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Abstract

Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients
based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology
and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis
and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease
and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although
a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various
aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and
mathematical modeling to data management, in the context of precision medicine.
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Introduction

Precision medicine is rapidly emerging as a strategy to tailor
medical treatment to a small group or even individual patients
that have a similar genetic background, environment and life-
style and, therefore, similar treatment prognosis. It has been
shown that ethnic and gender differences can account for varia-
tion in responses to treatment. In 2016, the White House
announced the precision medicine initiative (PMI), a long-term
research program involving the National Institutes of Health
(NIH) and multiple other research centers, which aims to ‘ena-
ble a new era of medicine through research, technology, and
policies that empower patients, researchers, and providers to
work together toward development of individualized care’
(https://obamawhitehouse.archives.gov/node/333101). Precision
medicine relies on progress in systems biology and omics

disciplines, including genomics, transcriptomics, proteomics
and metabolomics.

Metabolomics is a global approach that can provide measure-
ments of all, or a large number of metabolites in cells, tissues or
biological fluids. Major approaches used in metabolomics studies
include targeted analysis, metabolite profiling and metabolic fin-
gerprinting [1, 2]. As a global approach that can measure all or a
large number of cellular metabolites, metabolomics is distinc-
tively positioned to provide a unique metabolic readout of
patient’s physiological or disease state [3]. Mass spectrometry
(MS)-based and nuclear magnetic resonance (NMR)-based
approaches are now routinely used for newborn screening [4–8],
drug screening [9, 10], pharmacometabolomics [11–18], bacterial
identification [19–21], metabolic imaging [22–25] or gut flora anal-
ysis [26–29].
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Several recent reviews highlighted the power of metabolo-
mics as a tool for precision medicine [30–35]. A recent metabolo-
mics community white paper stresses the importance of
metabolomics for precision medicine and outlines major
approaches for including metabolomics data in large PMIs [31].
Combination of metabolomics with sophisticated bioinfor-
matics analysis and mathematical modeling can provide a met-
abolic snapshot of the patient over the course of disease and
treatment or classify patients into subpopulations and sub-
groups requiring individual medical intervention.

Here, we will review various aspects of metabolomics tech-
nology and bioinformatics in the context of precision medicine.

Precision medicine and metabolic phenotypes

Precision medicine aims at developing the best treatment or
prevention method based on a person’s genetics, environment
and lifestyle. Precision medicine can be broadly divided into
precision prevention and precision treatment [36]. Prevention
treatment encompasses an array of measures focused on
assessing risk of individual toward particular disease and devise
a preventive intervention to decrease this risk and prevent the
development of disease [37]. One of the earliest examples of
precision prevention is a newborn screening for genetic muta-
tions, such as phenylketonuria, and development of dietary
intervention to prevent the onset of disease. Precision treat-
ment, on the other hand, aims at developing personalized treat-
ment strategy to cure disease while taking into account
patient’s genetics, environment and lifestyle as well as individ-
ual treatment response parameters to predict posttreatment
outcome.

Metabotypes and precision medicine

Metabolic phenotype or metabotype (also called chemotype)
concept is often used to describe a particular metabolic state of
biological system through its metabolic signature represented
as different level of individual metabolites [38]. Metabotypes
can be defined as absence or presence of a particular metabo-
lites, absolute or relative concentration of metabolites in a sam-
ple or as metabolite profiles or metabolic signatures. Metabolic
phenotyping, or metabotyping, can be best performed using
various metabolomics approaches, from targeted analysis to
metabolic fingerprinting [31, 39]. Multiple examples exist in the
literature describing successful metabolic phenotyping or
metabotyping using metabolomics (reviewed by [40–45]).
Metabolomics aided in characterizing many disease-associated
metabotypes in cancer [46, 47], inflammatory bowel disease
(IBD) [48, 49], asthma [50], diabetes [51], traumatic brain injury
(TBI) [52], metabolic syndrome [53], Parkinson’s disease [54] and
other pathologies. For example, Calvani and colleagues [55]
used NMR-based metabolomics analysis to identify an obesity-
associated metabotype that differs from that of lean controls,
while Tam and colleagues [56] used liquid chromatography–
mass spectrometry (LC-MS)-based/MS-based metabolic pheno-
typing to identify metabolic biomarkers in older people with
late-onset type 2 diabetes mellitus. Precision medicine would
require the development and characterization of metabotypes
for individual patients and their response to treatment.

