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How to dissect the plasticity of antigen-specific immune response:  
a tissue perspective
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Summary

Generation of antigen-specific humoral responses following vaccination 
or infection requires the maturation and function of highly specialized 
immune cells in secondary lymphoid organs (SLO), such as lymph nodes 
or tonsils. Factors that orchestrate the dynamics of these cells are still 
poorly understood. Currently, experimental approaches that enable a de-
tailed description of the function of the immune system in SLO have been 
mainly developed and optimized in animal models. Conversely, methodo-
logical approaches in humans are mainly based on the use of blood- 
associated material because of the challenging access to tissues. Indeed, 
only few studies in humans were able to provide a discrete description of 
the complex network of cytokines, chemokines and lymphocytes acting in 
tissues after antigenic challenge. Furthermore, even fewer data are cur-
rently available on the interaction occurring within the complex micro-
architecture of the SLO. This information is crucial in order to design 
particular vaccination strategies, especially for patients affected by chronic 
and immune compromising medical conditions who are under-vaccinated 
or who respond poorly to immunizations. Analysis of immune cells in 
different human tissues by high-throughput technologies, able to obtain 
data ranging from gene signature to protein expression and cell phenotypes, 
is needed to dissect the peculiarity of each immune cell in a definite hu-
man tissue. The main aim of this review is to provide an in-depth descrip-
tion of the current available methodologies, proven evidence and future 
perspectives in the analysis of immune mechanisms following immunization 
or infections in SLO.

Keywords: computational immunology, cytometry, immune system, 
lymphocytes, microscopy, OMICs sciences

Introduction

The immune system is a complex biological system made 
of several factors, whose interplay in different body com-
partments such as blood and secondary lymphoid organs 
(SLO) is fundamental for the proper response against foreign 
antigens. This mechanism relies upon the interactions occur-
ring among an intricate network of cytokines, chemokines 
and lymphocytes acting in tissues. These inter-relationships 
lead to different types of immunological response, including 
generation of both antigen-specific antibodies and long-lived 
memory B cells able to respond to rechallenge [1].

Different samples, such as blood suspension and tissues 
from animal models, are essential to understand the 
immune system. These data can rarely be translated into 
human biology, for several reasons. For instance, inbred 
animals usually grow up in germ-free conditions and are 
infected by a specific pathogen to mimic natural exposure. 
Conversely, the genetic background and environmental 
exposures from the first hours of life make every human 
being unique and not readily reproducible by animal 
models [2]. Other major concerns include differences in 
the balance of leukocyte subsets, Toll-like receptors and 
cytokines [3]. Because access to SLO in humans is 
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difficult, many studies have been focused upon the inves-
tigation of circulating lymphocyte subsets [4], leaving 
unresolved questions about their micro-anatomical site of 
differentiation within tissues.

The introduction of multi-parametric flow cytometry 
in the early 2000s [5] allowed the simultaneous detection 
of several different cell subtypes. Nevertheless, cell–cell 
interactions can only be partially explained by cell sus-
pension analysis. The SLO and, in particular, lymph nodes 
(LNs) are key points in adaptive immunity and are essential 
for both the generation of protective immune response 
upon vaccination and the elimination of invading patho-
gens. Given the limited access to LNs, several investigators 
have focused their studies on understanding immune 
dynamics in tonsils. Despite the unique location of tonsils 
and the dominant presence of B cells compared to LNs, 
tonsillar lymphoid follicles share common features with 
LN follicles, such as the presence of a germinal center 
(GC) with distinct ‘dark’ and ‘light’ zones [6–9].

A better understanding of the biology of human immune 
system within tissues, where the actual immune responses 
take place, is mandatory to fill the gap of knowledge 
between animal and human models and to gain more 
insight into the basic immunology. Moreover, during recent 
years the ‘omics’ sciences are moving the field towards a 
personalized medicine strategy through the analysis of 
any biological event regulating genes, proteins and metabo-
lite physiology. The huge amount of information potentially 
generated poses the need for advanced bioinformatics able 
to harmonize the produced data tools in order to gain 
an informative and comprehensive overview of the human 
immune system. Here we will review most of the available 
laboratory technologies able to dissect the immune func-
tion at different complexity levels.

