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Abstract

Lysine post-translational modifications (PTMs) play a crucial role in regulating diverse functions and biological processes of
proteins. However, because of the large volumes of sequencing data generated from genome-sequencing projects,
systematic identification of different types of lysine PTM substrates and PTM sites in the entire proteome remains a major
challenge. In recent years, a number of computational methods for lysine PTM identification have been developed. These
methods show high diversity in their core algorithms, features extracted and feature selection techniques and evaluation
strategies. There is therefore an urgent need to revisit these methods and summarize their methodologies, to improve and
further develop computational techniques to identify and characterize lysine PTMs from the large amounts of sequence
data. With this goal in mind, we first provide a comprehensive survey on a large collection of 49 state-of-the-art approaches
for lysine PTM prediction. We cover a variety of important aspects that are crucial for the development of successful
predictors, including operating algorithms, sequence and structural features, feature selection, model performance
evaluation and software utility. We further provide our thoughts on potential strategies to improve the model performance.
Second, in order to examine the feasibility of using deep learning for lysine PTM prediction, we propose a novel
computational framework, termed MUscADEL (Multiple Scalable Accurate Deep Learner for lysine PTMs), using deep,
bidirectional, long short-term memory recurrent neural networks for accurate and systematic mapping of eight major types
of lysine PTMs in the human and mouse proteomes. Extensive benchmarking tests show that MUscADEL outperforms
current methods for lysine PTM characterization, demonstrating the potential and power of deep learning techniques in
protein PTM prediction. The web server of MUscADEL, together with all the data sets assembled in this study, is freely
available at http://muscadel.erc.monash.edu/. We anticipate this comprehensive review and the application of deep
learning will provide practical guide and useful insights into PTM prediction and inspire future bioinformatics studies in the
related fields.

Key words: lysine post-translational modification; prediction model; sequence features; feature engineering; deep learning

Introduction

Post-translational modifications (PTMs) occurring at the lysine
(K) residues of proteins, such as acetylation, glutarylation, glyca-
tion, malonylation, methylation, succinylation, sumoylation and
ubiquitination, have been experimentally verified to play crucial
roles in diverse biological processes [1–10]. To date, advances in
experimental techniques have significantly assisted biologists,
allowing them to identify various types of lysine PTMs. As a
result, >20 lysine PTMs have been characterized, with annota-
tions deposited in public databases, such as Phosphorylation
Sites Plus (PhosphoSitePlus) [11] and Protein Lysine Modifica-
tions Database (PLMD) [1]. Given the prevalence and importance
of lysine PTMs, aberrant modifications of lysine residues may
result in a variety of human diseases [12]. Among different
types of lysine PTMs, acetylation, glycation, ubiquitination and
methylation have been extensively investigated. Lysine acety-
lation is characterized as an important regulator for diverse
biological processes of proteins, such as protein stability [13],
transcription [14, 15], protein–protein interactions [13] and cel-
lular metabolism [16–18]. Glycation, another important type of
lysine PTM, is formed via a chemical reaction between reduc-

ing sugar molecules and certain amino acids, including lysine,
arginine and some certain N-terminal residues [19, 20]. It has
been established that the accumulation of glycation products
is associated with aging and pathogenesis of diabetes [21, 22].
Protein ubiquitination serves as an indicative signal for pro-
tein degradation [10, 23, 24]. In addition, the ubiquitin system
is involved in regulating more fundamental cellular processes
including gene transcription, DNA repair and replication, intra-
cellular trafficking and virus particle budding [23, 25, 26], cellular
transformation, immune response and inflammatory response
[27]. Aside, small ubiquitin-like modifier (SUMO) proteins are
structurally conserved with ubiquitins and play an essential role
in the regulation of gene expression, DNA repair, chromosome
assembly and cellular signaling [9, 28–30]. Likewise, methylation,
a PTM involving the transfer of one, two or three methyl groups
to the ε-amine of the lysine side chain, is also involved in a
broad spectrum of biological and physiological processes, such
as transcriptional and epigenetic regulation, cell metabolism
and the development of human diseases [31–34].

Recently, three novel lysine PTMs were discovered and
reported, including malonylation [6], succinylation [35, 36]
and glutarylation [5], which share commonalities in terms of

http://muscadel.erc.monash.edu/
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Figure 1. Bubble plots showing the sizes of data sets and the numbers of features for each method surveyed in this article. The x-axis shows the log2 value of the

numbers of PTM sites, while the y-axis denotes the log2 of numbers of substrates. The dot size indicates the numbers of features calculated in individual method.

formed molecular structure but diversify into different regulated
proteins and pathways [37]. More interestingly, a growing
number of studies on the cross-talk of lysine PTMs have been
published, benefiting from cumulative studies of lysine PTMs
[3, 38]. The cross-talks within different types of lysine PTMs
[39, 40], and across lysine PTMs and other PTMs [12], have
demonstrated the significance of lysine PTMs and highlight
the indispensable biological functions of lysine PTMs in diverse
processes.

To date, many efforts have been dedicated to the inves-
tigation of cellular mechanisms of lysine PTMs, which is
based on accurate identification of lysine PTM substrates and
sites. Advances in lysine PTM research have driven continued
computational studies for accurate prediction of lysine PTMs, so
as to significantly reduce time and effort involved in exper-
imental identifications. Compared with labor-intensive and
time-consuming experimental characterization of lysine PTMs,
computational prediction of lysine PTMs in proteins provides
a useful and complementary approach to shortlist likely
candidates for subsequent experimental validation. Thus far,
a number of computational approaches have been devel-
oped and published for this purpose (Figure 1). Even though
these methods can be generally categorized into two classes
(i.e. machine learning-based and peptide similarity-based;
Figure 2), they differ in a variety of aspects in terms of model
construction, including training data set construction, features
employed and software availability and utility [41]. Despite
significant research efforts being devoted to the construction
of computational methods for lysine PTM prediction, little
work has been done to systematically summarize and evaluate
state-of-the-art computational approaches, which could poten-
tially shed a light on bottlenecks or missing features to improve
algorithm design for lysine PTM prediction.

