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Abstract

Motivation: Protein–peptide interactions mediate a wide variety of cellular and biological functions.

Methods for predicting these interactions have garnered a lot of interest over the past few years, as

witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in

clinical trials. The size and flexibility of peptides has shown to be challenging for existing auto-

mated docking software programs.

Results: Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible

peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to

predict the protein–peptide complex. We show that it outperforms leading peptide docking

methods on two protein–peptide datasets commonly used for benchmarking docking methods:

LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these

datasets, ADCP reliably docked a set of protein–peptide complexes containing peptides ranging in

lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides ena-

bles accurate modeling of peptide-mediated protein–protein interactions and interactions with dis-

ordered proteins.

Availability and implementation: ADCP is distributed under the LGPL 2.0 open source license and

is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-

scripps/ADCP.

Contact: sanner@scripps.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–peptide interactions are essential to many biological functions

(Petsalaki and Russell, 2008). Thus, peptide-based therapeutic

approaches have recently attracted increasing interest (Fosgerau and

Hoffmann, 2015; Lau and Dunn, 2018). Moreover, many protein–pro-

tein interactions, especially the ones involving intrinsically disordered

proteins, are mediated by peptide-like segments (Stein and Aloy, 2008;

Wright and Dyson, 2015). Predicting protein–peptide interactions

using automated docking methods remains challenging mainly due to

the significantly larger number of rotatable bonds in peptides, making

them more flexible than small drug-like molecules. Small molecule

docking methods have been shown to perform rather poorly for pepti-

des longer than five amino acids (Hauser and Windshügel, 2016;

Rentzsch and Renard, 2015). Meanwhile, efforts have been put into

developing accurate and efficient peptide docking methods (Ciemny

et al., 2018; London et al., 2013). These methods can be segregated

into the following three categories: template docking, ensemble

docking and de novo methods (see Table 1).

The success of template docking methods for docking peptides

(Lee et al., 2015) depends on the availability of homologue struc-

tures for both the receptor and the peptide, thus limiting the range

of their applicability. Ensemble docking methods sample peptide

conformations as a pre-processing step without knowledge of the

receptor. Next, these conformations are docked rigidly or semi-

rigidly into the receptors (Schindler et al., 2015; Yan et al., 2016;

Zhou et al., 2018a, b). While, these methods yield good accuracy
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for small and medium sized peptides (typically �9 amino acids),

their success rates tend to drop rapidly with longer peptides. Finally,

de novo methods sample the peptide’s conformation on-the-fly

during the docking (Alam et al., 2017; Ben-Shimon and Niv, 2015;

Kurcinski et al., 2015; Raveh et al., 2011; Trellet et al., 2013).

While de novo methods yield high accuracy and are less affected by

the length of the peptides, these methods tend to be computationally

expensive and often rely on lengthy molecular dynamics simulations

to refine solutions.

Here we present AutoDock CrankPep or ADCP in short, an

efficient de novo method for protein–peptide docking that folds the

peptide in the potential energy landscape created by a given recep-

tor. ADCP provides an efficient and accurate way to dock flexible

peptides into rigid receptors. We show that it achieves 85.7% suc-

cess rate on the LEADS-PEP dataset within its top 10 predictions.

Furthermore, while existing peptide docking methods have typically

limited themselves to peptides with less than 16 amino acids, we

evaluate ADCP’s ability to dock a set of peptides ranging in length

from 16 to 20 amino acids. For these peptides, ADCP achieves re-

docking success rates of 64% and 91% when considering the top or

top 5 solutions, respectively. These results indicate that ADCP is

a robust peptide docking tool that can be used to model protein–

protein interactions mediated by protein segments such as loops or

disordered fragments.

2 Materials and methods

Small molecule docking methods typically perform best with ligands

containing less than 20 rotatable bonds (Hauser and Windshügel,

2016; Rentzsch and Renard, 2015). Peptides with five or more

amino acids can easily exceed this number. A medium sized peptide

of 10 amino acids typically has around 40 rotatable bonds, render-

ing these methods ineffective.

