
Data and text mining

PyMethylProcess—convenient high-throughput

preprocessing workflow for DNA methylation

data

Joshua J. Levy 1,2,*, Alexander J. Titus 1, Lucas A. Salas 1 and

Brock C. Christensen 1,3

1Department of Epidemiology, Geisel School of Medicine at Dartmouth, 2Program in Quantitative Biomedical

Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA and 3Department of Molecular and

Systems Biology, Hanover, NH 03755, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on April 14, 2019; revised on June 27, 2019; editorial decision on July 23, 2019; accepted on July 26, 2019

Abstract

Summary: Performing highly parallelized preprocessing of methylation array data using Python

can accelerate data preparation for downstream methylation analyses, including large scale

production-ready machine learning pipelines. We present a highly reproducible, scalable pipeline

(PyMethylProcess) that can be quickly set-up and deployed through Docker and PIP.

Availability and implementation: Project Home Page: https://github.com/Christensen-Lab-

Dartmouth/PyMethylProcess. Available on PyPI (pymethylprocess), Docker (joshualevy44/

pymethylprocess).

Contact: joshua.j.levy.gr@dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Implementation

Studies that measure DNA methylation in large numbers of human bio-

specimens often use the Illumina Infinium BeadArray platforms known

as HumanMethylation27 BeadArray (27K), HumanMethylation450

BeadArray (450K) and HumanMethylationEPIC BeadArray (850K/

EPIC) arrays (Bibikova et al., 2009; Moran et al., 2016; Sandoval

et al., 2011). However, a straightforward and tractable approach to

perform data quality control and normalization in bulk to prepare

the data for use in the object-oriented environment is lacking. Here,

we introduce a convenient command line interface that makes

methylation analyses more object oriented for use in downstream

analyses. In addition to traditional differential methylation analyses,

machine learning libraries such as scikit-learn, keras and tensorflow

(Abadi et al., 2016; Pedregosa et al., 2011) become more accessible

in the object oriented environment.

PyMethylProcess is a pip-installable command line interface

built using Python 3.6 that interfaces with minfi, ENmix and meffil

in R (Aryee et al., 2014; Min et al., 2018; Xu et al., 2016) via rpy2

(Gautier, 2010) to allow users to preprocess and set-up their DNA

methylation array data for machine learning, presenting unique

methylation datatypes built for the use of python classification, clus-

tering, dimensionality reduction and regression algorithms such as

UMAP, random forest, neural networks, k-nearest neighbors and

HDBSCAN (Campello et al., 2013; McInnes et al., 2018). Eight

Python classes have been introduced to handle the following tasks:

package installation (PackageInstaller installs R/bioconductor pack-

ages), data acquisition from TCGA and GEO (TCGADownloader)

and formatting (PreProcessPhenoData), parallelized quality

control (QC), principal component selection via kneedle (Satopaa

et al., 2011) and raw, quantile, noob and functional normalization

using minfi, meffil, ENmix (PreprocessIDAT), imputation

(ImputerObject), feature selection and storage for machine learning

applications (MethylationArray[s] store beta and phenotype data),

and a basic machine learning class MachineLearning that trains

any scikit-learn-like model on MethylationArray objects. These

datatypes are abstracted away via a convenient command-line

interface. Additional commands are available, such as the removal

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5379

Bioinformatics, 35(24), 2019, 5379–5381

doi: 10.1093/bioinformatics/btz594

Advance Access Publication Date: 1 August 2019

Applications Note

http://orcid.org/0000-0001-8050-1291
http://orcid.org/0000-0002-0145-9564
http://orcid.org/0000-0002-2279-4097
http://orcid.org/0000-0003-3022-426X
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz594#supplementary-data
https://academic.oup.com/


of non-autosomal and SNP sites (by subsetting CpGs that are not in

a list of CpGs supplied by meffil for the respective array platform),

and reference-based cell-type estimation (constrained projection/

quadratic programming) (Houseman et al., 2012; Jaffe and Irizarry,

2014; Salas et al., 2018). Class methods are available in the help

documentation and a wiki details set-up/usage. A visualization mod-

ule generates interactive 3-D data representations using UMAP and

Plotly. We have provided a visual description of the preprocessing

workflow (Fig. 1).