With this goal in mind, in this article, we first deliver a com-
prehensive survey regarding the state-of-the-art computational
models. We discuss a wide range of aspects we investigated,
including the core algorithms selected for individual methods,
feature selection techniques employed, performance evaluation
strategy and user experience. To the best of our knowledge, this
is the most up-to-date work that systematically surveys and crit-
ically evaluates the state-of-the-art bioinformatics methods for
lysine PTM prediction. Based on our survey and findings, we fur-
ther propose a novel framework, MUscADEL (Multiple Scalable
Accurate Deep Learner for lysine PTMs), based on the deep bidi-
rectional long short-term memory recurrent neural networks
(RNN) scheme [42, 43], to evaluate the power of deep learning
in predicting eight lysine PTM types using protein sequence(s).
Our empirical study shows that the proposed MUscADEL model
has superior prediction performance, compared to current pre-
dictive models for lysine PTMs. In addition, we constructed
a portal (http://muscadel.erc.monash.edu/) to facilitate online
high-throughput prediction of lysine PTMs. We anticipate that
our portal will serve as a useful computational tool for accurate
identification of lysine PTMs, providing highly reliable candi-
dates for subsequent experimental validation.

Materials and methods
State-of-the-art computational approaches for lysine
PTM prediction

Recent decades have witnessed the development and prolif-
eration of computational approaches, including for prediction
of lysine PTM sites. Methods differ in a variety of aspects,
including the training and test data sets, sequence/structural
descriptors and physicochemical properties employed, feature

http://muscadel.erc.monash.edu/)
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Figure 2. An overview of the current computational approaches for lysine PTM prediction. The methods can be roughly categorized into two classes: peptide similarity-

based approaches (top half of the figure) and machine learning-based approaches (down half).

selection techniques, targeted lysine PTM types, etc. In Table 1,
we summarize 49 computational approaches for lysine PTM
prediction according to algorithm selected, features employed,
performance evaluation strategy and web server availability.

To provide interested readers with some useful insights into
the development of computational frameworks listed in Table 1,
we coarsely clustered approaches into two categories based
on adopted machine learning techniques (Figure 2). The first
category of approaches is based on traditional machine learning
algorithms using sequence-derived features. A majority of the
computational methods listed in Table 1 adopted this strategy
to build their predictive models, while diverse sequence-derived
features were calculated and/or extracted from third-party
software before training the models. Another crucial step prior
to model construction is feature selection that aims to reduce
the feature dimensionality and eliminate misleading features
for better prediction performance. The second category of
approaches is based on peptide similarity. Methods within

this category usually calculate a similarity score between the
testing peptide and peptides with experimentally annotated
lysine PTMs, using a number of measures, such as the BLOcks
SUbstitution Matrix (BLOSUM62) matrix [44] and position-
specific scoring matrix (PSSM) [45]. In Table 1, acetylation set
enrichment-based (ASEB) [46, 47], Methyl-group Specific Predic-
tor based on Group-based Prediction System (GPS-MSP) [48] and
Small Ubiquitin-like MOdifier predictor based on Group-based
Prediction System (GPS-SUMO) [49] are representative models
based on peptide similarity. It is worth noting that some methods
use both strategies (i.e. machine learning algorithms and peptide
similarity) to build their models. For example, Position-Specific
lysine (K) Acetylation Predictor (PSKAcePred) [50], lysine Malony-
lation Predictor (MaloPred) [51], lysine (K) Acetylation predictor
(KA-predictor) [52] and the k-nearest neighbor (KNN) score
[51] all calculate the similarity of two peptides, which is
subsequently used as input feature in machine learning
algorithms.
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Machine learning algorithms employed for predicting
lysine PTMs

As mentioned in the section entitled state-of-the-art computa-
tional approaches for lysine PTM prediction, a majority of cur-
rent computational approaches for lysine PTM prediction were
built using well-established machine learning algorithms. These
widely employed algorithms include support vector machine
(SVM) [53], random forest (RF) [54], artificial neutral network
(ANN) [55], KNN [56], logistic regression (LR) [57], etc. Based on
our survey, SVM is the most commonly used machine learning
algorithm and is often considered as the ‘method-of-choice’ for
building computational models (Table 1).

Support vector machine

SVM aims to accurately classify samples by generating optimal
hyperplanes based on the feature dimensionality of the training
data [58, 59]. The resulting mapping formula generated by SVM
is usually not interpretable but invariably yields to satisfactory
classification/prediction performance. Therefore, SVM is usu-
ally the ‘first choice’ adopted in many bioinformatics studies
[60, 61]. To date, a variety of kernels have been developed for
SVM, for different classification scenarios, including Gaussian
radial basis function (RBF), linear/polynomial/sigmoid kernel,
etc. Among the SVM-based approaches reviewed in this study,
RBF kernel was most commonly used, but we note users are
suggested to choose kernel methods according to needs and
questions of interest. Another point worth stressing is the choice
of parameters. It is generally recommended to do an experimen-
tal optimization of SVM parameters prior to model construction,
as different parameter configurations could change prediction
performance dramatically.

Random forest

RF [54] is another well-established and widely employed algo-
rithm, not only for lysine PTM prediction but also for many other
bioinformatics applications [62–65]. RF is essentially an ensem-
ble of a number of decision trees, T = {T1(X), T2(X), . . . , TN(X)} built
on N random subsets of the training data, and the average predic-
tion performance is usually reported in order to avoid over-fitting
[54]. The obvious advantage of RF is its interpretability, as every
decision tree consists of a number of ‘if. . .then. . .’ rules, which
are fairly straightforward to explain. Such rules can potentially
provide biologists with insights and knowledge discovery that
would otherwise remain buried in the data. When applying RF,
one should bear in mind that the number of decision trees is an
important parameter and should be tested exhaustively based
on the specific application or biological question, for optimal
prediction performance.