CRANKITE is an efficient software package originally devel-

oped for protein and peptide conformation sampling and folding

(Burkoff et al., 2012; Podtelezhnikov and Wild, 2005, 2008; Várnai

et al., 2013). It samples the conformational space of proteins or pep-

tides using a Metropolis Monte Carlo (MC) search and a G�o-Type

representation of amino acid side-chains (Takada, 1999; Taketomi

et al., 2009). CRANKITE can rapidly explore the conformational

space of sequences of amino acids by performing the two MC moves

illustrated in Figure 1: (i) a crankshaft motion along two randomly

selected Ca atoms and (ii) a rotation near the end of the chain.

ADCP combines CRANKITE’s conformation sampling ability

with the grid-based AutoDock representation of a rigid receptor

(Huey et al., 2007; Morris et al., 2009) to concurrently optimize the

peptide conformation and its interactions with the receptor, thus

yielding docking poses. ADCP was implemented based on

CRANKITE. The notable modifications and additions are as fol-

lows: (i) the addition of new MC moves to boost the exploration of

peptide position and orientation relative to the receptor; (ii) the add-

ition of an energy term based on the AutoDock affinity grids to de-

scribe the peptide-receptor interactions; (iii) the use of a rotamer

library (Dunbrack Jr and Cohen, 1997) to interactively construct

side-chain atoms; and (iv) the addition of a pose cache swapping

mechanism to enhance the search.

The overall workflow of the MC procedure implemented by

ADCP is depicted in Figure 2. First, a randomly selected MC move

is applied to alter the current pose. The altered pose is then scored,

and the move is either accepted or rejected based on a metropolis-

like MC criterion. If the move is rejected, the pose before the move

is restored and another move is attempted. If it is accepted, the

altered pose becomes the current one and is used to update the cache

of docking poses. This procedure repeats until one of the termin-

ation criteria is met. More details about the various elements of this

workflow are provided below.

Input: ADCP requires a description of the receptor and the pep-

tide. The receptor is represented by affinity maps calculated using

AutoGridFR (Ravindranath et al., 2015). AutoGridFR produces a

single zip file that contains affinity maps for all atom types in the

peptide calculated by AutoGrid4 (Morris et al., 2009), along with

metadata about the docking box (e.g. the size and position of the

box, a list of favorable locations in the affinity maps called transla-

tional points, etc.). The peptide can be specified as a 3D structure in

the PDB file format or by its sequence of amino acids. In the latter

case, a starting conformation is constructed automatically. This

Table 1. Summary of three categories of peptide docking methods

Category Flexibility Description Examples

Template docking None or little Use sequence-based homology model to predict docking poses GalaxyPepDock

Ensemble docking Conformation

ensemble

Prepare a conformation ensemble to describe peptide flexibility and then

dock the conformations back into receptor

HPepDock

MDockPep

pepATTRACT

De novo method Fully flexible Model peptide flexibility with the respect to the receptor ADCP

AnchorDock

CABS-Dock

FlexPepDock

HADDOCK

Fig. 1. CRANKITE’s Monte Carlo moves. A crankshaft motion along two

selected Ca atoms or a rotation near the end of the chain
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initial conformation can be generated in an extended or alpha helic-

al conformation using lowercase and uppercase letters respectively.

The user can also specify the maximum number of MC steps for the

simulation. As conventional docking methods can dock short pepti-

des with reasonable accuracy, ADCP was designed to support pepti-

des with five or more amino acids.

Monte Carlo moves: During the MC search the docking pose is

modified using MC moves. We extended the original set of MC

moves with: (i) a local translation to perturb the peptide position;

and (ii) a translational jump that translates the peptide to move a

central peptide atom called the ‘root atom’ to a new ‘translational

point’ in the docking box (Supplementary Fig. S1). The ‘translation-

al points’ are a set of positions with high affinities identified by

AutoGridFR (Ravindranath and Sanner, 2016). These moves were

added to facilitate the peptide’s exploration of the potential field

created by the receptor. Each MC move will trigger the reconstruc-

tion of the all-atom representation of the side-chains using a rotamer

library (see below).

