
Systems biology

Smart computational exploration of stochastic

gene regulatory network models using

human-in-the-loop semi-supervised learning

Fredrik Wrede and Andreas Hellander*

Department of Information Technology, Uppsala University, Uppsala SE-75105, Sweden

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on December 11, 2018; revised on April 24, 2019; editorial decision on May 13, 2019; accepted on May 26, 2019

Abstract

Motivation: Discrete stochastic models of gene regulatory network models are indispensable tools

for biological inquiry since they allow the modeler to predict how molecular interactions give rise

to nonlinear system output. Model exploration with the objective of generating qualitative hypothe-

ses about the workings of a pathway is usually the first step in the modeling process. It involves

simulating the gene network model under a very large range of conditions, due to the large uncer-

tainty in interactions and kinetic parameters. This makes model exploration highly computational

demanding. Furthermore, with no prior information about the model behavior, labor-intensive

manual inspection of very large amounts of simulation results becomes necessary. This limits sys-

tematic computational exploration to simplistic models.

Results: We have developed an interactive, smart workflow for model exploration based on semi-

supervised learning and human-in-the-loop labeling of data. The workflow lets a modeler rapidly

discover ranges of interesting behaviors predicted by the model. Utilizing that similar simulation

output is in proximity of each other in a feature space, the modeler can focus on informing the

system about what behaviors are more interesting than others by labeling, rather than analyzing

simulation results with custom scripts and workflows. This results in a large reduction in time-

consuming manual work by the modeler early in a modeling project, which can substantially re-

duce the time needed to go from an initial model to testable predictions and downstream analysis.

Availability and implementation: A python-package is available at https://github.com/Wrede/mio.

git.

Contact: andreas.hellander@it.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A substantial level of single-cell variability both between cell-lines

but also between individual cells in the same cell-line has long been

a prediction of both stochastic simulations in systems biology

(Elowitz et al., 2002; Fange and Elf, 2006; Lawson et al., 2013;

McAdams and Arkin, 1999; Sturrock et al., 2013, 2014) and experi-

mental observations (Chubb et al., 2006; Raj et al., 2006). Single-

cell transcriptomics such as scRNA-Seq (Haque et al., 2017) and

single-cell proteomics (Budnik et al., 2018) have offered snapshots

of this variability in RNA and protein expression for a large number

of genes. Comparative studies overlaying such transcriptomics and

proteomics data have also recently highlighted how protein expres-

sion may or may not be correlated with the expression of its mRNA

both in E.coli (Taniguchi et al., 2010) and recently in mouse embry-

onic stem cells (Budnik et al., 2018), hinting to the complexity in

regulation arising from non-linearly interacting pathways. While

single-cell omics and modern analysis pipelines make it possible to

quantify differentially expressed genes across a population (Perkel,

2017), these techniques do not enable direct study of the precise
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mechanisms that give rise to the observed variability. Quantitative,

stochastic and dynamic models of these gene regulatory networks

(GRN), on the other hand, can be used to predict how such nonlin-

ear interactions result in observed gene expression profiles and how

they can explain cell–cell variability. Discrete stochastic simulation

of the spatial and temporal dynamics of intracellular biochemical re-

action networks has thus become a central tool to study GRNs in

system biology (Drawert et al., 2016b; Elowitz et al., 2002; Sturrock

et al., 2013, 2014; Vilar et al., 2002). These simulation methods

capture intrinsic noise due to low copy numbers of the involved mo-

lecular species (Gillespie et al., 2013), and can be used to make pre-

dictions about both the system dynamics and the variability in

behaviors across a cell population.

However, the use of modeling to generate predictions in the ab-

sence of prior knowledge about system behavior is challenging due

to the large uncertainty in the reaction network interactions and the

large amounts of unknown kinetic rate parameters. To explore mod-

els under this uncertainty with the objective of obtaining a qualita-

tive understanding of the type of interesting behavior the model

suggest about the underlying system, the modeler uses parameter

sweeps in which the parameters are varied over a large range and

the simulation results are analyzed in postprocessing steps. There

are two main problems with this approach. First, in order to encode

the criteria for postprocessing analysis, the modeler needs to have

prior hypotheses about model behavior. Thus, there is a substantial

risk to miss interesting dynamics that was not already anticipated.