Artificial neural network

An ANN usually contains multiple nodes as input and mul-
tiple layers to connect these input nodes, mimicking neu-
rons and their functions/connectivity in human brains [66].
Among the reviewed predictors for lysine PTM prediction,
NetGlycate-1.0 [20] and Rapid UBIquitination sites predic-
tor (RUBI) [67] employed ANN as their core algorithm. A
typical architecture of ANN is composed of three layers,
including the input layer, the hidden layer and the output layer.
However, ANNs can be more complex, with multiple hidden
layers [68, 69]. Among the predictors using ANNs, NetGlycate-1.0
trained network algorithms using sequence input alone, with the
relative position of lysine in the sequence as additional input.

http://bioinfo.ncu.edu.cn/ubiprober.aspx
http://protein.bio.unipd.it/rubi/
http://protein.cau.edu.cn/cksaap_ubsite
http://iclab.life.nctu.edu.tw/iclab_webtools/ESAUbiSite/
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To determine the best result(s), all network combinations with
1, 2, 3, . . ., 20 hidden neurons and window sizes of 3–51 amino
acid residues were investigated. This yielded a neural network
with 5 hidden neurons and a window size of 23 [20].

k-nearest neighbors algorithm

KNN algorithm is another commonly employed unsupervised
algorithm that clusters samples by calculating their similari-
ties/distances [70]. Among the reviewed predictors for lysine
PTM identification, Sumoylation Site Prediction base on Features
Selection (SSPFS) [71] and Ubiquitination Site predictor based on
mRMR feature selection (mRMR UbSite) [70] were built using the
KNN algorithm. Given the training data set D = {v1, v2, . . . , vn} and
a testing sample x, KNN [70] calculates the distances between
x and all the instances in D. As a result, the query sample will
be assigned to the same class as its nearest neighbor (shortest
distance) in the training data set.

Logistic regression

Among the reviewed predictors, Lysine Acetylation Site Pre-
diction (LAceP) [72] constructed an LR model for lysine PTM
prediction. LR can be used to build a classification model for
many prediction tasks [73, 74], which can be represented as [72]

h(x) = b + w1x1 + · · · + wnxn, (1)

where xi are the input features, wi are the weight parameters and
b is the bias value. Given an unlabeled input x, the likelihood of
x with the class label (a given PTM type) can be defined as

P
(
h(x)

) = 1
1 + e−h(x)

. (2)

Bayesian discriminant method

Among the reviewed predictors, the Bayesian discriminant
method (BDM) was used to predict acetylation sites [75]. BDM
assumes that all flanking residues around the PTM site are
mutually independent. It then estimates the probability that
an unlabeled input x belongs to the positive samples (P(x|+)) or
the negative samples (P(x|-)).

Group-based prediction system

The basic premise of the group-based prediction system (GPS)
scoring strategy is that similar peptides exhibit similar biochem-
ical properties and functions [48]. To implement such hypothe-
sis, a peptide with a PTM site is denoted as PEP(m, n), where m and
n are the numbers of upstream and downstream residues around
the PTM site, respectively. Then the BLOSUM62 [44] matrix is
used to estimate the similarity between two peptides A and B:

S (A, B) =
{∑

m≤i≤n Score(A[i],B[i]) if
∑

m≤i≤n Score(A[i],B[i])>0
0 otherwise , (3)

where Score(A[i], B[i]) represents the substitution score of amino
acids A[i] and B[i] in the BLOSUM62 matrix. Given a testing pep-
tide PEP(m, n)u, the similarity score between PEP(m, n)u and each
peptide with a PTM site (PEP(m, n)) is calculated, and the average
score is reported. If the final score is higher than a threshold,
the peptide PEP(m, n)u will be predicted to harbor a PTM site.
Four distinct steps, including k-means clustering, motif length
selection, weight training and matrix mutation [48], can be used

to improve the performance of the GPS algorithm. Among the
reviewed predictors in our study, GPS-MSP [48] and SUMOylation
Site Prediction (SUMOsp) [49, 76] were developed based on the
GPS scheme.

ASEB algorithm

The ASEB method, which was used to predict acetylation sites
[47], is another peptide similarity-based scheme, developed to
determine whether a given peptide could be acetylated or not
by estimating the similarity and the significance of the peptide
similarity with respect to known acetylation site sets [46, 47].
A typical ASEB algorithm is composed of three major steps:
similarity calculation, enrichment score (ES) calculation and
significance estimation of the ES. The details of the ASEB method
are described as follows:

Input. An acetylated peptide set Sk containing N peptides and a
pre-defined background peptide set Sb (i.e. including both acety-
lated and non-acetylated peptides) containing 10 000 randomly
selected peptides.

Calculate similarity scores. The similarity score between an
unknown peptide Pquery and each peptide in Sk ∪ Sb was calculated
according to the BLOSUM62 matrix [44]. The similarity scores
were normalized to [0, 1] and [−1, 0] for positive and negative
scores, respectively. All the scores were ranked from highest to
lowest.

Calculate ES. The ES reflects how enriched the Pquery in Sk was at
the top of the ranked list. Suppose that ri is the similarity score
between Pquery and peptide pi in Sk, R is the sum of |ri| for all pi

∈ Sk and RS is the running sum score. Then, walking down the
list, the RS increased |ri |/R when encountering a peptide in Sk and
decreased 1/10 000 when encountering a peptide in Sb. Finally,
the maximum of the RS was taken as the ES.

Estimate significance of ES. A total of 9999 peptide sets with the
same size as Sk were randomly generated from the background
peptides and labeled Snull1 to Snull9999. The ES for each set was
calculated and 10 000 ESs (ES(Sk), ES(Snull1), . . ., ES(Snull9999)) were
ranked from high to low. Finally, the significance of ES(Sk) for
Pquery was defined as L/10 000, and L is the rank of ES(Sk).