Scoring Function: The scoring function of ADCP consists of two

components: a score for the conformation of the peptide; and a score

for the interaction between the peptide and the receptor. We will

refer to these scores as the internal and the interaction scores, re-

spectively. The internal score is based on CRANKITE’s G�o-Type

potential (Podtelezhnikov and Wild, 2005, 2008) where each side-

chain is represented by a single bead. We extended the internal score

function with a new term based on Ramachandran propensities for

backbone u and w angles (Lovell et al., 2003). These Ramachandran

propensities are transformed into energies according to the

Boltzman distribution. The interaction score between the peptide

and the protein is calculated using the AutoDock affinity grids.

Calculating this score requires a full-atom representation of the

peptide which is constructed using a rotamer library (Dunbrack Jr.

and Cohen, 1997). Every time a pose is scored, we iterate over

the peptide either forward (N-to C-terminus) or backwards (C- to

N-terminus) with the same probability. For each amino acid,

we construct all rotameric conformations and score them using the

affinity grids while avoiding clashes with the peptide backbone and

already built side-chains. The energetically most favorable side-

chain conformation is selected to represent this amino acid. Once

the full-atom representation of the peptide is built, the interaction

score between the peptide and the receptor is obtained by summing

up the scores from the affinity grids for all atoms in the peptide.

Monte Carlo Criterion: ADCP uses a metropolis-like MC criter-

ion given in Equation 1 to accept a move

exp �kTDE �HillClimbð Þ > random (1)

where DE is the score difference between the pose before and after

the MC move; kT is a temperature factor that can be used to adjust

the probability of the MC criteria; and random is a random number

ranging from 0.0 to 1.0. We found that the traditional metropolis

MC criterion did not yield an efficient exploration of solution space.

The HillClimb term was introduced to boost the search power.

If the score worsens by more than 5.9 kcal/mol (10 kBT at room tem-

perature), HillClimb is set to 0.05, otherwise HillClimb remains at 1.

With this hill climbing feature, a score increase of 5.9 kcal/mol

has a 60.6% probability to be accepted, and a score increase of

11.8 kcal/mol has 36.8% chance to be accepted and so on. Using a

HillClimb factor ranging from 0.05 to 0.20 does not affect the

results substantially.

Pose cache update: The presence of the receptor creates a com-

plex energy landscape for the peptide to fold while maximizing its

interaction with the receptor. We found that the traditional MC

search often got stuck in local minima. Thus, we implemented the

pose cache to maintain a pool of docking poses encountered during

the search and restart the search under certain circumstances. Every

pose accepted by the Metropolis criterion is compared with the ones

present in the cache and can: either be added to the cache (e.g. if it

has the best energy found so far) or it can replace an entry in

the cache (e.g. a similar solution is in the cache but with a worse en-

ergy). More details on this process are provided in Chart S1. Every

time a pose improves on the best score seen so far, it is appended to

the output multi-model pdb file. If the search generates 100 000 con-

secutive poses each having a score 3 kcal/mol higher than the best

score found so far, or the best score has not improved for one mil-

lion steps, the search restarts from a randomly selected pose from

the cache.

Termination criteria: The program stops if the maximum num-

ber of steps is reached or the best score has not been improved for

10 million steps.

Using the software: The affinity maps are calculated using

AutoGridFR for a user-defined docking box. The results presented

here were docked with a 4 Å padding on every side of the peptide.