It was suggested that local microenvironmental cues likely
contribute to disease progression and resolution in many dis-
eases including cancer [57, 58], IBDs [59], liver disease [60],
Dupuytren’s contracture [61], fibrotic disease [62], autoimmune
disease [63] and obesity [64]. For example, there are evidence

that many tumors are not homogeneous and exhibit different
genetic and metabolic state. Hu and colleagues [57] have dem-
onstrated heterogeneity of tumor-induced metabolic gene
expression across 22 different cancer types. Metabolic heteroge-
neity also exists within an individual tumor tissue, which may
require specialized treatments to target different tumor regions.
Recently, Okegawa and coauthors [65] demonstrated intratumor
heterogeneity in primary kidney cancer [58]. Using global
metabolomics analysis of multiple spatially separated samples
within tumors, they have shown that different portions of a
human primary kidney tumor possess different metabolic char-
acteristics and drug sensitivity [65]. Hensley et al. [58] demon-
strated metabolic heterogeneity in human lung cancer.
Metabolic heterogeneity within tumor may be attributed to het-
erogeneity in gene expression [66]. Extensive intratumor genetic
heterogeneity was shown for spatially separated portions of pri-
mary renal carcinomas and associated metastatic sites [67]. In
other examples, it was demonstrated that microenvironment of
adipose tissue influences cardiovascular disorders, including
atherosclerosis and ischemic heart diseases (reviewed by [64]),
and local intestine microenvironment can significantly contrib-
ute to both disease progression and resolution in IBDs [59].
Novel metabolomics technologies can assist in understanding
these metabolic tissue microenvironments by performing
metabolomics analysis of small cell population or even single
cells [68]. Precision medicine has to address this tissue hetero-
geneity and develop treatment for a specific metabolic microen-
vironment within diseased tissues [69].

Metabolomics technology
Human metabolome

It is important to define the complete composition of metabo-
lites present in human organism, in other words the human
metabolome, and relate it to the metabolome of an individual.
Despite significant developments in metabolomics, we still do
not have a full understanding of the complete human metabo-
lome, which is highly complex and includes both endogenous
and exogenous metabolites. Endogenous metabolites are natu-
rally produced by human organisms, while exogenous metabo-
lites, or xenobiotics, are not naturally produced by an organism
and include chemicals to which humans are exposed over the
course their life. Metabolome is influenced by many factors,
including genetic background, diet, environmental exposures
and gut microflora. In addition to genetic background, diet sig-
nificantly contributes to the metabolome composition. For
example, it is a source of essential amino acids or many plant-
derived metabolites, such as flavonoids or polyphenols. Subsets
of the metabolome, i.e. tissue-specific or disease-specific
metabolomes, can be useful when treating specific organ or dis-
ease. Also, there is an effort to compile a metabolome linked to
a specific disease, i.e. cancer metabolome, diabetes metabo-
lome, etc. Human microbiome metabolome, or the metabolome
of human gut microflora, can also provide an invaluable infor-
mation for diagnostics and treatment [70]. We will examine the
role of microbiome in the precision medicine later in the article
while discussing meta-genomics and meta-metabolomics. The
exposome, which encompasses total human exposure from
environmental sources, was also implicated in many diseases
[71–75]. Several projects and databases are focused on defining
human metabolome as well as species-centered or disease-
centered metabolomes, microbiome metabolome and expo-
some [27, 28, 76–83].
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Sample collection and processing

The nature of biological sample, collection procedure and
extraction methodology is a critical component of any metabo-
lomics study. Typically, human metabolomics studies analyze
either biological fluids or tissue samples. Biofluids are generally
easier to collect and analyze. Biofluids used for metabolomics
analysis include serum [84–86], plasma [11, 87], urine, cerebro-
spinal fluid, ascitic fluid [88], saliva [89–91], tear [92], bronchial
wash (BW) and bronchoalveolar lavage fluid [93], seminal fluid
[94], prostatic secretions [94] or fecal samples [95]. Tissue analy-
sis is more complicated because of tissue heterogeneity and
often limited sample volume. Recently, dried blood spots (DBSs)
samples became popular for various clinical applications. DBS
samples were successfully used in newborn screening [96–98]
and pharmacological analyses [99–102] and are now being
investigated in metabolomics analysis [103–105]. Although sev-
eral standardized procedures were published for metabolomics
analysis of various sample types (reviewed by [105–108]), more
standardization on sample collection and processing is
necessary.

It is important that all the required metadata, including age,
gender, diet, physical activities, disease history, medications,
etc., be collected and recorded during sample collection. Ideally,
these factors that have dramatic influence on the metabotype
should be taken into account during patient interview and
treatment design and before the samples are collected.

