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Introduction

Summary

Generation of antigen-specific humoral responses following vaccination
or infection requires the maturation and function of highly specialized
immune cells in secondary lymphoid organs (SLO), such as lymph nodes
or tonsils. Factors that orchestrate the dynamics of these cells are still
poorly understood. Currently, experimental approaches that enable a de-
tailed description of the function of the immune system in SLO have been
mainly developed and optimized in animal models. Conversely, methodo-
logical approaches in humans are mainly based on the use of blood-
associated material because of the challenging access to tissues. Indeed,
only few studies in humans were able to provide a discrete description of
the complex network of cytokines, chemokines and lymphocytes acting in
tissues after antigenic challenge. Furthermore, even fewer data are cur-
rently available on the interaction occurring within the complex micro-
architecture of the SLO. This information is crucial in order to design
particular vaccination strategies, especially for patients affected by chronic
and immune compromising medical conditions who are under-vaccinated
or who respond poorly to immunizations. Analysis of immune cells in
different human tissues by high-throughput technologies, able to obtain
data ranging from gene signature to protein expression and cell phenotypes,
is needed to dissect the peculiarity of each immune cell in a definite hu-
man tissue. The main aim of this review is to provide an in-depth descrip-
tion of the current available methodologies, proven evidence and future
perspectives in the analysis of immune mechanisms following immunization
or infections in SLO.

Keywords: computational immunology, cytometry, immune system,
lymphocytes, microscopy, OMICs sciences

Different samples, such as blood suspension and tissues
from animal models, are essential to understand the

The immune system is a complex biological system made
of several factors, whose interplay in different body com-
partments such as blood and secondary lymphoid organs
(SLO) is fundamental for the proper response against foreign
antigens. This mechanism relies upon the interactions occur-
ring among an intricate network of cytokines, chemokines
and lymphocytes acting in tissues. These inter-relationships
lead to different types of immunological response, including
generation of both antigen-specific antibodies and long-lived
memory B cells able to respond to rechallenge [1].

immune system. These data can rarely be translated into
human biology, for several reasons. For instance, inbred
animals usually grow up in germ-free conditions and are
infected by a specific pathogen to mimic natural exposure.
Conversely, the genetic background and environmental
exposures from the first hours of life make every human
being unique and not readily reproducible by animal
models [2]. Other major concerns include differences in
the balance of leukocyte subsets, Toll-like receptors and
cytokines [3]. Because access to SLO in humans is
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difficult, many studies have been focused upon the inves-
tigation of circulating lymphocyte subsets [4], leaving
unresolved questions about their micro-anatomical site of
differentiation within tissues.

The introduction of multi-parametric flow cytometry
in the early 2000s [5] allowed the simultaneous detection
of several different cell subtypes. Nevertheless, cell-cell
interactions can only be partially explained by cell sus-
pension analysis. The SLO and, in particular, lymph nodes
(LNs) are key points in adaptive immunity and are essential
for both the generation of protective immune response
upon vaccination and the elimination of invading patho-
gens. Given the limited access to LNs, several investigators
have focused their studies on understanding immune
dynamics in tonsils. Despite the unique location of tonsils
and the dominant presence of B cells compared to LN,
tonsillar lymphoid follicles share common features with
LN follicles, such as the presence of a germinal center
(GC) with distinct ‘dark’ and ‘light’ zones [6-9].

A better understanding of the biology of human immune
system within tissues, where the actual immune responses
take place, is mandatory to fill the gap of knowledge
between animal and human models and to gain more
insight into the basic immunology. Moreover, during recent
years the ‘omics’ sciences are moving the field towards a
personalized medicine strategy through the analysis of
any biological event regulating genes, proteins and metabo-
lite physiology. The huge amount of information potentially
generated poses the need for advanced bioinformatics able
to harmonize the produced data tools in order to gain
an informative and comprehensive overview of the human
immune system. Here we will review most of the available
laboratory technologies able to dissect the immune func-
tion at different complexity levels.

Dissecting technologies

In general, the currently available immunoassays/platforms
can be divided into (i) label-free (i.e. deep seq, metabo-
lomics) and (ii) label-bound assays, where labeled probes
[i.e. antibodies, messenger RNA (mRNA) probes] recognize
specific protein/epitopes or amino acid sequences and can
be revealed by different technologies, including light/
fluorescence-based techniques (i.e. confocal microscopy,
enzyme-linked immunoassays), mass spectrometry (i.e.
CytoF, imaging mass cytometry) and radioactive tracers.
Besides the high throughput potential, label-free assays
have the advantage to provide non-hypothesis-driven
immunological insights leading to novel discoveries.