Features calculated and extracted for machine learning
based predictors

To construct robust and accurate machine learning predictors
for lysine PTM prediction, diverse features in terms of sequence,
structure and function are extracted/calculated for individual
proteins/peptides. Such features will then be encoded as
numeric vectors for training a machine learning model. In this
section, we summarize six major types of features based on our
investigation of current computational approaches for lysine
PTM prediction (Table 2). These major feature types include (1)
protein primary sequence-derived features, (2) predicted protein
structural features, (3) protein physicochemical properties, (4)
protein PSSMs, (5) peptide similarity features and (6) protein
functional annotations. Based on our survey, we collected
the representative features for each type, together with their
biological annotation and significance. We note that some
features, such as predicted protein structural features and
protein PSSMs, always require third-party software to generate
outputs prior to feature calculation and encoding. This means
calculating these types of features is usually time-consuming
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and the calculated features will significantly change depending
on the parameter configurations of these independent tools.
For example, the generated PSSMs largely depend on the
searching database employed by Basic Local Alignment Search
Tool (BLAST) programs [45, 77]. For protein blast, the proteome
databases, such as SwissProt, Ref90, etc. [78–80], have been
often selected as searching databases. Interested readers
are therefore encouraged to consider parameters based on
instructions of these computational tools. Extraction of protein
functional annotations, which are mostly derived directly from
experimental studies, also deserves careful consideration. Such
annotations are often not complete and undergo frequent
updates from time to time; moreover, these may not even
be available for all proteins, even though protein functional
annotations usually contribute significantly to the prediction
performance [62, 81]. This presents a significant challenge when
testing an unknown protein/peptide on the web server, as the
functional annotations for this protein/peptide may developed
computational tools in cases where such functional annotation
information is not available, which do not require the protein
functional annotations as the essential input features [82, 83].
Fortunately, many packages/web servers have been developed to
calculate a variety of structural and physicochemical features,
including Protein Features (PROFEAT) [84], Pseudo Amino Acid
Composition (PseAAC) [85], protein in python (propy) [86], Pse-
in-One [87], protr/ProtrWeb [88], Compound-Protein Interaction
with R (Rcpi) [89], the Pseudo K-tuple Reduced Amino Acids
Composition (PseKRAAC) [90], Position-Specific Scoring matrix-
based featUre generator for Machine learning (POSSUM) [91] and
iFeature [92]. After the feature-coding process, the initial feature
set usually has a high dimensionality, which is not suitable for
training a computational model. Therefore, feature selection is
done as a next step, to reduce the dimensionality of the initial
feature set, prior to constructing the computational models.

Feature selection strategy

Highly dimensional feature sets usually contain noisy and mis-
leading features that are detrimental to the prediction perfor-
mance. For example, the Amino Acid index (AAindex) database
[93] contains 544 physicochemical properties for each amino
acid. For a peptide of 21 residues, the dimensionality of the
AAindex features would be 11 424 (i.e. 21 × 544), and these 11 424
features are not equally important to predict the PTM sites.
Therefore, prior to model construction, feature selection is a
nontrivial step that measures the importance of all the features
and eliminates the less informative ones. Approximately, one-
third of the machine learning approaches in Table 2 adopted the
feature selection procedure. The most commonly applied feature
selection techniques include Correlation-based Feature Subset
selection (CfsSubsetEval) [72, 94], maximum relevance and min-
imum redundancy (mRMR) [62, 70, 71, 95–97], information gain
(IG) [50, 51, 98], Pearson correlation coefficient (PCC) [52], RELIEFF
[99] and inheritable bi-objective combinatorial genetic algorithm
(IBCGA) [100].

Performance evaluation measures and strategies

Based on our investigation, five measures, including sensitivity
(Sn), specificity (Sp), Matthew correlation coefficient (MCC), accu-
racy (Acc) and area under the curve (AUC), were widely used to
estimate the prediction performance. Sn, Sp, MCC and Acc are

defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = 1 − N+−
N+ 0 ≤ Sn ≤ 1

Sp = 1 − N−+
N− 0 ≤ Sp ≤ 1

Acc = � = 1 − N+− + N−+
N+ + N− 0 ≤ Acc ≤ 1

MCC =
1 −

(
N+−
N+ + N−+

N−
)

√(
1 + N−+ − N+−

N+
) (

1 + N+− − N−+
N−

) −1 ≤ MCC ≤ 1

(4)

The above intuitive metrics were derived in [101] based on
the symbols introduced by Chou [102] in studying protein signal
peptides, where N+, N−

+, N− and N+
− represent the numbers of pos-

itives, false positives, negatives and false negatives, respectively.
The MCC values range from −1 to 1, where a coefficient of +1
means a perfect prediction and −1 indicates total disagreement
between the prediction and observation [103–106]. The Acc value
ranges from 0 to 1, with a higher Acc value indicating a better
performance [103–106]. The AUC value is calculated based on the
receiver-operating-characteristic (ROC) curve and takes values
between 0 and 1, where the higher the AUC value, the better the
prediction performance.

Evaluation strategy

Validation examination is important prior to applying a predic-
tor [107], and three validation methods, including K-fold cross-
validation test, jack-knife validation test and independent data
set test, are often used to derive comparative metrics (values)
among the reviewed predictors.

K-fold cross-validation test. In the K-fold cross-validation test, the
data set is divided into K roughly equal parts, one part kept as
validation data and the remaining K-1 parts used as training
data. The training data are used to estimate the parameters of
the model, while the validation data are used to compute all the
performance metrics. The procedure is repeated K times, thus
using each of the K parts as a test data [108].

Jack-knife validation test. Jack-knife validation test (also known as
leave-one-out cross-validation test) is the most objective valida-
tion method [109] and provides unique results for a benchmark
data set [110]. During the jack-knife process, one sample is
selected to be the test data and the remaining are the training
data. This procedure will be repeated N times in a data set with
N samples.

Independent test. Among the reviewed predictors, the indepen-
dent test is usually adopted to evaluate the performance of two
or more predictors.

Among the reviewed predictors, most took one or two cross-
validation tests combined with the independent test as their
evaluation strategy. Moreover, the self-consistency test [111] is
also a cross-validation scheme, which is not commonly used.

Software availability and usability

An important consideration for developing computational
approaches is that they should be directly employed by biologists
to facilitate target selection, experimental design and hypothesis
generation and validation. Therefore, a user-friendly web server
and/or a local executable of the proposed predictor should
be ideally available along with the publication. Based on our
survey of the predictors for lysine PTM prediction (Table 1), 43/49
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(87.8%) predictors were made available as web servers and/or
stand-alone software for high-throughput lysine PTM screening;
however, about half of these web servers have been taken offline
to date. Normally, user input, validation and prediction output
are the main components of a web server/stand-alone tool and
these should be designed carefully.