Biobanking

Precision medicine would require the development of special-
ized systems for collecting and storage of biological specimens
[22, 31, 109–111]. Samples have to be collected under standar-
dized conditions to ensure reproducibility and critical metabo-

lites preservation. Abuja et al. [110] performed systematic study
on the influence of storage scenarios on the liver metabolome
with different storage temperatures and repeated transfer of
samples between storage and retrieval environments, which
simulates the typical biobanking conditions. They have shown
that storage temperature affected metabolite concentrations
only little, while the number of temperature change cycles has
a strong effect on metabolites stability [110]. Biobanking is con-
sidered as a critical component of precision medicine workflow
and is being incorporated into several PMIs [112–114]. For exam-
ple, MOBIT project adopted the oncology biobanking procedures
developed by a commercial biotech company Indivumed GmbH
(Hamburg, Germany) [22]. The workflow incorporates several
steps that are important for metabolomics analysis and consists
of following major steps: patient qualification into biobank,
anonymization of patient data, collection of biospesimens and
patient data, preparation and storage of samples into biobank
and quality control of tissues and biofluids. Another example of
successful biorepository infrastructure is an open-source biore-
pository management system developed by Felmeister and
coworkers [114]. The system consists of electronic Honest
Broker (eHB) and Biorepository Portal (BRP) that, in tandem,
allow for integration of clinical, specimen and genomic data col-
lected for biorepository resources while protecting patient pri-
vacy [114]. As of January 2016, eight institutions were
participating in biobanking activities using this tool kit with
over 4000 unique subject records deposited in the eHB and over
30 000 specimens accessioned [114].

Metabolomics approaches

Metabolomics technology has significantly evolved over the
past decade, and new techniques and approaches specifically
suited for various clinical applications have been developed.
Owing to chemical complexity of the metabolome, no single
analytical methodology can measure all metabolites present in
a biological sample; therefore, a combination of analytical tech-
niques is used for metabolome analysis (reviewed by [1, 3]).

The major approaches used in metabolomics studies include
targeted analysis, untargeted metabolite profiling and meta-
bolic fingerprinting [1, 115]. Targeted analysis is a quantitative
approach that measures the concentration of a limited set of
known metabolites. Untargeted or global metabolomics
attempts to measure large set of metabolites in the sample
without knowing a priori which metabolites are expected to be
present in each individual sample. Untargeted metabolite pro-
files have to be as comprehensible as possible to uncover the
underlying metabolic network changed in a particular physio-
logical or pathological state [116]. The biggest drawback of the
untargeted profiling is that the majority of peaks in the profile
are not identifiable. Application of high-resolution MS can sig-
nificantly improve unknown compound identification, but
accurate mass measurement alone is not sufficient for positive
structure identification. Additional orthogonal information,
such as chromatographic retention time, isotope pattern
matching, multiple stage MS and collisional cross-section, is
often needed for correct structural annotation [117, 118].
Metabolic fingerprinting considers a total metabolite profile as a
unique pattern, or fingerprint, for a particular metabolic state
without attempting to identify each individual metabolite in the
profile. All three metabolomics approaches can be used in preci-
sion medicine.

Analytical techniques

Major analytical techniques currently used in metabolomics
include NMR, Fourier transform infrared spectroscopy, gas chro-
matography–mass spectrometry (GC-MS), LC-MS and capillary
electrophoresis–mass spectrometry. Precision medicine poses
additional requirements for technology: ease of use, increased
throughput, automation and real-time data generation and
analysis. The advantages and drawbacks of different technolo-
gies used in metabolomics have been widely discussed [1, 3];
therefore, we will largely focus on techniques and instrumenta-
tion that are best suited for precision medicine.

NMR is widely used in metabolomics studies because of its
nondestructive nature and ability to simultaneously measure
many organic compounds present in the biological sample [3].
Being a nondestructive methodology makes NMR advantageous
over other method, as the samples can be used for multiple
assays. This is especially important when the sample size is
limited, which is common in biomedical applications. The
major limitation of the NMR as a comprehensive technique for
metabolomics is its low sensitivity, which permits the detection
of metabolites only at the micromolar level. Depending on the
nature of the sample and specific biological questions, several
NMR techniques can be used in precision medicine. 1H-NMR is
the most often used technique, although 31P-NMR and 13C-NMR
can be applied as well. High-resolution magic angle spinning
is useful when studying liquid or intact solid tissue samples
[119–121]. NMR has been largely used for metabolic fingerprint-
ing, biomarker discovery and metabolic flux analysis. It was
extensively applied for metabolomics analysis and discrimina-
tion of numerous diseases, including cancer [122–124], kidney
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diseases [125] sepsis [32, 126], cardiovascular diseases [127–129],
acute lung diseases [130], Alzheimer’s disease [89] and neona-
tology [131]. Different cancers, including prostate [132, 133],
esophageal [134–136], breast [137], gastric [138], colorectal [123]
[139], lung [140, 141], brain [122], ovarian [142] and renal [143],
can be classified using NMR profiles. It was also successfully
used to characterize metastatic cancer in lymph nodes [144].