Second, due to the curse of dimensionality global parameter sweeps

become very large and will require massive computations and time-

consuming manual work by the modeler to inspect output time ser-

ies data and manually fine-tune sampling of the parameter space.

Related work concerning parameter sweeps of stochastic biomolecu-

lar networks have been conducted in the past in the area of statistic-

al model checking, a subarea within formal verification (Bortolussi

and Silvetti, 2018; Ceccarelli et al., 2015; Clarke et al., 2008; �Ce�ska

et al., 2017; Jha et al., 2009). These methods infer parameter regions

by statistically evaluating temporal logics directly on the discrete

states of the Markov process underlying the stochastic simulations.

While these methods are elegant approaches to quantitatively assess

different properties and feasible regions of a model they remain chal-

lenging for biologists to interpret due to the lack of knowledge in

formal verification methods. Further, the user of the methods need

to explicitly define which logics to be evaluated which can be bur-

densome if the user simply wants to get an initial understanding of

the behavior of the model. We suggest a simpler approach using

summary statistics or time series features that can be automatically

generated and evaluated on the full trajectory paths of the molecular

species. Since summary statistics have been extensively used and engi-

neered for likelihood-free parameter inference (such as Approximate

Bayesian Computation) and Monte Carlo analyses, they are remain

reproducible and familiar to the systems biology community. Further,

to the best of our knowledge we have not seen any statistical model

checking tools which enables the user to interactively propose what

might be an interesting behavior and accordingly adjust the parameter

sweep to those preferences.

In this paper we have developed a smart workflow framework

based on human-in-the-loop semi-supervised learning and black-box

stochastic models with the objective to greatly reduce both the man-

ual work involved in going from an initial model to insight about

the principle behavior of the model. The main contribution of our

smart workflow tools is to greatly reduce the amount of manual

work required by the modeler by (i) automating the process of gen-

erating features (e.g. which can be used to engineer summary

statistics) in the absence of prior information, and (ii) replacing

model-specific manual postprocessing with large-scale autonomous

analysis enabled by user interactivity.

We demonstrate the methodology of our workflow using a GRN

model of a circadian clock based on positive and negative regulatory

elements. The model, which has 9 species, 18 reactions and 15 reac-

tion rate parameters involves two genes with the translated tran-

scription factors acting as positive and negative regulatory elements,

respectively. This model was developed in one of the first studies

highlighting the importance of intrinsic molecular noise in systems

biology. The model can give rise to robust oscillations in the pres-

ence of noise, and the parameter values and the initial condition to

achieve robust oscillations with a period of 24 h is well known

(Vilar et al., 2002). However, for demonstration purposes, here we

assume no a priori knowledge about the system dynamics and dem-

onstrate how our interactive workflow lets us efficiently explore the

high-dimensional parameter space, discover oscillatory dynamics as

the principal behavior and interactively label such behavior as inter-

esting. The exploration process for this model example can be div-

ided into three logical phases; (i) the initial exploration and labeling,

(ii) semi-supervised label propagation and (iii) zooming in on region

of interest (ROI) and engineer summary statistics.

2 Materials and methods

2.1 A smart workflow for model behavior discovery for

high-dimensional models
The developed methodology is a smart computational workflow for

screening and exploring for different behavioral properties of a

black-box candidate model based on globally searching in the par-

ameter space. The proposed workflow is a heuristic approach for

getting an initial understanding of qualitative behaviors in a model.

It does not guarantee to find all behaviors and neither is there any

robustness analyses of behaviors involved, for this substantial work

has to be contributed to smart experimental designs involving adap-

tive sampling of parameter space which we will save for future

work. Figure 1 outlines the basic approach of our workflow.

Using a transductive semi-supervised approach enables the mod-

eler to change their preferences, and thus the labeling, at any time

during the workflow and only requires subset of points to be labeled.

As the model exploration continues and more parameter points are

added, the modeler is able to focus on particular ROIs, either accord-

ing to the predictions of the semi-supervised model or by manual in-

spection. This in turn enables hierarchy of the exploration workflow.

By neglecting points that are predicted as non-interesting we can sole-

ly turn our focus to the interesting points generated by our simulator.