Phenotypical and functional characterization

Dissecting the complexity of immune reactions requires
comprehensive analysis of the cellular populations mediat-
ing these interactions. To this end, the characterization

of surface and intracellular molecules expressed by indi-
vidual cells is of special interest. Development in this
field has led to the design of multi-parameter flow cytom-
etry, which represents a milestone in the immunology
field [10]. Currently, the cells bound to antibodies can
be detected by (i) immunofluorescence flow cytometry
and (ii) mass spectrometry. Both platforms allow for the
simultaneous quantitative analysis of several labels.
Fluorescence-activated cell-sorting (FACS) permits the
separation of cells with specific optical properties from
the flow of the analyzed cells [11,12] and their use for
downstream analysis (proteomics, genomics, ex-vivo cul-
ture) [13-15]. Besides labeled antibodies, flow cytometry
assays employing fluorescent mRNA or DNA probes have
been recently developed for the detection of cell popula-
tions expressing specific nucleotide sequences [16]. In
addition to immunophenotyping, ex-vivo flow cytometry
assays have been used extensively for the functional assess-
ment of relevant immune cell populations by detecting
the de-novo generation of biological factors such as
cytokines, chemokines and killing mediators (GrzB, FasL)
[17,18]. Analysis of the phosphorylation levels of intracel-
lular proteins sheds further light on the signaling pathways
operating in specific immune cells during the development
of immune responses with respect to disease status [19].
As well as the relative frequency, the expression level of
molecules per cell (judged by mean fluorescence intensity)
can be also analyzed. In addition to bulk populations,
in-depth immunophenotyping of T/B cells requires analysis
of the development of antigen-specific cells following infec-
tion or vaccination. The complexity of lymphocyte subsets
can be also monitored in terms of specificity. In the mid-
1990s the introduction of human leukocyte antigen (HLA)
tetrameric complexes revolutionized the field, allowing the
detection of virus specific T cells [20]. Additionally, probes
specific for some viruses [i.e. cytomegalovirus (CMV)] or
epitopes contained in vaccines (such as HIN1 in influenza
vaccine) can be engineered to contain a fluorophore that
can be monitored by flow cytometry in order to follow
the development of antigen-specific B/T cells in blood
and tissues [21-23]. Flow cytometry-based assays also
allow the analysis of hematopoietic neoplasms cells and
epithelial neoplasms tracking circulating tumor single cells
and clusters [24,25], as well as different subsets of immune
cells in the context of cancer [26]. The overlapping wave-
length spectra between fluorochromes limits the number
of different labeled markers that could be used in an
immunofluorescence flow cytometry assay. Recent develop-
ment of novel fluorochromes enables the use of extra
lasers and the detection of up to 30 parameters [27,28].

In recent decades new approaches have been developed
for the visualization and quantification of highly special-
ized cell subsets. Time-of-flight mass cytometry (CyTOF)
is a relatively new technology that can potentially analyze
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more than 100 different markers coupled with elemental
metal isotopes, which can be detected and quantified by
time-of-flight mass spectrometry with a minimal overlap
between channels [29-33]. Tt should be noted that com-
pensation still remains an issue that researchers deal with
when using such approaches [34]. Given the high number
of markers currently available, CyTOF also permits a deep
analysis of cell subsets in those settings where sample
volume is limited, such as in pediatric populations [35].
Moreover, CyTOF represents a useful tool to monitor
immune responses in tissues after immunotherapy in the
cancer field [36]. Similarly to flow cytometry, metal iso-
topes can be bound to modified peptide-MHC tetramers
specific for different viruses to monitor lymphocyte dif-
ferentiation upon vaccination or infection [37].