We also performed redockings with 6 and 8 Å padding, the latter

often covering the bulk of the receptor. While we observed minor

changes in the ordering of the docking poses due to the stochastic

nature of the algorithm, these changes do not modify the reported

sampling success rate. The stochastic nature of the MC search is usu-

ally addressed by performing multiple searches called replicas. The

number of replicas is specified by the user in ADCP. Unless other-

wise specified, the results presented here were obtained using 80 rep-

licas with 60 simulations started from extended conformations and

20 simulations started from helical conformations constructed from

amino acid sequence. Each replica performed 3 million MC steps

per amino acid in the peptide (i.e. 15 million steps for a 5-mer pep-

tide and 36 million steps for 12-mer peptide, etc.). While we routine-

ly observed conformational changes between helical conformation

and extended conformation and vice versa during the MC runs, we

found that statistically, starting the MC with a mix of initial

Fig. 2. Flow chart of AutoDock CrankPep Monte Carlo procedure
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conformation speeds up the process of identifying the correct solu-

tion. Users can customize these parameters according to their specif-

ic needs. We suggest using more replicas and longer simulations for

larger peptides and/or larger docking boxes.

After all replicas finish their search, the docking poses are clus-

tered to produce the final docking poses. The clustering can be per-

formed using the AutoDockFR clustering algorithm (Morris et al.,

2009; Ravindranath et al., 2015), or using pairs of peptide-receptor

residues in contact. See the Supplementary Information for a

detailed description of the contact-based clustering algorithm.

2.1 Datasets
The peptiDB (London et al., 2010) and LEADS-PEP (Hauser and

Windshügel, 2016) protein–peptide datasets have been widely used

for benchmarking peptide docking methods (Raveh et al., 2011;

Tubert-Brohman et al., 2013; Zhou et al., 2018a). PeptiDB contains

102 protein–peptide complexes varying from 3 to 15 amino acids. We

benchmarked ADCP with the Glide SP-PEP dataset (Tubert-Brohman

et al., 2013), a subset of peptiDB comprised of 19 high-quality, non-a-

helical complexes ranging from 5 to 11 amino acids. The Glide SP-

PEP dataset has been used to benchmark FlexPepDock, Glide SP-PEP

and HPepDock. The LEADS-PEP dataset is a more recent, and manu-

ally curated dataset of 53 complexes with peptides ranging from 3 to

12 amino acids. In this study we used the subset of 42 complexes from

LEADS-PEP containing peptides with 5 or more amino acids. We con-

sider the peptides in these datasets as medium-sized peptides for dock-

ing purposes.

Current available peptide docking methods are mostly tested on

peptides with 15 amino acids or less. To further test ADCP, we

compiled at set of 11 protein peptide complexes from the protein

data bank (PDB) (Berman et al., 2000) with longer peptides ranging

in length from 16 to 20 amino acids. These structures were obtained

by selecting PDB entries with crystallographic resolution of 2.2 Å or

better and containing a peptide comprised of 16–20 standard amino

acids. The peptides in this set are neither cyclic nor covalently bound

to the receptor; they have no significant clashes between peptide and

receptor atoms and have no significant contacts between the peptide

and crystal mates of the receptor. These complexes are listed in

Supplementary Table S1.

We found apo structures for 5 of the 11 protein–peptide com-

plexes (Supplementary Table S1) by retrieving all PDB entries shar-

ing the uniport accession code of the protein in the protein–peptide

complex (holo protein). The sequences of the apo-candidates and

holo proteins were then aligned to the UNIPROT (UniProt

Consortium, 2019) sequence yielding a mapping of the apo-candi-

date sequence to the holo sequence. We only retained entries with

70% or more of the apo sequence mapped to the holo sequence.

Next, we structurally aligned the apo-candidate structure with the

holo protein and we identified overlaps between the peptide and

atoms in the apo-candidate structure. We retained entries in which

the peptide only overlap with water, ions , additives or apo receptor

chain. For the three complexes 2IVZ, 5UWI and 6CIT, which

resulted in more than one apo structure (2, 12 and 12 respectively),

we selected the apo structure with the best crystallographic

resolution.