Specific to lysine PTM prediction, the design of a user-friendly
web page should consider the following important aspects: (i)
user input format, (ii) any parameter configurations and their
explanations and (iii) validation of submitted data. Among the
28 predictors with available web servers, 24 servers permit
multiple-sequence submission, and 4 predictors only allow
users to submit one protein sequence a time. Among these
28 servers, 15 facilitate file uploading for sequence submission
(generally, the file size is limited, which also limits the maximum
number of protein sequences). ‘FASTA’ is the commonly used
sequence format for online submission, with the exception
of prediction of SUMOylation sites based on hydrophobic
properties (SUMOhydro) [112], which requires users to submit
sequences as plain text. The lysine PTM types can be selected
on the web servers of Prediction of Lysine Methylation and Lysine
Acetylation (PLMLA) [113] and identifying multiple Lysine PTM
sites (iPTM-mLys) [114], which were designed to target multiple
PTMs.

Data validation is another crucial step prior to server pro-
cessing, in order to ensure the server is running smoothly. A
fatal error usually occurs on a poorly designed server when the
sequence format is illegal or the sequence contains uncommon
residues. Besides, the escape characters contained in the FASTA
headers in the submission should also be considered carefully, as
they are usually interpreted in different ways by the backstage
server and database system, depending on the programming
languages employed.

A reasonable output design is crucial for the interpretability
of prediction results. At least four aspects regarding the output,
specific to PTM prediction, should be taken into consideration:
(i) protein indicator (e.g. job ID, protein name, etc.), (ii) the
position of predicted PTM sites in the protein sequence,
(iii) the peptide containing the predicted PTM site and (iv)
the prediction score/confidence. Among the predictors with
available web servers, EnsemblePail [115], PSKAcePred [50],
NetGlycate 1.0 [20], Glycation Sites prediction by using Bi-Profile
Bayes (BPB GlySite) [116], PLMLA [113], identify Succinylation
sites by using Pseudo Amino Acid Composition (iSuc-PseAAC)
[117], Mal Lys [118], MaloPred [51], Prediction of Methylation
Sites (PMeS) [119], Methylated lysine(K) sites predictor (MethK)
[120], Prediction Species-Specific Methylation sites (PSSMe)
[121], RUBI [67], GPS-MSP [48], SUMOhydro [112], SUMOsp [76],
Succinylation Sites predictor (SuccinSite2.0) [65], Ubiquitination
Sites predictor based on Composition of K-Spaced Amino
Acid Pairs (CKSAAP UbSite) [60], human Ubiquitination Sites
predictor based on Composition of K-Spaced Amino Acid Pairs
(hCKSAAP UbSite) [61], Ubiquitination sites Prober (UbiProber)
[98] and Ubiquitination Sites prediction based on Evolutionary
Screening Algorithm (ESA UbSite) [100] provide detailed output
information including the PTM site and prediction score.
BPB GlySite [116], GPS MSP [48], SUMOsp [76], SuccinSite2.0
[65], Joint Analyzer of Sumoylation Site and SIMs (JASSA) [122],
CKSAAP UbSite [60], hCKSAAP UbSite [61] and RUBI [67] allow
users to download the prediction results in ‘TEXT’ format for
further analysis. Data visualization techniques can facilitate
the systematic display of prediction results. An interactive web
page can assist users to better understand the distribution
of predicted PTM sites across the whole protein sequence.
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NetGlycate 1.0 [20], GPS MSP [48], SUMOsp [76], SUMOhydro
[112], JASSA [122], CKSAAP UbSite [60] and hCKSAAP UbSite
[61] provide such a graphical data display. Another important
functionality aspect is the possibility to revisit historical
prediction results (based on the job ID). Among the reviewed
predictors, SuccinSite2.0 [65], SUMOhydro [112], CKSAAP UbSite
[60], hCKSAAP UbSite [61] and RUBI [67] have provided such
functionality on their web servers.

Stand-alone tools are available for KA-predictor [52], Gly-
cation sites Predictor (Glypre) [96], PMeS [119], GPS-MSP [48],
SUMOsp [76], UbPred [123], CKSAAP UbSite [60], UbiProber [98]
and hCKSAAP UbSite [61]—all of which are reviewed in this
study. Providing detailed software installation instructions, with
information about dependencies and runtime environment, is
therefore strongly suggested, especially considering that it is
generally challenging for biologists to use these stand-alone
tools on their local machines. Among these stand-alone tools,
GPS-MSP [48], SUMOsp [76] and UbiProber [98] provide a graphical
user interface.

Development of the MUscADEL approach

Recent years have witnessed the rise of deep learning tech-
niques and their use in various real-world applications such as
image analysis [124], speech recognition [125] and natural lan-
guage processing [126]. In addition, a number of bioinformatics
studies have demonstrated the power of deep learning tech-
niques in the prediction of protein secondary structures [127],
protein disordered regions [128], ribonucleicacid (RNA) splic-
ing [129], RNA-binding sites [130] and protein PTM sites (e.g.
phosphorylation [131] and ubiquitylation [132]). The deep learn-
ing scheme, derived from ANN, has shown great capability to
self-learn sparse representations, using multiple hidden layers;
in contrast, conventional machine learning algorithms require
experts to pre-define informative features [133] prior to model
construction. Based on one typical deep learning model, the RNN
[134], an extended version called ‘long short-term memory RNN
(LSTM-RNN)’ has been proposed. The LSTM-RNN architecture
consists of an input gate, a neuron with a self-recurrent connec-
tion, a forget gate and an output gate [42]. To evaluate the appli-
cability of the deep learning scheme for lysine PTM prediction,
we proposed the MUscADEL framework, based on a bidirectional
LSTM-RNN algorithm. We constructed two predictive models, i.e.
the full-sequence (Figure 3A) model and the sequence-fragment
(Figure 3B) model. Both models contain five layers, including
the input layer, the word embedding layer [126], the recurrent
layer, the fully connected layer and the output layer. Please refer
to the Supplementary Materials and Methods for the detailed
description of these layers.