MS-based methods provide increased sensitivity and ability
to assay diverse range of cellular metabolites in wide polarity
range. MS-based metabolite profiling can be performed either
using shotgun approach based on direct infusion mass spec-
trometry or in combination with front-end separation techni-
que (hyphenated techniques). Most often MS is combined with
GC, LC, ion chromatography or capillary electrophoresis (CE)
(reviewed by [1, 145, 146]). MS-based hyphenated techniques are
extensively used for metabotyping of various diseases to char-
acterize disease-associated metabolome. For example, Wei et al.
[147] used GC-MS-based urine metabolomics combined with the
personalized diagnosis guided by Chinese medicine (CM) to
identify diagnostic biomarkers for prediabetic subtypes. In this
study, three CM physicians reached 85% diagnosis consistency
resulting in the classification of three prediabetic groups. The
urine metabolic patterns of all three groups were clearly discri-
minated [147]. In another study, Jacobs et al. [48] used Ultra-
Performance Liquid Chromatography - mass spectrometry
(UPLC-MS) to characterize a disease-associated metabolomics
state in relatives of IBD patients and demonstrated that healthy
first-degree relatives can have dysbiosis associated with an
altered intestinal metabolome. Similarly, Liu et al. [148] used
capillary electrophoresis-time-of-flight mass spectrometry-
based metabotyping to systemically study the differences
between hemodialysis and high-flux hemodialysis on plasma
metabolite changes in patients.

Currently, medical application of MS is dominated by triple
quadrupole MSs, which are generally used for analysis of spe-
cific metabolite classes, such as amino acids [149], neurotrans-
mitters [150], steroids [151] and drugs and their metabolites
[152, 153]. With progress in metabolomics technology, which
demands much broader metabolite coverage, other types of
mass detectors are becoming more popular. Substantial
advancements in metabolite profiling were achieved over the
past decade as a result of a wide adoption of high-resolution
mass spectrometry (HRMS), which offer several advantages over
lower-resolution instruments [145, 146, 154, 155]. High mass
accuracy and resolving power of the HRMS instruments enable
better characterization of unknown metabolites by assignment
of elemental formula and also allows for identification of
adducts with high precision [155]. A variety of multiple ion sour-
ces are available to use with HRMS. Mass analyzers that can per-
form HRMS include Fourier transform ion cyclotron resonance
(FT-ICR), Orbitrap and time-of-flight analyzers.

Insufficient sample volume, especially when analyzing tis-
sue biopsies, which can contain as little as several thousand
cells, often imposes a significant limitation on metabolomics
technology. Microbore UPLC or capillary LC or LC-MS can be
used to increase the sensitivity of the metabolomics analysis.
There are significant developments in this area over the past
years. Gray et al. [156] using 1 mm I.D. columns instead of
2.1 mm I.D. columns for metabolic phenotyping using UPLC-MS
achieved equivalent or superior performance in terms of peak
capacity and sensitivity. The increase in sensitivity of this
method allows for using smaller sample volume [156]. Capillary
LC-MS can be even more sensitive. Ni and coauthors [157] used
a 75 lm inner diameter column coupled to a quadrupole ion

trap MS operated in full scan mode to analyze single islets of
Langerhans, which are microorgans found in the pancreas that
contain a few thousand cells each. Authors achieved high sensi-
tivity with detection limits of 0.1–33 fmol for polar anions in
15 nl injection volumes. It was shown that number of detected
metabolites in small samples can be achieved by reducing col-
umn diameter [158]. Simply reducing column I.D. from 50 to
25 mm, Edwards et al. [158] were able to increase the number of
detected metabolites from 111 (þ/�9) to 156 (þ/�17) in
Escherichia coli lysate samples. This improvement was attributed
to an increase in separation efficiency, an increase in sensitivity
and a decrease in adduct formation.

One of the limitations of the GC-MS- and LC-MS-based tech-
niques is their inability to provide information on metabolites
distribution within tissue or organ. This information is
extremely critical for diagnostics and treatment of many dis-
eases. The mass spectrometry imaging (MSI) can provide such
an information. MSI can be performed using either vacuum ion-
ization technique, such as vacuum matrix-assisted laser
desorption/ionization (MALDI) [159–164], or ambient ionization
method, such as atmospheric pressure MALDI (AP-MALDI) [165,
166], desorption electrospray ionization [167–170] and matrix-
assisted laser desorption electrospray ionization [171, 172]. Most
often MSI is performed using HRMS. MSI has been successfully
applied for imaging of various human and animal tissues, such
as brain [162, 173–176], heart [159–161, 177], liver [178], kidney
[179], skin [180], breast [181–185] and lens [163, 164]. It has also
been used to study clinical samples from cancer patients [181,
182, 184–186]. MSI can be performed on either cryosections [187]
or formalin-fixed, paraffin-embedded (FFPE) human tissue sam-
ples [186], which provides the ability to reanalyze previously
stored samples. For example, Buck and colleagues [186] ana-
lyzed FFPE tissues from 350 different cancer patients using
high-resolution matrix-assisted laser desorption/ionization
Fourier-transform ion cyclotron resonance mass spectrometry
imaging (MALDI-FT-ICR MSI) and were able to discriminate
between normal and tumor tissues, and different tumors from
the same organ. They also found an independent prognostic
factor for patient survival using MSI approach.