2.2 Success metrics
All atom Root-Mean-Square Deviation (RMSD) is typically used to

assess success while docking small molecules. As ligands grow larger

this metric becomes less appropriate and RMSD of backbone atoms

(N, CA, C) has been used for assessing docking success rate for small

peptides (Irving et al., 2001; Méndez et al., 2003). For instance,

(Hauser and Windshügel, 2016; Zhou et al., 2018a) used a 2.5 Å

backbone RMSD cutoff to define successful peptide redocking on

the Lead-Pep dataset. Other studies (Raveh et al., 2011; Tubert-

Brohman et al., 2013) used the iRMSD (interface RMSD) defined as

the RMSD of the backbone atoms of the ‘interface residues’.

Interface residues are amino acids of the peptide having their

Cb atom within 8 Å of any receptor Cb atom. Poses with iRMSD val-

ues under 3.0 Å are typically considered to be successful dockings.

To facilitate the comparison with other methods, we used the same

metric as used in previously published studies, i.e. backbone RMSD

for comparison on the LEADS-PEP dataset and iRMSD for the

Glide SP-PEP dataset.

When docking longer peptides, RMSD-based metrics do not pro-

vide a precise measure for success. For these cases, we assess success

using native contacts: a metric borrowed from the protein–protein

docking field (Irving et al., 2001; Méndez et al., 2003). Native con-

tacts are defined as the list of all pairs of peptide-receptor amino

acids located within 5 Å of each other. Similar to (Méndez et al.,

2003; Peterson et al., 2017; Yan et al., 2016), we identify successful

redockings of peptides ranging from 16 to 20 amino acids in length

when the docking poses reproduce more than 50% of the native

contacts (i.e. fnc > 0.5).

3 Results and discussion

We compared the success rate of ADCP with previously published

results from leading peptide docking methods on the datasets con-

taining medium size peptides (i.e. up to 12 amino acids). We also

demonstrate that ADCP achieves remarkable success rates in dock-

ing longer peptide (i.e. up to 20 amino acids).

3.1 Accurate docking of medium size peptides
HPepDock (Zhou et al., 2018a, b) is a recent peptide docking

method that falls into the ensemble docking category. It uses

MODPEP (Yan et al., 2017) to generate 1000 peptide conforma-

tions and then docks these peptide conformations semi-rigidly using

MDock (Huang and Zou, 2006). HPepDock has been shown to

achieve better accuracy than traditional small-molecule docking

methods as well as other leading peptide docking methods including

FlexPepDock, Glide-SP-PEP, HADDOCK and pepATTRACT

(Zhou et al., 2018a, b). As such, it can be considered the state of the

art at the time of writing this paper. Here we compare the success

rates of ADCP with the HPepDock results on these datasets using

the same metrics. For the complexes from the LEADS-PEP dataset,

ADCP consistently outperforms HPepDock as shown in Figure 3.

Considering the top 10 solutions, ADCP achieves 85.7% success

rate for this dataset compared to 66.7% for HPepDock at 2.5 Å

RMSD cutoff. ADCP significantly improves success rate at 1.0 Å

RMSD cutoff, predicting 76.2% of the complexes with a sub-

angstrom backbone RMSD precision within its top 1000 predic-

tions, and 100% of the complexes have a correctly docked pose

(backbone RMSD �2.5 Å). The complex-specific comparison is

provided in Supplementary Table S2.

HPepDock’s performance deteriorates significantly for the lon-

ger peptides in this dataset (Table 2). While it’s overall success rate

at 2.5 Å backbone RMSD for the top 10 solution is 66.7% (28/42),

when considering only peptides with 9 or more amino acids the suc-

cess rate drops to 35% (7/20). ADCP on the other hand maintains

its 85% overall success rate on the subset of peptides with 9 or more

amino acids.