Dissecting technologies

In general, the currently available immunoassays/platforms 
can be divided into (i) label-free (i.e. deep seq, metabo-
lomics) and (ii) label-bound assays, where labeled probes 
[i.e. antibodies, messenger RNA (mRNA) probes] recognize 
specific protein/epitopes or amino acid sequences and can 
be revealed by different technologies, including light/
fluorescence-based techniques (i.e. confocal microscopy, 
enzyme-linked immunoassays), mass spectrometry (i.e. 
CytoF, imaging mass cytometry) and radioactive tracers. 
Besides the high throughput potential, label-free assays 
have the advantage to provide non-hypothesis-driven 
immunological insights leading to novel discoveries.

Phenotypical and functional characterization

Dissecting the complexity of immune reactions requires 
comprehensive analysis of the cellular populations mediat-
ing these interactions. To this end, the characterization 

of surface and intracellular molecules expressed by indi-
vidual cells is of special interest. Development in this 
field has led to the design of multi-parameter flow cytom-
etry, which represents a milestone in the immunology 
field [10]. Currently, the cells bound to antibodies can 
be detected by (i) immunofluorescence flow cytometry 
and (ii) mass spectrometry. Both platforms allow for the 
simultaneous quantitative analysis of several labels. 
Fluorescence-activated cell-sorting (FACS) permits the 
separation of cells with specific optical properties from 
the flow of the analyzed cells [11,12] and their use for 
downstream analysis (proteomics, genomics, ex-vivo cul-
ture) [13–15]. Besides labeled antibodies, flow cytometry 
assays employing fluorescent mRNA or DNA probes have 
been recently developed for the detection of cell popula-
tions expressing specific nucleotide sequences [16]. In 
addition to immunophenotyping, ex-vivo flow cytometry 
assays have been used extensively for the functional assess-
ment of relevant immune cell populations by detecting 
the de-novo generation of biological factors such as 
cytokines, chemokines and killing mediators (GrzB, FasL) 
[17,18]. Analysis of the phosphorylation levels of intracel-
lular proteins sheds further light on the signaling pathways 
operating in specific immune cells during the development 
of immune responses with respect to disease status [19]. 
As well as the relative frequency, the expression level of 
molecules per cell (judged by mean fluorescence intensity) 
can be also analyzed. In addition to bulk populations, 
in-depth immunophenotyping of T/B cells requires analysis 
of the development of antigen-specific cells following infec-
tion or vaccination. The complexity of lymphocyte subsets 
can be also monitored in terms of specificity. In the mid-
1990s the introduction of human leukocyte antigen (HLA) 
tetrameric complexes revolutionized the field, allowing the 
detection of virus specific T cells [20]. Additionally, probes 
specific for some viruses [i.e. cytomegalovirus (CMV)] or 
epitopes contained in vaccines (such as H1N1 in influenza 
vaccine) can be engineered to contain a fluorophore that 
can be monitored by flow cytometry in order to follow 
the development of antigen-specific B/T cells in blood 
and tissues [21–23]. Flow cytometry-based assays also 
allow the analysis of hematopoietic neoplasms cells and 
epithelial neoplasms tracking circulating tumor single cells 
and clusters [24,25], as well as different subsets of immune 
cells in the context of cancer [26]. The overlapping wave-
length spectra between fluorochromes limits the number 
of different labeled markers that could be used in an 
immunofluorescence flow cytometry assay. Recent develop-
ment of novel fluorochromes enables the use of extra 
lasers and the detection of up to 30  parameters [27,28].

In recent decades new approaches have been developed 
for the visualization and quantification of highly special-
ized cell subsets. Time-of-flight mass cytometry (CyTOF) 
is a relatively new technology that can potentially analyze 
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more than 100 different markers coupled with elemental 
metal isotopes, which can be detected and quantified by 
time-of-flight mass spectrometry with a minimal overlap 
between channels [29–33]. It should be noted that com-
pensation still remains an issue that researchers deal with 
when using such approaches [34]. Given the high number 
of markers currently available, CyTOF also permits a deep 
analysis of cell subsets in those settings where sample 
volume is limited, such as in pediatric populations [35]. 
Moreover, CyTOF represents a useful tool to monitor 
immune responses in tissues after immunotherapy in the 
cancer field [36]. Similarly to flow cytometry, metal iso-
topes can be bound to modified peptide-MHC tetramers 
specific for different viruses to monitor lymphocyte dif-
ferentiation upon vaccination or infection [37].