Rapid evaporative ionization mass spectrometry (REIMS) can
go beyond other MSI applications [188–193]. It uses the aerosol
by-product of electrosurgical (Bovie) tools [194]. St John and col-
leagues [194] developed an MS method for the rapid analysis of
heterogeneous breast tissues, namely, iKnife device based on
REIMS technology. They have shown that the iKnife is capable
of accurately separating breast tissue types by interpretation of
the cellular chemical constituents. Critical component of this
technology is recognition software that enables real-time analy-
sis of both ex vivo and in vivo breast tissue.

Bioinformatics for precision medicine

Bioinformatics in precision medicine is driven by the need to
integrate omics biomarkers identified in individuals or cohorts
of patients. These biomarkers could be single nucleotide poly-
morphisms (SNPs), structural variants, circulating DNAs,
methylated DNAs, mRNAs and microRNAs (miRNAs), proteins
and metabolites. Bioinformatics for precision medicine needs to
support raw data generation and real-time processing, compu-
tational analysis, data and results visualization, data fusion,
mathematical modeling, clinical data integration and data man-
agement. As per the National Research Council’s guidelines,
multilayer molecular or omics data, including exposome,
genome, epigenome, transcriptome, proteome, metabolome
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and microbiome, collected from individuals or cohorts of
patients, should be deposited in common data repository,
namely, Information Commons. In addition, clinical informa-
tion and epidemiological data where available should be
included to enable a comprehensive investigation of links
between the data layers leading to a knowledge network. The
knowledge network will enable taxonomic classification of dis-
eases, rendering precision diagnosis and therapeutic interven-
tion [195].

Metabolomics, similar to other ‘omics’ disciplines, requires
specialized bioinformatics tools (reviewed by [1, 196–199]).
Metabolomics data analysis involves several major steps and
requires extensive raw data preprocessing followed by multi-
variate statistical analysis using specialized mathematical, stat-
istical and bioinformatics tools, data mining and integration
with other omics data and mathematical network modeling
[196, 199–201]. In a recent review, Duerr-Specht et al. [202]
defined three major areas in modern medicine and health care
where improvement in health-care informatics and data man-
agement should focus on: organizational (including administra-
tive and political), technological and educational. This is true
for bioinformatics for precision medicine metabolomics.
Precision medicine imposes special requirements on metabolo-
mics data handling and bioinformatics analysis. Ultimately,
metabolomics experiments focused on precision medicine will
generate vast amount of raw data that have to be processed and
analyzed, often in real time. Specific bioinformatics data proc-
essing and statistical tools used in metabolomics studies have
been extensively reviewed [1, 154, 196, 203]; therefore, we will
outline major strategies to analyze metabolomics data and
largely focus on specific aspects of metabolomics and other
omics bioinformatics relevant to precision medicine.

Data collection and processing

Translating the molecular data and statistical classifiers to use-
ful products in clinic is a significant challenge, beginning from
data procurement to clinical trial. Raw data almost always need
to be preprocessed, which includes quality processing (e.g. data
trimming), normalization or rescaling. In genomics and tran-
scriptomics, the raw sequence reads are quality checked using
programs, such as FASTQC (https://www.bioinformatics.babra
ham.ac.uk/projects/fastqc/), and reads are trimmed to eliminate
the low-quality nucleotides, often at the left and right ends of
reads, using programs, such as Trimmomatic [204]. In metabo-
lomics, raw data processing requires noise subtraction, chroma-
tographic peak alignment, data normalization and scaling
before the statistical analysis. Raw data preprocessing can be
performed using instrument vendor-specific or open-source
tools [205].