5124 Y.Zhang and M.Sanner

Deleted Text: ; Morris <italic>et<?A3B2 show $146#?>al.</italic>, 2009
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz459#supplementary-data
Deleted Text: -
Deleted Text: Zhou, Li, <italic>et<?A3B2 show $146#?>al.</italic>, 2018; 
Deleted Text: -
Deleted Text: ,
Deleted Text:  to 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz459#supplementary-data
Deleted Text: -
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz459#supplementary-data
Deleted Text: -
Deleted Text: ,
Deleted Text: ; Irving <italic>et<?A3B2 show $146#?>al.</italic>, 2000
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: -
Deleted Text: ; Irving <italic>et<?A3B2 show $146#?>al.</italic>, 2000
Deleted Text: ; Peterson <italic>et<?A3B2 show $146#?>al.</italic>, 2017
Deleted Text: D
Deleted Text: ; Zhou, Li, <italic>et<?A3B2 show $146#?>al.</italic>, 2018
Deleted Text: , 
Deleted Text: ; Zhou, Jin, <italic>et<?A3B2 show $146#?>al.</italic>, 2018
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz459#supplementary-data
Deleted Text:  


A possible explanation for this could be that for longer peptides,

the conformational space, which increases exponentially with the

length of the peptide, eventually requires a prohibitively large num-

bers of conformers to be used in ensemble docking methods. ADCP

explores the peptide’s conformational space during the docking pro-

cess thus it is less affected by increasing peptide lengths. ADCP

maintains a consistent success rate across the peptides lengths in this

dataset.

On the smaller Glide SP dataset, ADCP performs similarly to

other methods for both holo (19 complexes) and apo (10 complexes)

receptor conformations, as shown in Table 3.

3.2 Reliable docking long peptides and protein

segments
Currently available peptide docking methods have mostly been

tested and benchmarked on small and medium-sized peptides with

up to 15 amino acids in length. However, a considerable portion of

protein–protein interactions are mediated by flexible protein loops,

disordered chains segments, or intrinsically disordered proteins,

involving sequences that can easily exceed 15 amino acids.

Therefore, we tested ADCP on a set of 11 complexes containing

peptides with 16–20 amino acids in length. For these dockings we

performed 80 MC simulations, allotting 7�N million MC moves

(where N is the number of amino acids in the peptide) to each run.

The docking poses from the 80 MC runs were clustered using con-

tacts with a cutoff value of 80%. Results are shown in Table 4.

Considering only the top-ranking solution, ADCP identifies so-

lution with at least 50% native contacts for 7 out of 11 complexes

(63.6%). Within the top 5 solutions, the success rates increase to

90.9% (10 out of 11 complexes). Figure 4 shows some examples of

docked pose with respect to the crystal structure along with the frac-

tion of reproduced native and backbone RMSD values.

For the 5 complexes for which apo structures are available,

ADCP obtained good solutions for 2 complexes with fnc of more

than 0.5 and partially docked solutions for 2 complexes with fnc of

more than 0.3 within its 5 predictions. Docking failed for the 1CM1

complex in which the protein forms a tunnel where a substantial

conformational change in the apo structure greatly shrinks the width

of the tunnel, preventing the peptide from binding there. See

Supplementary Table S3 for more details.

ADCP demonstrates a robust ability to dock long peptides and pro-

tein segments. With more MC replicas and more steps for each replica,

ADCP could potentially be applied to even longer peptide-like segments.

It is noteworthy that the current scoring function in ADCP has

not been optimized or calibrated for protein–peptide interactions.

The interaction energy between peptide and receptor relies on

AutoDock4 affinity maps that were initially developed and cali-

brated for docking small, drug-like molecules. While we have started

incorporating peptide-specific elements, such as a potential for

Ramachandran backbone angles into our scoring function, further

refinements of the current scoring function could improve docking

Fig. 3. The comparison of success rates for ADCP and HPepDock with differ-

ent success criteria. Blue solid line represents the success rate for ADCP if the

top 1000 solutions are considered and blue dashed line represents the suc-

cess rate if the top 10 solutions are considered. Red solid and dashed lines

represent the success rate for HPepDock if the top 1000 solutions and the top

10 solutions are considered, respectively (Color version of this figure is avail-

able at Bioinformatics online.)