Both flow cytometry and CyTOF have been used for 
the analysis of cell suspension from peripheral blood 
[peripheral blood mononuclear cells (PBMC)] and tissues 
(i.e. gut, spleen or other SLO, lymphoid tissue mononuclear 
cells, LMCs) [9,36,38–40]. Within the tissue microenviron-
ment, immune cells are exposed to unique local signals 
mediated by their interaction with resident or recruited 
immune cells, stromal cells, extracellular matrix and, pre-
sumably, a unique cytokine/chemokine milieu. Furthermore, 
the magnitude and duration of stimulatory/inhibitory signals 
that the immune cells receive is highly dependent upon 
the local inflammation and tissue cellularity, and is pre-
sumably different between tissues from different anatomical 
sites. Therefore, it is reasonable to hypothesize that the 
phenotypical and molecular signature of tissue immune 
cells differs from the signature of their blood counterparts. 
Furthermore, ex-vivo studies using fluorescence activated 
cell sorting (FACS) can inform the potential efficiency of 
specific immune functions [41]. However, comparison 
between these two signatures could provide valuable infor-
mation regarding the differentiation process and plasticity 
of relevant immune cells and lead to novel circulating 
biomarkers for the monitoring of the disease progression, 
efficacy of vaccination and other immunotherapies.

Microscopy tools

In-depth molecular and functional/phenotypical charac-
terization of cell populations cannot provide information 
concerning the actual topographic organization of the 
players involved in the complex orchestration of the immune 
response (not only myeloid and lymphoid cells but also 
the soluble factors, cytokines and chemokines) and the 
influence of the intricate micro-architecture of SLO on 
this response. To this end, the use of microscopy-based 
methods is of great importance. The development of equip-
ment such as lasers and cameras, as well as the generation 
of novel labels, has led to the introduction of highly 
sophisticated microscopy tools allowing for the simultane-
ous detection of several molecules with high resolution. 

Wide-field microscopy represents a basic but still valuable 
technique where the light source hits simultaneously the 
whole specimen with obvious resolution limits. Laser scan-
ning confocal microscopy (LSCM) utilizes fluorochrome-
labeled antibodies for specific markers ([42]. Defined regions 
of interest are exposed to a laser light source, while only 
the light coming from the focal plane is collected. The 
use of several laser lines and ‘unmixing’ algorithms, for 
the correction/compensation of obtained signals, allows 
for the simultaneous volumetric (use of z-stacks) detection 
of multiple markers. Relevant platforms in combination 
with established antibodies or label-stripping protocols, 
that remove the specific staining from a tissue and make 
possible several subsequent stainings on the same slide, 
can be used for the detection of a large number of mol-
ecules in the same tissue section, with obvious advantages 
in terms of phenotype characterization and retention of 
precious tissues [43]. Although technically challenging, 
antigen-specific probes have been successfully used for the 
detection of antigen-specific CD8 T cells at tissue level 
[44], providing critical information on antigen specificity 
of tissue immune dynamics. Expanding the high volume 
imaging capacity, clearing-enhanced three-dimensional 
microscopy (Ce3D) represents, among others, a simple 
tissue-clearing technique which enables further analysis of 
the relationship between immune cells and tissue micro-
environments [45]. The recent development of fluorescent 
mRNA/DNA probes has revolutionized the in-situ detection 
of such molecules within tissues [46,47]. With regard to 
immunophenotyping, the CyTOF concept can be applied 
for the immunohistochemical characterization of frozen 
and formalin-fixed/paraffin-embedded tissues using anti-
bodies bound to metal isotopes [48,49]. Current technology 
does not allow for a volumetric analysis. To overcome 
this limitation, investigators have used an alternative strategy 
where sequential slides are imaged and the 3D image can 
be reconstructed by computational tools.