Omics data analysis

Early patient stratification method was based on genetic varia-
tion. Genomic DNA assays have been developed to interrogate
DNAs in the samples of patients to identify nucleotide variants,
including indels, i.e. insertions or deletions of one to few
nucleotides and structural variants that encompass large
genomic regions. These include targeted panel sequencing,
whole-exome sequencing (WES) and whole-genome sequencing
(WGS) [206]. Diana et al. [207] developed a targeted panel, ‘The
PulmoGene Test’, which includes 64 genes implicated in lung
disease that enabled interrogation of lung tissue samples for
these genes. In contrast, WES and WGS entail sequencing of

coding regions of all genes and the entire genome, respectively,
to catalog single-nucleotide variants, indels and structural var-
iants in genes or any genomic regions. While the latter is both
expensive and time-consuming, the rapid decline in cost and
turnaround time in recent years has raised the hope to use WES
and WGS for the masses in precision medicine. The first step in
identification of variants is alignment of sequence reads onto
the reference human reference genome. This can be accom-
plished using publicly available aligners, such as BWA [208], or
by using a toolkit, such as Genome Analysis ToolKit (GATK)
(https://software.broadinstitute.org/gatk/) that also outputs
SNPs and short indels. A number of variant calling programs
have been developed, e.g. SIFT and PolyPhen for identifying
pathogenic mutations, MoDIL for small indel detection [209],
BreakDancer for structural variant detection [210] and XHMM
for copy number variant detection from WES [211]. Programs,
such as Cufflinks [212] or DESeq [213], can be used for evaluating
the differential gene expression analysis once the RNA sequenc-
ing reads are mapped on the reference genome. Expression data
in combination with variant data allow identification of variants
that impact transcription and splicing.

Molecular classifiers have been developed to discriminate
samples from patients and normal individuals or for disease
stratification; however, these classifiers need to address issues
with multiple comparisons, dimensionality problems [large
number of features (p), small number of samples (n) problem]
and validations. Molecular classifiers are becoming increasing
popular in oncology because of the pressing need to differenti-
ate cancers or cancer subtypes [214]. In addition to overcoming
the technical challenges associated with molecular classifiers,
Ferte et al. [215] suggest dynamic sampling of tumors, both on
spatial and temporal scales, for an unbiased assessment that
could be potentially rewarding in efforts to usher in the molecu-
lar technologies to clinics. Metabolic phenotyping has been
used for static and dynamic patient stratification (reviewed by
[216]). Unlike static patient stratification, which can predict the
development of disease based on molecular classifiers, dynamic
stratification can model the physiological and molecular
responses to treatment and predict posttreatment outcomes
[217–220]. For example, in a recent study, Elmariah et al. [221]
performed LC-MS-based metabolite profiling of plasma from
patients undergoing transcatheter aortic valve replacement
(TAVR) to predict acute kidney injury (AKI) occurrence using
previously identified plasma metabolites predictive of incident
chronic kidney disease. They have shown that in elderly popu-
lation with severe aortic stenosis undergoing TAVR metabolite
profiling improves the prediction of AKI. Of 44 patients under-
going TAVR, 22 had chronic kidney disease and 9 developed
AKI. Of 85 metabolites profiled, 5-adenosylhomocysteine suc-
cessfully predicted AKI after TAVR and was also predictive of
all-cause mortality after TAVR. Other examples of metabolic
phenotyping-based patient stratification include prediction of
exercise-induced ischemia in patients with suspected coronary
artery disease [222], prediction of response to neoadjuvant che-
motherapy for breast cancer using serum metabolite profiling
[223] or prediction of the outcome of first systematic transrectal
prostate biopsy using serum metabolomics [224].

Advances in machine learning techniques and artificial
intelligence (AI) hold the promise to catalyze deep analysis and
interpretation of big data in medicine, and facilitate integration
of molecular and clinical data for accurate diagnosis and preci-
sion therapy. Although machine learning—often considered as
an application of AI—has a history of several decades, the ush-
ering in of the big data era has made these techniques in the
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broad domain of AI even more relevant and sought after for
decoding mysteries underneath the ocean of omics and other
clinical data. Machine learning has been mainly categorized
into supervised and unsupervised, the former requiring labeled
data (training data) to let the model learn the ‘known’ patterns
underlying the labeled data and then discern these patterns in
yet unseen data (test data); in contrast, the unsupervised learn-
ing does not require labeled data and is by design endowed with
the ability of discern unknown underlying patterns in an
unbiased manner. Examples of supervised learning methods
include neural networks, support vector machines, elastic net,
decision trees, random forests, hidden Markov model, etc.,
although some of these methods can be adapted to unsuper-
vised or semi-supervised learning. Examples of unsupervised
methods include clustering algorithms, such as hierarchical
agglomerative clustering, k-means clustering, principal compo-
nent analysis (PCA) and self-organizing map. AI or machine
learning has an unbounded potential in big data analysis, and
in particular, in precision medicine where this enabling technol-
ogy is at the core of ‘deep data integration’ (e.g. integration of
gene expression data with transcription factor binding data to
decipher genomic regularity network) [225, 226] and ‘broad data
integration’ [226] (e.g. integration of different omics data, as
well as clinical data, to gain a systems level understanding of a
condition or disease). Recent studies have highlighted the
importance of machine learning methods in diagnosis of com-
plex diseases based on omics data, e.g. Zheng et al. [84] applied
self-organizing maps to serum metabolomics data from renal
cell carcinoma patients to identify biomarker metabolites for
early diagnosis of renal cell carcinoma; Nielson et al. [227]
reported successful application of topological data analysis, a
machine learning tool, to imaging, genetics and clinical data
from TBI patients for patient stratification and detection of can-
didate recovery biomarkers; machine learning by tensor factori-
zation was used in precision medicine for heart failure with
preserved ejection fraction, specifically in devising targeted
therapies via disease subtyping based on phenotypic and omics
data [228]; and to cite just a few among many applications in
precision medicine.