This interactive human-in-the-loop machine learning approach is at

the core of our workflow, and illustrated further in Supplementary

Video S1. In the higher level exploration, the modeler will be able to

tweak and engineer new summary statistics to fine-tune the separa-

tions of interesting and non-interesting trajectories. In the following

paragraphs we will outline the specifics of each individual unit of the

smart exploration workflow which are included in Figure 1.

2.2 Parameter experimental design
To initiate the workflow we need an experimental design of the

model parameter space. This involves defining global bounds for

each parameter to define the search space in which parameter points

(candidates) will be drawn following some density or picked in a

deterministic manner using, e.g. factorial design. In case of little

a priori knowledge of the model, one might for example start with a
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very simple exhaustive approach involving a uniform density

bounded by minimum and maximum values for each parameter.

Once a first batch has been processed by the workflow and we have

gained more knowledge about the model behavior, these designs can

be redefined according to the modelers preferences, e.g. by mapping

interesting realizations to parameter space and centralizing new

designs around these corresponding parameter points. In practice,

this range can be defined based on biophysical arguments, but it can

be quite large (order of magnitudes). The experimental design step

in the workflow is very critical for the efficiency of parameter sweep

studies. Therefore, we plan to dedicate substantial future work on

this step. Currently, If another experimental design than random

uniform sampling, factorial design or Latin hypercube sampling is

desired, the user needs to implement those.

2.3 Stochastic simulation of gene regulatory networks
The most commonly employed mathematical framework for discrete

stochastic simulations of chemical kinetics is continuous-time

discrete-space Markov processes (Gillespie, 1992; Van Kampen,

1992). The Stochastic Simulation Algorithm (SSA) (Gillespie, 1976),

commonly referred to as the Gillespie algorithm, generates statistic-

ally exact realizations from such processes. In our workflow the SSA

will be treated as a black-box simulator, evaluated on a realization

of the parameter points

Sj :¼Modelðhj;TÞ for j ¼ 1; 2; ::;N (1)

where T is the simulation time and hj a parameter point. Each real-

ization of the model will contain the copy number evolution over T

for all molecular species. We use the GillesPy2 (Abel et al., 2017)

package for simulations. GillesPy2 is part of the StochSS (Drawert

et al., 2016b) suite of tools, and wraps StochKit2 (Sanft et al.,

2011).

2.4 High-throughput generation of summary statistics

using comparative time series analysis
To represent simulation results in feature space rather than the raw

simulation output, each batch of realizations passes a feature gener-

ating process where it is possible to generate several hundreds of fea-

tures based on time series analysis. Each individual simulation result

Sj corresponding to a particular realization of hj results in a feature

vector

Fj;s :¼ ½f1ðSj;sÞ; f2ðSj;sÞ; . . . ; fnðSj;sÞ� 2 R
n 8 j; s (2)

for a particular species s contains features f based on time series ana-

lysis, such as different moments, autocorrelation, Fast Fourier

Transform (FFT) and many more. The system supports a minimal

set of features to be generated for an initial large scale sweep design.

We use the python package TSFRESH (Christ et al., 2018) (Time

Series Feature extraction based on scalable hypothesis tests) for

automatic time series feature extraction. TSFRESH have a large

library of time series feature functions, which ease the process of en-

gineering features for various time series classification problems.

The set of features used in the workflow can be manipulated to con-

tain any feature set supported in TSFRESH as well as user defined

functions such as correlations between molecular species.

2.5 Visualization and interactivity
Once the feature generation is finished the system will present the

feature space in a reduced feature space using a specified dimension

reduction (DR) method. Here, we currently support PCA (Pearson,

1901), kernel-based PCA (Schölkopf et al., 1998), t-SNE (Maaten

and Hinton, 2008) and UMAP (McInnes and Healy, 2018). The

support of several DR methods is useful for getting different per-

spectives of the data due to each method’s individual properties. The

non-linear methods support different kernels and different distance

metrics in case of high-dimensional features spaces. Using interactive

Jupyter notebooks (Ragan-Kelley et al., 2014) as illustrated in

Supplementary Video S1, the modeler can then navigate and explore

different parameter points in a 2D or 3D scatter plot which is a map-

ping of the full feature space based on the dataset fFj;sgN for a speci-

fied species s. By clicking on points in the scatter plot, a specified

trajectory of a particular species will show up next to the scatter

plot. By using the assumption that data points in close proximity to

each other have similar behavior, the effort needed to locate differ-

ent or similar behaviors of the model is greatly reduced. The model-

er will then have the opportunity to give feedback to the system

about preferences over different model behaviors seen in the data by

labeling individual points.