The beta values and phenotype data can easily be exported to

csv format, and the command line interface can reduce the set-up

time of standardized methylation data for downstream analyses.

The pipeline differs from other python frameworks such as pyMAP

(Mahpour, 2016) and GLINT (Rahmani et al., 2017). pyMAP only

operates on the 450K framework, relying on a user specific csv an-

notation file and preprocessed Genome Studio txt file as its input.

pyMAP only performs graphical exploration for candidate CpGs,

CpG Island feature subsetting, and export to a BED file for down-

stream analyses. Similarly, GLINT requires a txt phenotype file and

either a preprocessed beta values txt file or a R data.frame methyla-

tion object (in a RData file) as its inputs. GLINT stores beta values

and covariate information as a binary ‘glint’ file. GLINT was

designed for epigenome-wide association studies analysis, including

reference-based and reference-free estimations, imputed genetic

structure and statistical models (linear, logistic and linear mixed

effects models). However, it relies on preprocessed data, with some

limited quality control options and therefore it could benefit from

preprocessed data generated in our pipeline. In addition, GLINT is

not designed to export this information to perform user customized

downstream machine learning analyses.

2 Results

Some of PyMethylProcess’s preprocessing capabilities are demon-

strated on seven datasets (Supplementary Table S1; Capper et al.,

2018; Johansson et al., 2013; Li Yim et al., 2016; Pai et al., 2019;

Pidsley et al., 2013, 2013; Salas et al., 2017; Soriano-Tárraga et al.,

2018) from the 450K and 850K arrays. The preprocessing perform-

ance was evaluated for loading, QC and normalization time. After

preprocessing, each of these datasets were split into 70% training,

10% validation and 20% test sets.

3 Benefits and future direction

PyMethylProcess streamlines DNA methylation array preprocess-

ing, preserving data accessibility and standardization for the open

source Python machine learning community. Additional develop-

ment based on community needs is welcome through GitHub issues

and pull requests. Future development will expand functionality to

preprocessing pipelines such as BigMelon (Gorrie-Stone et al., 2019)

and feature importance evaluations (e.g. Gini index). This tool is

available via Docker (joshualevy44/pymethylprocess) (Boettiger,

2015) and is wrapped using Common Workflow Language (CWL)

(Supplementary Figure S1; Amstutz et al., 2016), making the ana-

lysis reproducible, operating system agnostic, standardized and

sharable.

PyMethylProcess is available on PyPI (pymethylprocess) and

GitHub at: https://github.com/Christensen-Lab-Dartmouth/Py

MethylProcess.

Funding

This work was supported by NIH grants R01CA216265, R01DE022772 and

P20GM104416 to BCC, a Dartmouth College Neukom Institute for

Computational Science CompX award to BCC, and training fellowship sup-

port for AJT from T32LM012204.

Conflict of Interest: none declared.

References

Abadi,M. et al. (2016) Tensorflow: a system for large-scale machine learning.

In: OSDI’16 Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation. Savannah, GA, USA, pp. 265–283.

Amstutz,P. et al. (2016) Common Workflow Language, v1.0. Specification,

Common Workflow Language Working Group. http://w3id.org/cwl/v1.0/

or https://doi.org/10.6084/m9.figshare.3115156.v2.

Aryee,M.J. et al. (2014) Minfi: a flexible and comprehensive Bioconductor

package for the analysis of Infinium DNA methylation microarrays.

Bioinformatics, 30, 1363–1369.

Bibikova,M. et al. (2009) Genome-wide DNA methylation profiling using

Infinium
VR

assay. Epigenomics, 1, 177–200.

Boettiger,C. (2015) An introduction to Docker for reproducible research.