These multivariate statistics tools including the unsuper-
vised and supervised algorithms are commonly used to analyze
metabolomics data [1, 196, 200, 229, 230]. Unsupervised meth-
ods that have been used in analyzing metabolomics data are
hierarchical clustering [231], PCA [232] and self-organizing maps
[233]. Supervised methods include support vector machines
[234, 235], partial least squares ([236], 2003), analysis of
variance [230], k-nearest neighbors and discriminant function
analysis [237].

Data integration and fusion

Integrating different layers of molecular data, epidemiological
data, medical image data and clinical data, for an individual or a
cohort of individuals, or a population, and visualization are a
pressing need. G-DOC Plus was developed recently to integrate
big data, including omics and clinical data, and provide bioinfor-
matics tools for analysis and interpretation, and generate
hypotheses for further biomedical research [238]. The use of
eHB and BRP open-source project is another effort toward data
integration and collaborative research facilitated by anonymiza-
tion of the specimens, thus bypassing the time-consuming
institutional reviews and permission [114]. Pathology
Integromics in Cancer (PICan) is a platform for integration of
multimodal data and analysis for discovery of novel biomarkers

and their validation [239]. IMPACT integrates WES profiles with
therapeutics. IMPACT detects the coding variants and predicts
drugs that can neutralize the effects of the deleterious variants
[240]. Associating phenotypes (e.g. metabolomics data that
most closely represent the phenotypes) to genotypes (e.g. Single
Nucleotide Polymorphism (SNP), Copy Number Variation (CNV)
and expression data) is a key to the success of data integration
or fusion but poses a significant challenge. Indeed, an important
problem in precision medicine to associate the metabolic
changes to the underlying genomic or transcriptomic changes
in patients. Understanding variations in metabolome in the
context of genomic alterations and gene expression changes is
nontrivial, as these variations may be arising as a consequence
of yet unknown gene–gene interactions or gene–environment
interactions. In addition, posttranscriptional and posttransla-
tional modifications may be players in rendering complex phe-
notypes, and therefore, deciphering these molecular
modifications and molecular interactions in the cell (interac-
tome) is critical to the translational advances in precision medi-
cine [241].

Open-source software for metabolomics

Computational analysis of metabolic phenotypes for precision
medicine can be facilitated by further development of open-source
software tools for data processing, multivariate statistical
analysis and machine learning, data integration and visualization
as well as reference databases [242, 243]. Open-source software
includes XCMS [244, 245] and XCMS Online [246], MZmine [247],
xMSanalyzer [248] and OpenMS [249]. In combination with data
analysis and multiple platform data integration tools, such as
MetaboAnalyst [250–252], Metabolite Set Enrichment Analysis
(MSEA)[253, 254], Molecular Networking Approach [242, 255]
and Metabolic Pathway Analysis (MetPA) [256], these open-source
software tools have been successfully used in metabolomics-
driven precision medicine studies for biomarker discovery
and validation as well as for patient stratification. Mass spectral
libraries and publically available reference biochemical and
pathway databases are designed to facilitate metabolite identifica-
tion and data integration in metabolomics. There are many
such databases available for precision medicine metabotyping
most commonly used of which are METLIN [257–259], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [260], MassTRIX
[261, 262], Madison Metabolomics Consortium Database (MMCD)
[263], Human Metabolome Database and drug bank [79–82, 264],
LIPID MAPS [265–267]. PubChem [268] and ChemSpider [269].

Precision metagenomics and meta-metabolomics in
precision medicine

A new dimension in precision medicine now is the human
microbiome. Understanding the host–microbiome interactions
is central to understanding a number of diseases that are a con-
sequence of dysbiosis including cancer [20, 27]. Microbiome
sequencing has facilitated significant research in this area and
has enabled development of microbiota based therapy [270].
Metagenome sequencing has made possible rapid detection of
pathogens and understanding of the evolution of hypervirulent
and multidrug-resistant strains. ‘Precision Metagenomics’ is a
pipeline that leverages sequencing and bioinformatics to profile
microbes in a sample, identify antimicrobial resistance markers
and perform functional analysis to detect pathways that are
enriched in a sample [271]. Recent effort in metabolomics analy-
sis of gut microflora adds a vast volume of metabolomics data
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that have to be integrated with metagenomics, metatranscrip-
tomics and, eventually, clinical data [55, 70, 272–278]. This data
integration would require the development of specialized bioin-
formatics pipelines capable of integrating data from multiple
omics platform and incorporating data from large medical data-
bases [279].