Fig. 1. Smart Exploration workflow. The workflow starts with the user defin-

ing a parameter experimental design (top) to build a first batch of different

parameter settings. Each parameter point is then realized in the model and

corresponding simulator (black), which will output the trajectories for each

realization. The raw trajectories (time series) are then converted to feature

arrays (red) based on time series analysis. The data from the sweep will then

enter a learning cycle (white), where the modeler will be able to visualize and

interact with the data points (which corresponds to a parameter point) in a

reduced 2D or 3D feature space using a dimension reduction method where

points in proximity to each other are assumed to have similar qualitative be-

havioral properties. Clicking on the scatter points will show the raw simula-

tion output trajectory of a user specified molecular species (green). While

exploring, the modeler can give feedback to the system by labeling data

points. Only a few labeled data points are needed since the data will then be

fed into a semi-supervised learning algorithm (SSL). Using the semi-super-

vised model to infer labels of unlabeled data points, the system will also be

able to evaluate the label uncertainty. This uncertainty can be used by active

learning (AL) to ultimately suggest data points that the modeler might not yet

have discovered or to simply improve the semi-supervised model. Once the

modeler is satisfied with the current labeling of data points the experimental

design can be fine-tuned to include new parameter points, e.g. zoom in on

ROIs of points according to the predictions of the semi-supervised model
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2.6 Semi-supervised label propagation and active

learning
The labeling feedback can be used in a semi-supervised fashion for

learning the preferred behaviors of unlabeled parameter points. This

involves fitting a model to the data which models the associated

labels (model behaviors) to parameter points which has not yet been

looked at in the interactive exploration. If the model is probabilistic,

we can infer some parameter points as being more uncertain than

others. This enables us to: (i) direct the modelers attention to points

that might not have been noticed by the modeler and (ii) query the

labels of these uncertain realizations to improve the accuracy of the

model. The latter is commonly referred as active learning. Our cur-

rent semi-supervised approach is label propagation by Gaussian

Random Fields (GFR) (Zhu et al., 2003b). In a semi-supervised set-

ting, only a few points in the dataset are given a label, while the

others remain unknown. GFR together with the properties of har-

monic functions propagate the information of labeled instances to

their neighbors. This follows from the assumption that nearby

points (neighbors) have similar label information. By constructing a

graph from the data, where nodes represent instances and edges the

similarity between them, we can propagate the label information

along the graph edges. The graph is represented by the NxN

weight matrix W which measure the similarity between points.

Using the Gaussian Radial Basis Function (RBF) as the similarity

measure we get

wij ¼ exp �
Xn

k¼1

ðxik � xjkÞ2

r2
k

 !
(3)

where x 2 R
n can either be the full feature vector Fj belonging to

parameter point hj for a specified species s or the same point repre-

sented in the reduced feature space. rk is the length scale hyperpara-

meter for feature k. We use the reduced dimensional space to

propagate our labels, since this is the visual space that we explore

during labeling. We also use the same length scale for both dimen-

sions in this space, i.e. an isotropic RBF. By partitioning W and the

label vector f into partitions of labeled versus unlabeled instances,

the label propagation over the unlabeled instances yu corresponds to

solving the linear system

yu ¼ ðDuu �WuuÞ�1Wulyl ¼ ðLuuÞ�1Wulyl (4)

where L is the graph Laplacian and D is the diagonal matrix with

entries di ¼
P

j wij. We use the normalized graph Laplacian and re-

move clamping of labeled points, i.e. labeled points can change their

labels to some degree (Zhou et al., 2004). There is an elegant prob-

abilistic interpretation of the label propagation above. Namely, it

can be seen as a random walk procedure over the graph. The equa-

tion above can be expressed by the normalized transition matrix

P ¼ D�1W. Starting a random walk from an unlabeled node i, Pij is

the probability of walking (transitioning) to node j after one step.