SIGOPS Oper. Syst. Rev., 49, 71–79.

Campello,R.J.G.B. et al. (2013) Density-based clustering based on hierarchical

density estimates. In: Pei,J. et al. (eds) Advances in Knowledge Discovery

and Data Mining, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 160–172.

Capper,D. et al. (2018) DNA methylation-based classification of central ner-

vous system tumours. Nature, 555, 469–474.

Gautier,L. (2010) An intuitive Python interface for Bioconductor libraries

demonstrates the utility of language translators. BMC Bioinformatics, 11,

S11.

Gorrie-Stone,T.J. et al. (2019) Bigmelon: tools for analysing large DNA

methylation datasets. Bioinformatics, 6, 981–986.

Houseman,E.A. et al. (2012) DNA methylation arrays as surrogate measures

of cell mixture distribution. BMC Bioinformatics, 13, 86.

Jaffe,A.E. and Irizarry,R.A. (2014) Accounting for cellular heterogeneity is

critical in epigenome-wide association studies. Genome Biol., 15, R31.

Johansson,Å. et al. (2013) Continuous aging of the human DNA methylome

throughout the human lifespan. PLoS One, 8, e67378.

Li Yim,A.Y.F. et al. (2016) Peripheral blood methylation profiling of female

Crohn’s disease patients. Clin. Epigenet., 8, 65.

A B

C

D

E

F

Fig. 1. Flow diagram for PyMethylProcess: (A) data from GEO/TCGA,

(B, C) QC/normalization, (D, E) storing betas and phenotype data in

MethylationArray and (F) interactive visualizations

5380 J.J.Levy et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz594#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz594#supplementary-data
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
http://w3id.org/cwl/v1.0/
https://doi.org/10.6084/m9.figshare.3115156.v2


Mahpour,A. (2016) pyMAP: a Python package for small and large scale ana-

lysis of Illumina 450k methylation platform. bioRxiv, 078048.

McInnes,L. et al. (2018) UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction.

Min,J.L. et al. (2018) Meffil: efficient normalization and analysis of very large

DNA methylation datasets. Bioinformatics, 34, 3983–3989.

Moran,S. et al. (2016) Validation of a DNA methylation microarray for

850,000 CpG sites of the human genome enriched in enhancer sequences.

Epigenomics, 8, 389–399.

Pai,S. et al. (2019) Differential methylation of enhancer at IGF2 is associated

with dopamine synthesis in major psychosis. Nature Communications, 10.

doi: 10.1038/s41467-019-09786-7.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Pidsley,R. et al. (2013) A data-driven approach to preprocessing Illumina

450K methylation array data. BMC Genomics, 14, 293.

Rahmani,E. et al. (2017) GLINT: a user-friendly toolset for the analysis of

high-throughput DNA-methylation array data. Bioinformatics, 33, 1870–1872.

Salas,L.A. et al. (2018) An optimized library for reference-based deconvolu-

tion of whole-blood biospecimens assayed using the Illumina

HumanMethylationEPIC BeadArray. Genome Biol., 19.

Salas,L.A. et al. (2017) Integrative epigenetic and genetic pan-cancer somatic

alteration portraits. Epigenetics, 12, 561–574.

Sandoval,J. et al. (2011) Validation of a DNA methylation microarray for

450,000 CpG sites in the human genome. Epigenetics, 6, 692–702.

Satopaa,V. et al. (2011) Finding a ‘Kneedle’ in a haystack: detecting knee

points in system behavior. In: 2011 31st International Conference on

Distributed Computing Systems Workshops., pp. 166–171.

Soriano-Tárraga,C. et al. (2018) Biological age is a predictor of mortality in is-

chemic stroke. Sci. Rep., 8, 4148.

Xu,Z. et al. (2016) ENmix: a novel background correction method for

Illumina HumanMethylation450 BeadChip. Nucleic Acids Res., 44, e20.

PyMethylProcess 5381