Initiatives on real-time tests/clinical trials based on
omics data

Clinics and medical research centers are now embracing new
technologies in precision medicine and making possible clinical
trials that involve biologists and bioinformaticians. Mayo
Clinic’s Center for Individualized Medicine has set up a genomic
tumor board that assesses test results from clinical genomic
panel testing on patients, with further validation using array
comparative genomic hybridization and clinical WES. The board
recommends treatment based on the test results [280]. Institute
Curie has established an information system for data integra-
tion that analyzes genomic variations in patient samples in real
time and provide the test results to the clinicians and biologists
to help them decide on a precision therapy. This pipeline was
assessed in the context of SHIVA clinical trial that evaluates
the response from targeted therapy using tumor molecular
profiling vis-à-vis the conventional therapy for refractory
cancer [281]. In addition to cataloging and classifying the sin-
gle-nucleotide variants (SNVs), another important aspect in pre-
cision medicine is to link the SNVs to drug response.
Choudhury et al. cataloged 2640 rarely occurring SNPs, most not
yet functionally characterized. The putative deleterious SNVs
identified in this study may potentially modulate the drug
response even if these variations do not significantly alter the
protein structure [282].

Examples of success stories of translational
bioinformatics

Efforts to translate discoveries from bench to bedside have
begun to yield fruits, thanks largely to the advances in transla-
tional bioinformatics. Tenenbaum (2016) presents some success
stories of translational bioinformatics in precision medicine.
Next-generation sequencing and bioinformatics unraveled a
mutation and a novel copy number variation in the TTN gene in
a newborn suffering from long QT syndrome (LQTS), a condition
impacting heartbeat, at the Stanford’s Lucile Packard Children’s
Hospital. A 14-year-old boy with severe combined immunodefi-
ciency was eventually diagnosed for leptospirosis after his
spinal fluid was subjected to sequencing and bioinformatics
that revealed hundreds of reads matching the Leptospira
sequences. Another success story is the FoundationOne
test that examines the tumors for known mutations via
next-generation sequencing. This test made possible targeted
treatment for �20 cancer patients [283]. Perhaps, because of the
promise this new technology holds in the early detection of can-
cer, significant efforts have gone into deciphering genomic
alternations or other biomarkers in different types of cancer,
such as mRNA/miRNA, cytokine or urine-based metabolites in
lung cancer [195], or novel mutations, fusions or copy number
variations in biliary tract cancer [284]. A recently developed
evidence-based software TREATMENTMAP used a panel of
pharmacogenomic markers to probe the genomic sequences
from pancreatic tumors; this diagnostic tool was shown to iden-
tify known driver mutations as well as biomarkers for effective
treatment [285].

Conclusions and future directions

Metabolomics is a powerful ‘omics’ approach that has already
found its sturdy place in medical applications. It has an intrinsic
power to become one of the major components of precision
medicine, and the number of metabolomics applications is rap-
idly growing. We believe that to fully unleash the power of
metabolomics, several challenges in technology, informatics
and logistics have to be addressed. Because multiple technolo-
gies and a large array of different instruments are used for data
generation, standardization is becoming increasingly impor-
tant. Standard procedures for sample collection and biobanking,
data formats, data analysis and shared repositories have to be
adopted by both research and medical communities. In the near
future, we expect to see significant improvement in imaging
technologies combined with prediction algorithms to be able to
differentiate between healthy and diseased tissue or identify
heterogeneity within diseased organ or tissue. Medical data-
bases incorporating metabolomics data have to be developed
and populated with large-scale metabotyping data for various
diseases. In the bioinformatics field, we foresee major improve-
ment in real time analysis of different layers of omics data
sampled from patients and broad incorporation of machine
learning and AI systems to provide physicians with fully auto-
mated clinical analyzers capable in assisting in disease diagno-
sis, devising treatment strategy and predicting prognosis.

Key Points

• Precision medicine relies heavily on developments in sys-
tems biology and omics disciplines, including metabolomics.

• The combination of analytical techniques is required
for precision medicine metabotyping.

• Metabolomics for precision medicine require specialized
computational and big data management tools.

• Future developments in metabolomics for precision
medicine will require broad incorporation of machine
learning techniques and AI systems to provide physi-
cians with fully automated clinical analyzers capable in
assisting in disease diagnosis, devising treatment strat-
egy and predicting prognosis.
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