The walk will continue until a labeled node has been reached. yi

then becomes the probability of node i reaching a node of a particu-

lar label. The probabilistic framework enables the usage of active

learning based on uncertainty of propagated labels over the graph.

One simple way of measuring the uncertainty is by calculating the

entropy

HðyiÞ ¼ �yilogðyiÞ � ð1� yiÞlogð1� yiÞ (5)

where a high entropy would correspond to high uncertainty. Thus,

by arranging HðyuÞ we can query the modeler to label uncertain

points, which will decrease uncertainty in the model and can also

give new insight about the exploration. The average label entropy

will also be used as the loss function to fit the length scale parameter

using a global optimizer such as basin hopping (Wales and Doye,

1997). To enforce a smoothness over the graph edges and avoiding

overfitting we will add a ridge penalty to the loss.

2.7 Hierarchical exploration by zooming in on ROIs to

engineer summary statistics
At any stage after initiation of the workflow it is possible to ‘zoom

in’ on particular ROIs in the reduced feature space or in parameter

space. Here we refer the ‘zoom in’ as a way to isolate an ROI and

explore it in more detail. This opens up the opportunity to fine-tune

and engineer ad hoc summary statistics for the purpose of separating

the interesting parameter points versus the non-interesting. This can

either be done by manually adding new features using knowledge

about suitable features, or to naively generate many features which

then can be used for feature selection.

2.8 Interactive parallel computing in clouds using Dask

and MOLNs
The simulation (using SSA) and the feature generation are both

embarrassingly parallel, and is well suited for parallelism in cloud

computing infrastructure. We use the MOLNs (Drawert et al.,

2016a) orchestration software part of the StochSS suite of tools to

deploy virtual clusters. For this work we have extended MOLNs

with support for Dask, a framework for parallel computing in

Python (Dask Development Team, 2016). Apart from deploying

Dask and Jupyter notebook, MOLNs installs the tools needed for

scalable stochastic computational experiments of biochemical reac-

tion networks. MOLNs is able to dynamically deploy clusters in a

range of public and private clouds. This approach makes our soft-

ware and workflow require minimal effort on setting up and config-

uring software, and allows for highly scalable parallel computing.

For the experiments in this paper we made use of the SNIC Science

Cloud, a community cloud based on OpenStack, provided by the

Swedish National Infrastructure for computing.

3 Results

3.1 Phase 1: an initial exploration reveals oscillations as

a principal behavior of the model
Figure 2A illustrates the first initial phase of the smart model explor-

ation workflow. Using Jupyter interactive notebooks, the modeler

has a central role to guide the workflow during exploration.

Assuming that the model contains high diversity in the model behav-

ior, a global sampling of parameter space, with an initial small batch

size, can ease the process of identifying interesting behaviors for the

modeler by keeping the visual information at a comprehensible level.

Here we chose an initial batch size of 1000 realizations which span

the entire initial sweep design (Supplementary Table S1), which is

provided by the modeler. Further, each parameter point is simulated

in parallel with the stochastic simulation algorithm (SSA). A natural

bottleneck in the simulator when using a wide span of parameter

values is the possibility of parameter combinations that leads to un-

controlled growth, or explosion, of some chemical species. This will

cause the simulation time to become very large. To avoid this we set

a user defined timeout (here 50 s/realization) for the simulation

time, effectively filtering our bio-physically unrealistic, exploded tra-

jectories. Once the simulation batch has completed, each simulated

trajectory of the species passes through a summary statistics, or
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feature, generation process using TSFRESH. A minimal set of sum-