Although providing critical knowledge for the dynam-
ics of the immune system, analysis of tissue sections 
using conventional microscopy techniques does not pro-
vide real-time assessment of the tissue immune dynamics. 
Intravital two-photon laser scanning microscopy 
(TP-LSM) permits direct visualization of immune cells 
in a living animal, exposing the organ of interest (i.e. 
LN, gut, eye, skin, etc.). This approach has obvious 
advantages in detecting the dynamics and plasticity of 
the cells as they occur, highlighting the relationship 
between cells and the environment in which they reside 
and specialize [50–52]. The downside of intravital tech-
niques is that they cannot be performed on human 
subjects, for obvious reasons. In addition, in-vivo LSCM 
is a novel imaging technique that permits non-invasive, 
morphological characterization of skin structures in 
humans [53]. A more comprehensive analysis of 
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microscopy technologies is reviewed elsewhere [54]. 
Selecting an imaging platform depends upon the nature 
of the scientific question under investigation (i.e. require-
ment for resolution level and 3D representation). 
Furthermore, scanning time, automation of the process 
and the compatibility with other high-throughput assays 
are important factors to consider.

Single-cell technologies

As discussed above, the identification of cell–cell interaction 
in vivo, especially in humans, is still challenging, in par-
ticular in pediatric settings where blood samples are gener-
ally scarce in volume and tissues are not easily accessible 
to allow collection. Most of the above-mentioned method-
ologies have been used for analysis of bulk populations, 
and they are not fully optimized to detect rare subsets of 
cells such as antigen-specific cells. The uniqueness among 
immune cells in terms of phenotype, functionality and 
plasticity has advanced the field towards the development 
of single-cell technologies or lab-on-a-chip (LOC) able to 
dissect spatiotemporal dynamics of immune cells. 
Microfluidics-based approaches have been applied in a variety 
of research lines, including genomics [55] and proteomics 

[56], and have already provided important insights into 
the study of T cell signaling and migration [57–59] or NK 
cells [60]. Using a relevant platform, we recently reported 
the production of interleukin (IL)-21 by peripheral T fol-
licular helper cells (TfH) after in-vitro stimulation in HIV-
infected patients responding to influenza vaccination [61]. 
Considering the variety of data that could be collected 
from each single cell (DNA sequence, mRNA transcripts, 
proteins expression, etc.), it would be ideal to collect them 
all at once in a cost-effective manner moving the field 
towards an ‘integrated single-cell analysis’ [62]. Several 
methodologies have been recently implemented in order 
to perform single-cell RNA-Seq (scRNA-seq). The most 
currently used are massively parallel RNA single-cell sequenc-
ing (MARS-seq), Fluidigm C1 single-cell full-length mRNA 
sequencing (Fig. 1) and ×10 genomic chromium single-cell 
DNA sequencing. This last approach is able to perform a 
rapid droplet-based encapsulation of single cells using a 
gel bead in emulsion (GEM) approach. Each gel bead is 
labeled with a unique barcode for molecular identification 
of data acquired through RNA Seq [63–65]. Although this 
technique is extremely promising, it still needs to be vali-
dated in the context of rare antigen-specific cells.

Fig. 1. Tissue-specific cell subsets at low numbers (as small as 1 cell), stained for surface molecules and analyzed by flow cytometry can be sorted from 
multiple subsets according to biological interest into tubes previously coated with specific polymerase chain reaction (PCR) buffer. After RNA 
extraction and cDNA reverse transcription, novel microfluidics-based chip can be loaded with multiple assays and samples then mixed and analyzed 
for real time–PCR (RT–PCR). After data collection with specific r packages, the bioinformatics pipeline can be used to obtain multiple gene 
expression end-points (e.g. outliers, differentially expressed genes (DEGs), differentially induced genes (DIGs) and pathway analysis by gene set 
enrichment analysis (GSEA).
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Quantitative antibodies assay

As previously stated, soluble markers such as chemokines 
and cytokines interact with different cell types in the 
context of the complex tissue microanatomy for the 
proper functionality of the immune system. One of the 
most dated assays, although still valuable, is represented 
by the immunoblot and enzyme-linked immunosorbent 
assay (ELISA). A possible application in SLO of such 
an assay could be the measurement of chemokines and 
cytokines with a critical role for GC function after vac-
cination. We recently demonstrated that, among the 
circulating cytokines/chemokines, the increase of 
CXCL13 after flu immunization is significantly correlated 
with the frequency of tonsillar TfH cells [9]. Modern 
ELISA assays have been implemented to perform at 
high-throughput levels, analyzing up to 100 cytokines 
per single assay [66] (Luminex technology). Despite the 
large use of these quantitative assays, concerns have 
been raised about measuring antibody production as 
the sole method for evaluating response to vaccines in 
particular populations such as immunocompromised 
patients [67–70]. Indeed, in these populations the achieve-
ment of a protective titer does not always correlate with 