Construction of benchmarking and independent test
data sets

In order to objectively evaluate the prediction performance
among existing approaches and to build MUscADEL, we con-
structed eight lysine PTMs data sets for two mammalian species
(i.e. Homo sapiens and Mus musculus) from the PhosphoSitePlus
database and further mapped the protein sequences to human
and mouse proteomes annotated by the UniProt database
[78]. Even though ∼20 types of experimentally verified lysine
PTMs are covered in the PhosphoSitePlus database [11], we
only extracted associated sequences and constructed reliable
prediction models for those eight PTM types that have >150

positive protein sequences in the data set. For each type of PTM,
we applied the Cluster Database at High Identity with Tolerance
(CD-HIT) program [135] to remove sequence redundancy using a
threshold of 30%. All the data sets were then randomly divided
into two subsets for model training via 5-fold cross-validation
and independent test, respectively. Experimentally validated
PTM sites, based on the annotation from the PhosphoSitePlus
database, were taken as positive samples; the rest of lysine
residues in the proteins were regarded as negative samples. The
statistical summary of the selected types of lysine PTMs from
the PhosphoSitePlus database and the positive and negative
samples for each PTM type after the sequence redundancy
reduction is provided in Table 3.

Results and discussion
Motif conservation analysis for eight types of lysine
PTMs

To illustrate the distribution and preference of the flanking
residues of lysine PTM sites, we examined the motif conserva-
tion for eight lysine PTM types using the Probability Logo Gen-
erator (pLogo) [136] algorithm. The logos of motif conservation
of eight lysine PTM types are presented in Figure 4. The default
±4.08 were used as the thresholds of significantly overrepre-
sented and underrepresented amino acids, respectively. Among
these PTM types, sumoylation is the only type that demonstrated
a clear motif pattern (Figure 4G), ψ-K-X-E (ψ is any hydrophobic
amino acid, while X denotes any amino acid residue), which is
consistent with previous reports [137, 138]. Lysine acetylation
showed relatively distinguishable motif conservation patterns
(Figure 4A), where the hydrophobic amino acids G and P pre-
dominately occurred on positions −1 and +1, and the charged
residues K and R were most likely underrepresented on position
−1. In contrast to sumoylation and acetylation, other PTM types
did not show very obvious or indicative motif patterns. For lysine
glutarylation, the only observation that we made is that the
charged residues K and R were overrepresented at positions −10
and −8 (Figure 4B). For glycation, we can only conclude that the
polar and hydrophobic residues (i.e. A, T, G, V and M) are likely
overrepresented in the motifs; while charged residues, such as R,
K, D and E, were usually underrepresented (Figure 4C). Figure 4D
shows the motif conservation for lysine malonylation, where
no polar residues were reported to be overrepresented in these
motifs. Figure 4E illustrates that the charged residues, K and R,
were overrepresented at positions −14, −8, +7, +12 and +15 for
methylation. For succinylation, the charged residues K and R
were overrepresented at positions −7, +5, +7 and +8. Another
charged residue, D, was also found to be overrepresented at
positions −2, +1 and +2 (Figure 4F). Last but not least, for ubiq-
uitination, the charged residue R was found overrepresented at
positions −13 ∼ −7, +6 ∼ +12 and +14; while another charged
residue, K, was predominately found underrepresented at posi-
tions −6 ∼ −1 and +1 ∼ +5 (Figure 4H).

Performance comparison between the full-sequence
and fragment models of MUscADEL

We have built two models of MUscADEL based on the input, i.e.
the full-sequence model and the fragment model. For the full-
sequence model, the full-length protein sequences were used
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Figure 3. The flowchart of the proposed MUscADEL framework. In this study, two predictive models were constructed. The left (A) shows the full-sequence model,

while the right (B) shows the sequence-fragment model. Both models contain five layers, including the input layer, the word embedding layer, the recurrent layer, the

fully connected layer and the output layer.

Table 3. Statistical summary of benchmarking and independent test data sets constructed for eight lysine PTMs

PTM type 5-fold cross-validation Independent test

Number of proteins Number of PTM sites Number of proteins Number of PTM sites

Acetylation 3289 10 845 1645 5052
Glutarylation 124 432 31 123
Glycation 1621 3209 811 1530
Malonylation 1702 4300 425 1050
Methylation 902 1352 226 337
Succinylation 772 1728 193 382
Sumoylation 1286 3863 640 1890
Ubiquitination 4768 19 949 2385 9229

as input; for the fragment model, motifs with fixed window
size with centered lysine residues were used. The full-sequence
model considers both contributions of the full-length sequences
and motifs surrounding the lysine PTM sites, while the fragment
model only extracts the motif patterns with the lysine PTM sites.
In our study, the window size was set to 27 residues to extract
the motifs after testing the performance for a series of window
sizes (i.e. 15, 19, 23, 27 and 31). We validated the prediction
performances of these two models on training data sets for each
type of PTMs. For each lysine PTM type, the model with the best
performance was chosen by MUscADEL.

We first evaluated the prediction performance of the two
MUscADEL models for each type of lysine PTM via 5-fold cross-
validation, based on the training data set with the fixed Sp of
90%. Table 4 summarizes the performance comparison between
the full-sequence and fragment models for individual types
of lysine PTMs. It is clear from Table 4 that the full-sequence
model outperformed the fragment model for predicting lysine
acetylation, glycation, malonylation, methylation, sumoylation
and ubiquitination. This means that, for these PTM types,
both full-length sequence information and local motif infor-
mation contributed to the prediction of PTM sites. For predicting
glutarylation, the fragment model generally outperformed the
full-sequence model, further indicating that the determinative
sequence patterns of these PTM types can be capltured
by studying the local motif environment surrounding the lysine
PTM residues. In other words, the determination of these PTM
sites may only be affected by the motif patterns surrounding
the sites. Based on the performance demonstrated in Table 4,

the final MUscADEL framework was composed by the fragment
model for lysine glutarylation and full-sequence models for the
remaining PTMs. In these eight types of PTMs, the data set sizes
for glutarylation and methylation are quite small compared
with that of other types of PTMs. In order to test whether
MUscADEL can achieve better performance than traditional
machine learning algorithms for glutarylation and methylation,
we used the commonly used binary [60, 139, 140] and AAindex
encodings [132] together with the RF and SVM algorithms. The
number of decision trees was set to 1000, and the RBF kernel of
the SVM was used. As for the AAindex encoding, we collected
544 physicochemical properties from the AAindex database
(http://www.genome.jp/aaindex/) and retained 531 properties
after removal of properties with ‘NA’ in the amino acid indices.
We then calculated the performance for each property and
selected the top 20 properties with the highest AUC values
based on 5-fold cross-validation. Consequently, a peptide with
27 residues was converted into a vector of 540 = (27 × 20)
dimensions using the AAindex encoding. The results show that
MUscADEL performs better than traditional machine learning
algorithms for glutarylation and methylation (Table S1).