mary statistics comprising of extreme values, mean, median, standard

deviation, variance and the sum are initially generated, converting the

raw time series trajectory into an array of features. To visualize and

interact with the data, a dimensional reduction (DR) of the feature

space corresponding to a particular species is performed. In this ex-

ample we use UMAP with Euclidean distance as our metric (McInnes

and Healy, 2018). At this point, the modeler is able to interact with

each individual parameter point in a low dimensional representation

of the feature space. By clicking on a parameter point, the corre-

sponding trajectory of a specified species is shown and points in close

proximity to each other have similar behavior, which aids the model-

er in initial exploration (see Supplementary Video S1). Observe that

the modeler has to tune and play with the hyperparameters of the DR

method as part of the exploration. Figure 2A shows the reduced fea-

ture space on the Activator protein using UMAP. In our example, the

first batch resulted in 244 out of 1000 realizations completing within

the threshold used (50 s/realization), the remainder resulting in un-

physical explosion of one or more species. As the modeler explore the

data she will be able to label interesting clusters or individual param-

eter points according to her preference. Here, we observed that the

left hand side of the reduced feature space corresponds to trajectories

with consistent low copy numbers of the transcription factors

(Fig. 2A ‹), and they are labeled as non-interesting. The upper right

cluster on the other hand have more reasonable copy numbers and a

bursting behavior of high frequency (Fig. 2A ›), a phenomena which

can (with parameter tweaking) result in oscillations. As the cluster

elongates to the right of the feature space, the higher the copy number

becomes. With our preferences these were labeled as interesting.

Further, we observe two outlier clusters, where the labeling become

more uncertain. One parameter point from each cluster was labeled.

(Fig. 2A fi). Phase 1 of the workflow can be repeated as many times

as desired to add more data and support for individual classes. We

conducted three batches of the same size as the first batch and follow-

ing the same uniform sampling of the parameter space. A few more

samples was added to the interesting and non-interesting class,

respectively.

3.2 Phase 2: Semi-supervised learning to propagate

labels to unlabeled time series
Phase 1 results in the modeler gaining an initial understanding of the

model’s behavioral diversity, and in some few initial labeled param-

eter points representing this diversity. After simulating more data

and performing a new dimension reduction on the data, the work-

flow uses a semi-supervised learning algorithm to predict labels of

the unlabeled realizations. Here, we use label propagation in the

reduced dimensional space, which uses the properties of Gaussian

Random Fields and harmonic functions (Zhou et al., 2004). After

propagating the labels, every single parameter point in the current

state of the exploration will have an associated probability of

belonging to a label (Fig. 2B). Since label propagation uses the no-

tion that similar data points have similar labels, the modeler can use

this information to ‘guide the eye’ in an otherwise very cluttered

dataset, which can markedly reduce manual work. Further, the

modeler will be able to map out points with high label uncertainty

by directly observing the probability (green color in Fig. 2B).

Usually the highest uncertainty is at the boundary of two labels in

feature space or in the outliers. One way of measuring the uncer-

tainty or information gain associated with groups or individual real-

izations can for example be entropy-based or based on the

generalization error (Zhu et al., 2003a). By letting the modeler label

a few of the realization with the highest e.g. entropy, we will effi-

ciently gain more information about the preferred label distributions

and thus get a better semi-supervised model. This is commonly

referred as active learning. It is straightforward for the modeler to

also map the gained label propagation information to parameter

space. This can be used to fine tune the parameter sweep to particu-

lar ROIs. In our example, we were able to locate two trajectories of

particular interests (Fig. 2B ‹ and ›) which gave a high probability

of belonging to the interesting class. Observe that the modeler is

able to change their preferences at any time. This is one of the

advantages of using a transductive semi-supervised approach such as

label propagation. Once we found these two interesting trajectories,

our preference was changed to focus on this particular ROI

(Fig. 3A). Once the modeler have reached the point where she is

Fig. 2. (A) First phase of the smart model exploration workflow. After an initial, coarse parameter sampling, and after generating summary statistics using a min-

imal set of time series features, the simulation output (here represented in feature space of the Activator protein) is embedded into a lower dimensional represen-

tation using UMAP. This plot is then presented to the modeler as an interactive plot in a Jupyter Notebook and the modeler quickly inspects a few representative

samples in the data clusters. The modeler will be able to label samples according to their preferences. ‹ Non-interesting behavior with very low copy numbers.

› Bursty behavior and potentially interesting. fi Outliers. (B) More samples added to the parameter sweep (947 points in total), a few more points has been

labeled. Using label propagation gives predictions of unlabeled points. Yellow color of unlabeled points corresponds to a high probability of belonging to the

interesting class (y¼ 1). Two trajectories of particular interest were found (‹ and ›)
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satisfied with the current state of the system (i.e. she have found some

interesting trajectories and would like to find more of them) she can

‘freeze’ the current state, i.e. use the current dimension reduction

mapping and labels to project new parameter points onto the same

space and let the label propagation predict the outcome of these

points. If new points get a low probability of belonging to the interest-

ing class we will neglect them, thus the predictions from the label

propagation will act as filter to filter out non-interesting realizations.