a true protection of infection [71]). Evaluation of anti-
body-secreting cells (ASCs) at tissue level provides accu-
rate information concerning the presence of memory 
response. Indeed, several factors may affect the levels 
of detected serum antibodies, such as the history of 
yearly vaccination (i.e. influenza), as well as the skewed 
immunity (in terms of immune activation/senescence) 
described in some groups of immunocompromised 
patients [72]. From this perspective, several studies have 
been conducted to search for additional and more 
informative correlates of vaccination [73,74]. The enzyme-
linked immunospot (ELISPOT), and more recently the 
FluoroSpot assays, are some of the methods to investigate 
specific cell function (Fig. 2). Vaccine-specific ASC has 
been detected by ELISPOT in SLO 1  week after vac-
cination in humans [9]. In order to detect multiple 
cytokine production from the same cell, fluorescent 
ELISPOT assays have been introduced in the field of 
vaccine research, as simultaneous production of multiple 
cytokines have been correlated with vaccine efficacy.

All these assays, although informative, reflect a partial 
view of the complex cell interaction and need to be con-
firmed in vivo, where the microenvironment is much more 
intricate.

Fig. 2. Enzyme-linked immunospot (ELISPOT) and FluoroSpot assays can be used for the quantification of antibody-secreting cells (ASCs) present in 
the tissue-derived cells. Antigen-specific responses are examined by wells coated with specific antigens at a definite dilution. ELISPOT allows the 
quantification of ASCs at the single-cell level through a chromogenic detection, while FluoroSpot employs fluorescence detection allowing the 
quantification of immunoglobulin (Ig)G and IgM or IgA simultaneously. These assays can also be applied to the identification of specific cytokine-
secreting T cells.
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Computational data analysis

The performance of high-throughput assays leads to gen-
eration of high-volume data that need sophisticated com-
putational, mathematical tools for their robust analysis.

This is an absolute requirement when deep sequencing 
data are under investigation. Although the volume of 
produced data is smaller, the analysis of generated by 
multi-parametric flow cytometry or CytoF or multiplexed 
imaging platforms requires the development and applica-
tion of advanced computational tools/algorithms. A recent 
example is the development of a method allowing for the 
conversion of imaging data to flow cytometry type of 
data (histocytometry) [75] and their further analysis using 
powerful programs such as FlowJo (Fig. 3). This method 
has found great applicability in numerous research fields 
[45,46]. Using a multi-parametric approach combining 
flow cytometry, confocal microscopy and histocytometry, 
we recently showed for the first time immune mechanisms 
in the SLO underlying seasonal influenza vaccine response 
in tonsils isolated from vaccinated children. A significantly 
higher frequency of follicular helper CD4 T cells was 
found compared with the unvaccinated control group [9]. 
More recently, a similar approach was used to highlight 
the dynamics of follicular cells in HIV-infected individuals 
following influenza vaccination [76]. Such tools allow for 
the quantitative analysis of multiplexed imaging data and 
their further process with modeling/statistical algorithms. 
Further development of this type of analysis (i.e. improv-
ing the time of data acquisition, data analysis, automation 
of the process) [77] is a critical factor for their wide 
application. During the past few decades, ‘systems biology’ 
has been applied to vaccine research in an attempt to 
define molecular mechanisms orchestrating the immune 
response upon immunization or infections [78,79]. These 
high-throughput approaches are now able to dissect every 
step involved in the process that lead genes (genomic), 
through gene expression (transcriptomic), to the produc-
tion of proteins (proteomic) and their metabolism (metabo-
lomic). The generation of high-size, high-complexity data 
using several platforms raises the need for computational 
tools allowing for a holistic approach, where ‘merging’ 
data from different technologies can lead to deconvolution 
of immune responses to pathogens and immunogens with 
high resolution.