Performance comparison between MUscADEL and
existing methods on the independent data set

We then compared the prediction performance of our proposed
MUscADEL framework with that of existing computational tools
for lysine PTM prediction, based on the independent data set.

http://www.genome.jp/aaindex
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby089/-/DC1
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Figure 4. Motif conservation analysis of eight lysine PTM types including (A) acetylation, (B) glutarylation, (C) glycation, (D) malonylation, (E) methylation, (F)
succinylation, (G) sumoylation and (H) ubiquitination. Plots were generated with pLogo and scaled better data visualization. The red horizontal lines on the sequence

logos denote the P < 0.05 threshold.

We selected the 19 methods with available tools/web servers to
compare with our proposed MUscADEL framework. In addition,
since MUscADEL is the only framework allowing for lysine glu-
tarylation prediction, we only compared the prediction results
for the other 7 PTMs with the 19 existing methods. To conduct
stringent and objective comparison, we evaluated the prediction
performance using our assembled independent testing data set.

To obtain the prediction results from the existing meth-
ods, we manually submitted the protein sequences in the
independent data sets to their web servers or ran their
corresponding executables locally. The performance comparison
is illustrated in Figure 5. Overall, MUscADEL outperformed

the existing prediction methods for all seven lysine PTM
types. To name one example, among the methods for lysine
ubiquitination prediction, MUscADEL achieved the best per-
formance (AUC = 0.822), followed by RUBI (AUC = 0.746)
and hCKSAAP UbSite (AUC = 0.668). When focusing on the
performance with low false positive rate (i.e. Sp = 90%),
MUscADEL identified 49.2% ubiquitination sites, whereas RUBI
accurately predicted only 34.4% of the ubiquitination sites
with the same Sp threshold. MUscADEL also demonstrated
superior prediction performance for other PTM types, in terms
of overall performance and the performance specific to a low
false positive rate. Taken together, the performance comparison
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Table 4. The predictive performance of the full-sequence and fragment models based on the benchmark data sets via 5-fold cross-validation
with a fixed Sp of 90%

PTM type
Full-sequence model Fragment model

Sn (%) MCC AUC Sn (%) MCC AUC

Acetylation 36.46 0.2057 0.754 31.62 0.1915 0.742
Glutarylation 18.29 0.0913 0.602 26.45 0.1733 0.739
Glycation 31.77 0.1282 0.705 16.67 0.0622 0.610
Malonylation 45.79 0.2544 0.822 40.36 0.2616 0.807
Methylation 28.80 0.0926 0.703 20.42 0.0960 0.626
Succinylation 33.98 0.1822 0.734 32.67 0.2001 0.748
Sumoylation 42.66 0.2326 0.764 36.25 0.2291 0.741
Ubiquitination 43.77 0.2968 0.799 37.11 0.2432 0.769

Figure 5. Performance comparison between MUscADEL and the existing methods for lysine PTM prediction. ROC curves and AUC values of MUscADEL and other

predictors for (A) acetylation, (B) glycation, (C) malonylation, (D) methylation, (E) succinylation, (F) sumoylation and (G) ubiquitination.

using the independent testing data set clearly demonstrates that
MUscADEL can accurately predict eight types of lysine PTMs,
confirming the suspected power of deep learning techniques for
protein PTM identification.

Thoughts for current predictors and future perspectives

Because of the limited availability of lysine PTM data sets,
some predictors could only use small data sets to train their
models, resulting in unsatisfactory prediction performance
when tested with the independent test data set. For example,
the CKSAAP UbSite [60], one of our previous works for protein
ubiquitination prediction published in 2011, was built based on
the Saccharomyces cerevisiae ubiquitination data set, with only
263 ubiquitination sites. Because of the limited training data,
CKSAAP UbSite did not achieve the prediction performance
as reported in the original study [92] according to a later
independent test [141]. Fortunately, with the advances of
mass spectrometry and high-throughput sequencing, large

volumes of PTMs are being identified and the correspond-
ing databases are updated frequently. On the other hand,
some previously discarded PTM sites are now experimentally
verified PTM sites. This means the predictors built on the
old versions of the database are not reliable, as the old
database contains a number of false negative samples. To keep
the published predictor up-to-date, it is therefore suggested
that models are retrained once up-to-date data sets become
available.

Data redundancy is an important issue to consider prior to
model construction. Redundant data result in overfit models
with respect to the current training data set, leading to poor
scalability and lack of robustness on independent test data
sets. Based on our survey, 38 out of 49 methods for lysine PTM
prediction have conducted sequence redundancy removal prior
to model construction. CD-HIT [135] and clusters protein or DNA
sequences based on pairwise matches found using the BLAST
algorithm (blustclust) [45] are the most widely used approaches
to remove sequence redundancy. The threshold of sequence
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identity used in these two methods is normally 30%. Another
issue to consider is the ratio of positive and negative samples
in the training data set. Normally, negative samples (i.e. non-
PTM sites) significantly outnumber the positive samples (i.e. PTM
sites). Therefore, a balanced training data set should be gen-
erated, constructing reliable and nonbiased predictive models.
To do so, a random selection is usually conducted, to choose
a number of negative samples equal to the number of positive
samples. Then the random selection can be repeated and the
average performance reported.