To demonstrate this, we consciously sampled parameter points

known to result in robust oscillations with a period of 24 h and with

copy numbers ranging between 1200 and 1500 for the Activator pro-

tein. Figure 3B, show that all these parameter points become pro-

jected onto our ROI. Further, using a predictive probability threshold

of 0.5, the label propagation will classify all of them as interesting.

3.2 Phase 3: Zooming in on the ROIs to engineer

summary statistics
Phase 2 gave us a ROI which enables us to filter out non-interesting par-

ameter points from the sweep using the dimension reduction mapping

and a predictive threshold on the output from label propagation.

Obviously, the modeler would like to inspect all points that pass the fil-

ter, i.e. ‘zoom in on the ROI’. To do this we simply create a separate

projection using a DR method and explore the data (Fig. 3C). At this

point in the smart workflow, it becomes more difficult to separate dif-

ferent behaviors within the ROI using only the initial minimal set of

summary statistics. Ideally we could like to find new or additional sum-

mary statistics which can separate the robust oscillations from all other

points in the ROI. To do this, we simply use our knowledge about suit-

able summary statistics to capture the oscillating properties of a time

series, e.g. features based on autocorrelation or Fast Fourier Transform

(FFT). After some testing with different combinations of such summary

statistics we found three which fitted well (Fig. 4A), namely (i) absolute

sum of changes, (ii) mean aggregate of autocorrelation with various lags

and (iii) variance aggregate of an autocorrelation with the same lags

(see Supplementary Information). This process suggests that we can use

sequences of ROIs to ultimately find more of the interesting trajectories

and to engineer suitable summary statistics.

4 Discussion

Using features to measure similarity between simulations results in-

stead of the raw time series gives us several advantages. Mainly it

opens up the opportunity for the smart system to be highly general-

ized to different models and objectives. The simulator itself can be

regarded as a black-box and thus easily interchangeable. Further, it

enables a wide range of machine learning techniques to be applied in

the system, which do not have to be specialized for temporal data.

Secondly, using features associated with time series analysis can be

more informative and descriptive than raw time series and can fur-

ther be used as summary statistics in complementary analysis such

as likelihood-free parameter inference.

In this paper we exemplified the new tools on a model of a genet-

ic oscillator. We would like to point out that the methodology is

designed for generality, to be able to discern between different types

of new behavior. In the Supplementary Material, we give a comple-

mentary example where the workflow discerns between different

states in bistable systems, and in which a downstream classifier is

used to map out regions in parameter space giving rise to the discov-

ered behaviors.

The proposed smart workflow and its current state is the

first version towards a greater toolkit designed for model explor-

ation. The focus of this paper has been on the human-in-the-loop

interaction and semi-supervised learning. We have not considered

the mapping of qualitative behaviors to parameter space. In

future work we plan to implement adaptive sampling using

active learning to conduct robustness analyses of the interesting

regions.

Fig. 3. (A) The parameter sweep continues. Here a total of 1553 samples are being observed. Label propagation enables the modeler to change and add labels to

points as the sweep continues. Here, the focus and thus the preferences has been directed to the upper part of the data blob. A new label propagation is per-

formed yielding new probabilities of unknowns. (B) To simulate the process of a massive parameter sweep and the robustness of the current state of the system,

we sample parameter points associated with robust oscillations. These points become mapped directly to our ROI. To reduce the uncertainty in the prediction

model, the modeler can be queried to label points with high uncertainty using e.g. entropy based measures. (C) Zooming in on ROIs by neglecting points with

low probability of belonging to the interesting class. We observe some non-robust outliers in the ROI. This suggest that we need other features than the minimal

set to separate these from the robust oscillations

Fig. 4. (A) By using features related to measures of oscillating patterns (e.g.

autocorrelation) we are able to separate the outliers in the ROI. This can be

seen as a feature engineering for robust oscillations. Here we added ‘absolute

sum of changes’ feature and aggregates of autocorrelation features which

clearly contribute to the separation from outliers. (B) The complete sweep

dataset with newly found features to separate noise from robust oscillations.