Understanding follicular immune dynamics

In the field of vaccinology and in infectious diseases in 
general, systems biology approaches have been employed 
to study the peripheral blood because of its easy acces-
sibility and known correlates of vaccine response and 
protection. Although these peripheral correlates provide 
an interesting and highly reproducible opportunity to study 
immune responses following infections, they can only 

provide a description of the peripheral surrogates of the 
immune response development, which truly takes place 
in SLO. Indeed, following the antigen uptake by either 
antigen-presenting cells or B cells in the periphery, the 
maturation of B cells takes place within the GCs through 
somatic hypermutation and class-switch recombination; 
these pathways have only been partially explored by OMICs 
approaches. TfH cells are essential for the GC response. 
In recent years standard methods have dissected phenotype 
characteristics, transcriptional regulation and localization 
or migratory properties. In 2009, several studies reported 
how BCL6 intrinsic expression is crucial for TfH cell 
development and GC formation [80]. In this context, the 
high-dimensional OMIC approaches have led to important 
discoveries. A combined micro-RNA study and gene expres-
sion analysis recently defined that BCL6 is silenced in its 
helper function for T cell maturation within the SLO by 
miR-31 [81]. Global transcriptome analysis further revealed 
specific targets of the silencing action of miR-31, thus 
showing crucial genes in the TfH activation (i.e. CXCR5, 
SAP, BTLA and CD28). A similar approach in the B cell 
counterpart was explored by McHeyzer-Williams et al., 
who defined molecular programming driving the matura-
tion of single B GC cells after vaccination booster [82]. 
A two-gene signature (CD83 and PolH) was able to dis-
criminate the maturation phases which antigen-specific  
B cells undergo within light and dark zones of the GC. 
This process can be triggered by an effective vaccination 
or booster and is able to induce high-affinity memory  
B cells and durable antibody responses through a progres-
sive rediversification of B cell receptors (BCRs) and natural 
selection of the BCRs. Transcriptional characteristics in 
the peripheral memory B cells [83,84], as well as BCR 
sequences of memory B GC cells analyzed by large-scale 
OMIC approaches, may serve as crucial prediction tools 
of vaccination efficacy and safety. However, this mechanism 
is not T cell-independent, as TfH play an integral role 
in B cell differentiation and affinity maturation [85]. An 
innovative OMICs approach, combining high-dimensional 
mass cytometry with T cell receptor (TCR) repertoire 
sequencing, was recently used to interrogate the composi-
tion of gag-specific TfH cells in primary human SLO in 
HIV-infected patients ([86]. These data, confirming evi-
dence produced in the peripheral blood, revealed that 
during HIV infection TfH cells remain capable of respond-
ing to HIV antigen, but are oligoclonally restricted despite 
persistent antigen stimulation, leading in turn to suboptimal 
B cell distribution and function. Another crucial point 
to stress is that most of these studies have been conducted 
on antigen-specific cells rather than total subsets. This 
was mainly performed to overcome the heterogeneity 
problem found in cells of LMCs or PBMCs in order to 
gain high-dimensional information from antigen-specific 
cells involved in the maturation process within the SLO. 
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Fig. 3. Specifically for lymph node (LN) immunology, multiplexed imaging allows for the evaluation of the heterogeneity within specific cell 
compartments [i.e. T follicular helper cells (Tfh) based on the expression of other markers-CD57], the presence of potential suppressor CD4 T cells 
[forkhead box protein 3 (FoxP3+)] as well as the specific positioning of particular subset with respect to GC areas – dark zone versus light zone). The 
lower panels show the gating strategy that can be applied according to the markers used for the confocal image.
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Taken together, OMICs approaches, dissecting high-dimen-
sional molecular data within tissues and PBMCs, currently 
also represent essential tools for the proper characterization 
of cancer subtypes and pathways involved [87,88].

Discussion

The complex microenvironment regulating the immune 
system is able to drive the maturation and differentiation 
of the immune cells through close cell–cell interactions. 
Thus, we need a comprehensive approach able to elucidate 
the intrinsic mechanisms leading to the proper generation 
of the immune response after antigen exposure.

Most studies focus their attention upon animal models 
where different types of samples are easily accessible; also, 
when performed in humans, the majority of these studies 
utilize blood samples for practical and ethical reasons. 
Both approaches present serious limitations. Animal experi-
ments are carried out on subjects living in captivity and 
usually in germ-free conditions, and thus with limited 
exposure to the influence of the environment (i.e. infec-
tions and vaccination); moreover, animal models do not 
reproduce the genetic inter- and intra-individual variability 
among human populations. Of note, human studies using 

PBMCs analyze the immune response in the periphery, 
and this response is simply a blurred image of what has 
already happened, or is happening, in different tissues. 
Cell suspension analysis obtained from tissues can help, 
but without spatial and topographic data we risk missing 
some important pieces of the puzzle. Despite the huge 
contribution given to the field by the immunophenotyping 
technologies, these data alone are not sufficient to fully 
understand the great complexity of the immune system. 
Conversely, the microscopy technologies available and 
applicable to human samples are limited by the visualiza-
tion of a steady state, which is far from the reality of an 
immune system in constant permutation.

