R/BioC package bumphunter v1.20.0 pickCutoffQ = (0.95, 0.99), maxGap = (200, 250, 500, 750, 1000), nullMethod ="permutation", B=10 permutation distribution based on permuting sample labels P-value area
Comb-p Python library comb-p v0.48 --seed (0.001, 0.01, 0.05) --dist (200, 250, 500, 750, 1000) Stouffer–Liptak statistic z_p
DMRcate R/BioC package DMRcate v1.14.0 lambda = (200, 250, 500, 750, 1000), C = (1,2,3,4,5) Stouffer’s method Stouffer
Probe Lasso R/BioC package ChAMP v2.9.10 method = “ProbeLasso”, adjPvalProbe = (0.001, 0.01, 0.05) meanLassoRadius = (375, 700, 1000) minDmrSep = (200, 250, 500, 750, 1000) Stouffer’s method dmrP