Table 2. Success rates at 2.5 Å backbone RMSD considering the top

10 solutions

bbRMSD � 2.5 Å ADCP HPepDock

All 85.7% 66.7%

Longer peptides 85.0% 35.0%

Note: Out of the 42 peptides, 20 have more than 8 amino acids (48%) and

are classified as ‘longer peptides’.

Table 3. Success rates on the Glide SP-PEP dataset

iRMSD ADCP FlexPepDock Glide SP-PEP HPepDock

holo �2 Å 13 13 11 12

�3 Å 15 13 13 15

apo �2 Å 4 6 4 5

�3 Å 8 6 4 8

Note: Among the 19 complexes in the dataset, 10 receptors have apo con-

formation available. Here a docking is deemed successful if one of the top 10

solutions has an interface RMSD (iRMSD) lower than 2.0 Å or 3.0 Å

respectively.

Table 4. Docking results for long peptides and protein segments

PDB ID Length DoFa

Top 1 Top 3 Top 5 Top 20 All

2IVZ 16 51 0.73 0.73 0.73 0.73 0.80

2OBH 16 74 0.89 0.89 0.89 0.89 0.89

2XAP 16 65 0.03 0.52 0.52 0.53 0.58

4AK4 16 53 0.59 0.63 0.80 0.83 0.89

5UWI 16 58 0.76 0.80 0.80 0.80 0.80

5N4B 17 62 0.24 0.24 0.46 0.46 0.51

6CIT 17 72 0.32 0.71 0.71 0.71 0.71

1CM1 18 74 0.94 0.94 0.94 0.94 0.94

4YZ6 18 79 0.81 0.81 0.85 0.90 0.90

4RS9 19 83 0.05 0.49 0.54 0.78 0.78

2F31 20 75 0.66 0.66 0.66 0.66 0.66

Avg. fnc 0.55 0.67 0.72 0.75 0.77

fnc >0.5 percentage 63.6% 81.8% 90.9% 90.9% 100.0%

Fraction of native contacts

aDoF: degrees of freedom including translation, rotation and rotatable bonds.

The cells are colored based on fnc from red (0.0) to yellow (0.5) and to

green (1.0).
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success rates. Alternatively, re-scoring top-ranked poses with scoring

functions designed for protein–peptide interactions (Huang and

Zou, 2008; Spiliotopoulos et al., 2016) could also improve the rank-

ing of the docking predictions.

3.3 Timing
ADCP is computationally efficient compared with other de novo

methods. Based on 3 million MC moves per amino acid, a MC

search typically takes from �10 min for a 5-mer to �1 h for a 12-

mer, using a single thread on an Intel Xeon E5-1620 processor

(2014). These times are rough averages and can vary depending on

the peptide sequence. See Supplementary Table S2 for detailed tim-

ing results on LEADS-PEP dataset. Each MC simulation can be run

independently and they can execute in parallel locally or on high

performance computing clusters. The time for the final clustering is

a function of the clustering cutoff but typically only takes a few

minutes. While HPepDock and other ensemble docking methods

requires less computational resources, ADCP achieves better success

rates especially for longer peptides. HPepDock remains a powerful

peptide docking tool for medium size peptides.

4 Conclusions

In this paper, we presented ADCP, a novel approach for predicting

protein–peptide interactions for peptides of substantial length. The

approach leverages an algorithm developed initially for protein fold-

ing and combines it with a representation of a rigid receptor devel-

oped for docking. With a success rate of 85.7% on the LEADS-PEP

dataset when considering the top 10 predictions, ADCP outper-

forms leading peptide docking approaches. Moreover, we show that

ADCP is able to dock peptides with up to 20 amino acids to their

receptors. ADCP expands peptide docking to the prediction of cer-

tain types of protein–protein interactions, e.g. disordered tails or

flexible protein loops interacting with itself or another protein.
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