A number of machine learning algorithms have been suc-
cessfully applied to lysine PTM prediction (Table 1). To further
improve the prediction performance, we would like to make
two suggestions. First, to import multi-omics data to build a
systems biology model; for example, the ASEB [46] approach for
lysine acetylation prediction was built based on the results of
gene set enrichment analysis [142]. The analysis started with
DNA microarray data that were subsequently used to detect
coordinated changes of expression in a group of functionally
related genes and to find the putative functions of the long
noncoding RNAs. Second, to consider ensemble methods, for
example, our proposed ZincExplorer, for protein zinc binding
sites, integrates the outputs from three predictors (i.e. an SVM
predictor, a cluster-based predictor and a template-based pre-
dictor). Those experiments demonstrated that prediction perfor-
mance was significantly improved by integrating the outputs of
multiple predictors [143]. Another good example is the predic-
tion for secreted proteins of type III and IV secretion systems
by integrating the prediction outcomes from SVMs, RF and LR
models [144].

An important goal of this review and survey paper is to
provide practical and useful guidance for researchers to facilitate
the identification and validation of PTM sites by experimental
methods. The predicted proteins by computational methods
such as those reviewed in this paper are just potential or putative
modified substrates and would need to be verified by experi-
mental methods. Consequently, users need to be cautious when
interpreting the prediction results generated by the bioinformat-
ics predictors.

Moreover, the prediction of PTM substrates is much more
complicated than the prediction of PTM sites, as the short
sequence motifs surrounding the PTM sites are often insufficient
to provide full Sp for determining modification events, especially
in vivo [145]. In fact, various ‘contextual factors’ such as
the physical association, co-occurrence in the genome and
co-expression of the enzymes (e.g. kinases in the case of
phosphorylation events) and substrates are currently not
considered but will likely contribute to determining if in vivo
modifications occur. A purely sequence-based predictor such as
MUscADEL will only be able to predict modifications that may
occur under ideal conditions (e.g. in a test tube) but that may
not happen in vivo. Thus, inclusion of ‘contextual factors’ will
potentially improve the accuracy of in vivo PTM predictions [145].
However, a major challenge is that some of these ‘contextual
factors’ are extremely difficult to obtain and experimentally
validate. Accordingly, their usage in predictive models is not
possible at present. Therefore, in MUscADEL we only considered
sequence information to construct the prediction model,
since such information is readily accessible. Importantly, we
find that by considering the sequence information, one can
achieve reasonably good prediction performance, stressing both
high practicality and usefulness. We will consider including
‘contextual factors’ into machine learning models during the
development of an upgraded version of MUscADEL in our future

work, if and when such quality and quantity of data become
available.

Additional complexity in predicting PTM substrates and sites
originates from PTM subtypes. Such subtypes may be too similar
for a purely sequence-based machine learning model to be able
to identify any differences between them and their associated
modification sites. Moreover, often models are trained on PTM
data that do not differentiate between PTM subtypes. Conse-
quently, such trained models will also not be able to predict if
a substrate or site is modified by one or the other subtype. To
provide one example, SUMO1 and SUMO2/3 are two sumoylation
subtypes. SUMO2 and SUMO3 are highly similar, while both
have moderate similarity with SUMO1. SUMO2 and SUMO3 can
form heterodimeric chains (i.e. SUMO-chains), while SUMO1 is
singly attached to protein substrates. Thus, from a structural
perspective, SUMO2/3 will have similar but still different Sp for
substrate recognition in contrast to SUMO1 because of the larger
size of the SUMO2/3 complex compared to SUMO1. Interestingly,
using mass spectrometry, a recent study identified 14 869 poten-
tial SUMO2/3 sites in 3870 human proteins [146]. Therefore, in
principle, such data can now be used to train a SUMO2/3-specific
predictor, though a similar data set would be needed to train a
SUMO1-specific predictor. In sum, with increasing availability of
subtype data, the challenging task of subtype-specific PTM pre-
diction will likely be overcome in the future. Lastly, as shotgun
proteomics is often error-prone, the 14 869 sites can also only be
considered potential candidates, and experimental validation by
small-scale and conventional experiments remains necessary.

Conclusion
Characterization of the lysine PTM sites is an important topic,
which can increase our understanding of lysine PTM molecular
mechanisms and related biological processes. A number of com-
putational methods have been developed to accurately predict
different types of lysine PTMs, hoping to accelerate and comple-
ment experimental discoveries. To assist interested readers to
better understand the methodologies and development of these
approaches, we systematically surveyed 49 studies revolving
around the prediction of eight types of lysine PTMs, includ-
ing acetylation, glutarylation, glycation, malonylation, methyla-
tion, succinylation, sumoylation and ubiquitination. We coarsely
categorized the reviewed predictors into two types: machine
learning-based methods and peptide similarity-based methods.
We then carefully reviewed these computational approaches in
terms of their core algorithm, sequence and structure features,
feature selection technique, evaluation strategy and software
utility. Based on our investigation, we described limitations of
current computational approaches for lysine PTM prediction
and provided insights into data set construction, model updates
and performance improvements. Following our survey, we eval-
uated the feasibility of applying deep learning techniques to
lysine PTM prediction. We built a novel computation model,
MUscADEL, based on the ‘long short-term memory recurrent
neural network’ learning scheme. For each type of lysine PTM,
we constructed two models, i.e. the full-sequence and frag-
ment models. Five-fold cross-validation and independent testing
demonstrated that MUscADEL outperformed current machine
learning-based approaches, demonstrating the potential power
of the deep learning scheme in protein PTM prediction. We antic-
ipate that our survey will provide useful insights and guidance
into the development of novel computational approaches for
lysine PTM prediction and that MUscADEL will inspire future
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works on accurate predictions of protein PTMs using a deep
learning framework.

Key Points:
• Lysine post-translational modifications (PTMs) play

important roles in a myriad of diverse biological pro-
cesses. This study serves as a comprehensive survey
of current methods for lysine PTM prediction, partic-
ularly in terms of model construction and evaluation.

• We propose a new deep learning model, termed
Multiple Scalable Accurate Deep Learner for lysine
PTMs (MUscADEL), to improve the prediction of eight
different types of lysine PTMs. Experimental results
demonstrate the superior performance of MUscADEL
compared to existing methods.

• A web portal (http://muscadel.erc.monash.edu/) has
been made available to facilitate online high-
throughput prediction of lysine PTMs.

• We demonstrate the predictive power of deep
learning-based models in lysine PTM prediction.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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