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Abstract

Summary: Performing highly parallelized preprocessing of methylation array data using Python

can accelerate data preparation for downstream methylation analyses, including large scale

production-ready machine learning pipelines. We present a highly reproducible, scalable pipeline

(PyMethylProcess) that can be quickly set-up and deployed through Docker and PIP.

Availability and implementation: Project Home Page: https://github.com/Christensen-Lab-

Dartmouth/PyMethylProcess. Available on PyPI (pymethylprocess), Docker (joshualevy44/

pymethylprocess).

Contact: joshua.j.levy.gr@dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Implementation

Studies that measure DNA methylation in large numbers of human bio-

specimens often use the Illumina Infinium BeadArray platforms known

as HumanMethylation27 BeadArray (27K), HumanMethylation450

BeadArray (450K) and HumanMethylationEPIC BeadArray (850K/

EPIC) arrays (Bibikova et al., 2009; Moran et al., 2016; Sandoval

et al., 2011). However, a straightforward and tractable approach to

perform data quality control and normalization in bulk to prepare

the data for use in the object-oriented environment is lacking. Here,

we introduce a convenient command line interface that makes

methylation analyses more object oriented for use in downstream

analyses. In addition to traditional differential methylation analyses,

machine learning libraries such as scikit-learn, keras and tensorflow

(Abadi et al., 2016; Pedregosa et al., 2011) become more accessible

in the object oriented environment.

PyMethylProcess is a pip-installable command line interface

built using Python 3.6 that interfaces with minfi, ENmix and meffil

in R (Aryee et al., 2014; Min et al., 2018; Xu et al., 2016) via rpy2

(Gautier, 2010) to allow users to preprocess and set-up their DNA

methylation array data for machine learning, presenting unique

methylation datatypes built for the use of python classification, clus-

tering, dimensionality reduction and regression algorithms such as

UMAP, random forest, neural networks, k-nearest neighbors and

HDBSCAN (Campello et al., 2013; McInnes et al., 2018). Eight

Python classes have been introduced to handle the following tasks:

package installation (PackageInstaller installs R/bioconductor pack-

ages), data acquisition from TCGA and GEO (TCGADownloader)

and formatting (PreProcessPhenoData), parallelized quality

control (QC), principal component selection via kneedle (Satopaa

et al., 2011) and raw, quantile, noob and functional normalization

using minfi, meffil, ENmix (PreprocessIDAT), imputation

(ImputerObject), feature selection and storage for machine learning

applications (MethylationArray[s] store beta and phenotype data),

and a basic machine learning class MachineLearning that trains

any scikit-learn-like model on MethylationArray objects. These

datatypes are abstracted away via a convenient command-line

interface. Additional commands are available, such as the removal
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of non-autosomal and SNP sites (by subsetting CpGs that are not in

a list of CpGs supplied by meffil for the respective array platform),

and reference-based cell-type estimation (constrained projection/

quadratic programming) (Houseman et al., 2012; Jaffe and Irizarry,

2014; Salas et al., 2018). Class methods are available in the help

documentation and a wiki details set-up/usage. A visualization mod-

ule generates interactive 3-D data representations using UMAP and

Plotly. We have provided a visual description of the preprocessing

workflow (Fig. 1).

The beta values and phenotype data can easily be exported to

csv format, and the command line interface can reduce the set-up

time of standardized methylation data for downstream analyses.

The pipeline differs from other python frameworks such as pyMAP

(Mahpour, 2016) and GLINT (Rahmani et al., 2017). pyMAP only

operates on the 450K framework, relying on a user specific csv an-

notation file and preprocessed Genome Studio txt file as its input.

pyMAP only performs graphical exploration for candidate CpGs,

CpG Island feature subsetting, and export to a BED file for down-

stream analyses. Similarly, GLINT requires a txt phenotype file and

either a preprocessed beta values txt file or a R data.frame methyla-

tion object (in a RData file) as its inputs. GLINT stores beta values

and covariate information as a binary ‘glint’ file. GLINT was

designed for epigenome-wide association studies analysis, including

reference-based and reference-free estimations, imputed genetic

structure and statistical models (linear, logistic and linear mixed

effects models). However, it relies on preprocessed data, with some

limited quality control options and therefore it could benefit from

preprocessed data generated in our pipeline. In addition, GLINT is

not designed to export this information to perform user customized

downstream machine learning analyses.

2 Results

Some of PyMethylProcess’s preprocessing capabilities are demon-

strated on seven datasets (Supplementary Table S1; Capper et al.,

2018; Johansson et al., 2013; Li Yim et al., 2016; Pai et al., 2019;

Pidsley et al., 2013, 2013; Salas et al., 2017; Soriano-Tárraga et al.,

2018) from the 450K and 850K arrays. The preprocessing perform-

ance was evaluated for loading, QC and normalization time. After

preprocessing, each of these datasets were split into 70% training,

10% validation and 20% test sets.

3 Benefits and future direction

PyMethylProcess streamlines DNA methylation array preprocess-

ing, preserving data accessibility and standardization for the open

source Python machine learning community. Additional develop-

ment based on community needs is welcome through GitHub issues

and pull requests. Future development will expand functionality to

preprocessing pipelines such as BigMelon (Gorrie-Stone et al., 2019)

and feature importance evaluations (e.g. Gini index). This tool is

available via Docker (joshualevy44/pymethylprocess) (Boettiger,

2015) and is wrapped using Common Workflow Language (CWL)

(Supplementary Figure S1; Amstutz et al., 2016), making the ana-

lysis reproducible, operating system agnostic, standardized and

sharable.

PyMethylProcess is available on PyPI (pymethylprocess) and

GitHub at: https://github.com/Christensen-Lab-Dartmouth/Py

MethylProcess.
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MethylationArray and (F) interactive visualizations
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