Considering that the number of tools at our disposal 
is still increasing, the challenge resides in how to analyze, 
not in how to collect, data. Given the extraordinary quantity 
of data gathered from each experiment and the different 
ways in which we could respond to a biological question, 
we are facing the necessity of generating new approaches 
to decipher the complex immune system function and 
development. It is therefore mandatory to harmonize the 
tools currently available to answer the unresolved questions 
in the field of immunology. To do so, now more than 
ever, scientists from different fields  –  mathematics, 

Fig. 4. The illustration summarizes the most available technique at our disposal to study the immune system, highlighting the main advantages and 
limitations. These tools should be managed under the umbrella of the systems immunology. The lymph node at the center is to strengthen the 
necessity of performing studies on tissues. The lymph node image is taken and adapted from Servier Medical Art at: http://smart.servi er.com/.

http://smart.servier.com/.
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bioinformatics, statistics, biology – must collaborate to build 
computational methods for more comprehensive and inte-
grative data analysis. This is the purpose of systems biology 
[89,90] (Fig. 4). Systems approaches, merging analytical, 
informatic and computational skills, can be used to char-
acterize the status of the immune system and to predict 
its plasticity in response to different stimuli (infection, 
vaccination, cancer) in a uniform and reliable manner 
[90–92]. Some groups are currently focusing their efforts 
on the generation of computational infrastructures and 
tools for immunology analyses. For example, the National 
Institute of Allergy and Infectious Diseases (NIAID) of 
the US National Institutes of Health (NIH) created the 
Human Immunology Project Consortium to build large 
data sets on human subjects under different conditions 
(HIPC; http://www.human profi ling.org).

In addition, the complexity of the immune response 
and the different ways we can dissect it within modern 
immunology give rise to the necessity for scientists 
worldwide to share their knowledge using a more stand-
ardized approach. This is the only way to truly advance 
our understanding of immunity. Only with an in-depth 
understanding of the immune system we can fuel the 
proper development of personalized medicine predicting 
the usefulness of a therapeutic intervention in a given 
patient.

Conclusion

In conclusion, most human studies are performed on 
blood for practical reasons, and most data derive from 
ex-vivo experiments. Of note, it must be kept in mind 
that the trustworthiness of data coming from such ex-
vivo approaches needs to be confirmed in vivo, where 
the microenvironment is much more intricate. Human 
tissues samples are difficult to obtain, especially during 
wellbeing and in particular populations, such as pediatric 
populations. As pediatricians, our group is trying to 
validate tonsils as valuable SLO in children that can be 
used to investigate the intricate dynamics leading to 
the generation of an immune response. Considering that 
tonsils are routinely surgically removed, the use of these 
tissues could allow the performance of high-standard 
immunological studies in those populations who have 
particular biological characteristics, but this is still poorly 
evaluated. Moreover, tissue samples are removed daily 
for various reasons, such as colon sections from new-
borns affected by necrotizing enterocolitis, gut biopsies 
during inflammatory bowel diseases evaluation, thymus 
following major cardiac surgery, spleen (post-traumatic 
or in certain hematological conditions) and lymph nodes 
for diagnostic purposes, etc. In these selected situations, 
the problem does not reside in the availability of such 
tissues but on the laboratories’ skills and the presence 

of personnel dedicated to such analysis. However, in 
other conditions (i.e. the study of HIV reservoirs in 
humans or the T/B cell interaction following immuniza-
tion) the possibility of gaining access to tissues still 
remains challenging. Finally, high-throughput data sets 
are generating more data than we are able to analyze. 
Systems immunology probably represents the key to 
elucidate how the actors of the immune response interact 
between them and in the microenvironment. The biol-
ogy community in general, and the immunology com-
munity in particular, should apply itself to using 
standardized protocols and to share their knowledge. 
The time is ripe for a major leap forward.
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