Possible objective for classifiers, Monte Carlo estimation and likelihood-free

parameter inference
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One downside of our workflow is the computational burden of

computing features if they are many. However, for the purpose of

later large-scale downstream analysis of a model, a subset of features

can be used. Note that, in our example we used our knowledge to

test different summary statistics in a manual manner. However, in

cases where this is not possible we can use feature selection techni-

ques on a larger set of features which we have plan to add support

for in out toolkit. For example, the similarity matrix used in the

label propagation is computed by the pairwise distance using the ra-

dial basis function (RBF). A feature selection approach could be to

learn the weights (corresponding to the length-scale hyperparameter

per summary statistics) for an anisotropic RBF. An important note is

to be cautious of overfitting when using a large set of summary sta-

tistics and performing feature selection, since we want our predic-

tions to be generalized for new and unseen behaviors.

In this work we have used the Gillespy2 Python Package to simu-

late the gene regulatory models. It should be noted that the smart

workflow methodology is agnostic to the solver used – popular

packages such as PySB (Lopez et al., 2013), BioNetGen (Arora

et al., 2016) or COPASI (Lee et al., 2006) could be integrated easily.

The current state of the system support automatic features to be

generated via the TSFRESH package. However, in future releases

we want to use our own feature functions designed specifically for

different qualitative behaviors. The idea is that the modeler should

be able to preselect possible interesting behaviors, and features

should be chosen accordingly in an automatic fashion. In the same

manner it should filter out physically unrealistic realization based

on appropriate features or events.

Our future objective also involves to build inductive classifiers

which can predict newly generated realizations in a downstream

process for massive parameter sweeps. Here, the classifier would act

as filter which can structure the simulation results into qualitative

interesting behaviors (see Supplementary Information Toggle ex-

ample where we use the label propagation model as transductive

downstream classifier) and e.g. be used to save those realization into

prioritized storage. This classifier would then be easily interchange-

able between modelers and different models which contain similar

qualitative behaviors. As an example, using the engineered features

(Results: Phase 3) on the complete dataset we are clearly able to lin-

early separate interesting points from non-interesting in the reduced

dimensional space (Fig. 4B). This suggests that we can use a linear

classifier as a compact model for filtering out robust oscillations in

massive parameter sweeps. Moreover, a classifier like that could be

used for more sophisticated and automatic approaches for sampling

parameter points. By using sampling algorithms which utilizes both

exploration (e.g. space filling) and exploitation (i.e. ‘zooming’ in on

ROIs or classified as interesting by a classifier) we would greatly

reduce the effort needed to fine-tune parameter space searches. Such

algorithms are often based on sequential Monte Carlo techniques

(Bortolussi and Silvetti, 2018; Zamora-Sillero et al., 2011).

5 Conclusion

Using techniques from semi-supervised machine learning, we have

deviced a workflow for exploring high-dimensional stochastic mod-

els of gene regulatory networks (here conducted on a genetic oscilla-

tor) that greatly reduce time to go from an initial prototype model

to qualitative insights and predictions. Our human-in-the-loop ex-

ploration workflow effectively removes the need for hand-crafted

analysis scripts based on prior information or hypotheses. This

work has been conducted in the context of the StochSS project

(Drawert et al., 2016b). StochSS, or Stochastic Simulation Service, is

a cloud-native software as a service for constructing gene regulatory

network models and to scale their simulations in public or private

clouds (Drawert et al., 2016a). In future work we plan to use the

herein presented methodology to develop a Model Exploration

Toolkit (MET); intelligent cloud services with the objective of letting

users of StochSS rapidly input various versions of gene regulatory

models and semi-automatically exploring them for interesting be-

havior. By training ensembles of inductive classifiers for different

identified behaviors as outlined above, we have the opportunity to

further automate identification of interesting dynamics by letting

users share and deploy their classifiers. This vision outlines a collab-

orative modeling support systems that improves in the degree of

automation by incorporating the knowledge of the expert modelers

using it.

Funding

This work was supported by the Center for Interdisciplinary

Mathematics graduate school, the Göran Gustafsson foundation
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