Both flow cytometry and CyTOF have been used for
the analysis of cell suspension from peripheral blood
[peripheral blood mononuclear cells (PBMC)] and tissues
(i.e. gut, spleen or other SLO, lymphoid tissue mononuclear
cells, LMCs) [9,36,38-40]. Within the tissue microenviron-
ment, immune cells are exposed to unique local signals
mediated by their interaction with resident or recruited
immune cells, stromal cells, extracellular matrix and, pre-
sumably, a unique cytokine/chemokine milieu. Furthermore,
the magnitude and duration of stimulatory/inhibitory signals
that the immune cells receive is highly dependent upon
the local inflammation and tissue cellularity, and is pre-
sumably different between tissues from different anatomical
sites. Therefore, it is reasonable to hypothesize that the
phenotypical and molecular signature of tissue immune
cells differs from the signature of their blood counterparts.
Furthermore, ex-vivo studies using fluorescence activated
cell sorting (FACS) can inform the potential efficiency of
specific immune functions [41]. However, comparison
between these two signatures could provide valuable infor-
mation regarding the differentiation process and plasticity
of relevant immune cells and lead to novel circulating
biomarkers for the monitoring of the disease progression,
efficacy of vaccination and other immunotherapies.

Microscopy tools

In-depth molecular and functional/phenotypical charac-
terization of cell populations cannot provide information
concerning the actual topographic organization of the
players involved in the complex orchestration of the immune
response (not only myeloid and lymphoid cells but also
the soluble factors, cytokines and chemokines) and the
influence of the intricate micro-architecture of SLO on
this response. To this end, the use of microscopy-based
methods is of great importance. The development of equip-
ment such as lasers and cameras, as well as the generation
of novel labels, has led to the introduction of highly
sophisticated microscopy tools allowing for the simultane-
ous detection of several molecules with high resolution.

How to dissect the plasticity of antigen-specific immune response

Wide-field microscopy represents a basic but still valuable
technique where the light source hits simultaneously the
whole specimen with obvious resolution limits. Laser scan-
ning confocal microscopy (LSCM) utilizes fluorochrome-
labeled antibodies for specific markers ([42]. Defined regions
of interest are exposed to a laser light source, while only
the light coming from the focal plane is collected. The
use of several laser lines and ‘unmixing’ algorithms, for
the correction/compensation of obtained signals, allows
for the simultaneous volumetric (use of z-stacks) detection
of multiple markers. Relevant platforms in combination
with established antibodies or label-stripping protocols,
that remove the specific staining from a tissue and make
possible several subsequent stainings on the same slide,
can be used for the detection of a large number of mol-
ecules in the same tissue section, with obvious advantages
in terms of phenotype characterization and retention of
precious tissues [43]. Although technically challenging,
antigen-specific probes have been successfully used for the
detection of antigen-specific CD8 T cells at tissue level
[44], providing critical information on antigen specificity
of tissue immune dynamics. Expanding the high volume
imaging capacity, clearing-enhanced three-dimensional
microscopy (Ce3D) represents, among others, a simple
tissue-clearing technique which enables further analysis of
the relationship between immune cells and tissue micro-
environments [45]. The recent development of fluorescent
mRNA/DNA probes has revolutionized the in-situ detection
of such molecules within tissues [46,47]. With regard to
immunophenotyping, the CyTOF concept can be applied
for the immunohistochemical characterization of frozen
and formalin-fixed/paraffin-embedded tissues using anti-
bodies bound to metal isotopes [48,49]. Current technology
does not allow for a volumetric analysis. To overcome
this limitation, investigators have used an alternative strategy
where sequential slides are imaged and the 3D image can
be reconstructed by computational tools.

Although providing critical knowledge for the dynam-
ics of the immune system, analysis of tissue sections
using conventional microscopy techniques does not pro-
vide real-time assessment of the tissue immune dynamics.
Intravital two-photon laser scanning microscopy
(TP-LSM) permits direct visualization of immune cells
in a living animal, exposing the organ of interest (i.e.
LN, gut, eye, skin, etc.). This approach has obvious
advantages in detecting the dynamics and plasticity of
the cells as they occur, highlighting the relationship
between cells and the environment in which they reside
and specialize [50-52]. The downside of intravital tech-
niques is that they cannot be performed on human
subjects, for obvious reasons. In addition, in-vivo LSCM
is a novel imaging technique that permits non-invasive,
morphological characterization of skin structures in
humans [53]. A more comprehensive analysis of
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microscopy technologies is reviewed elsewhere [54].
Selecting an imaging platform depends upon the nature
of the scientific question under investigation (i.e. require-
ment for resolution level and 3D representation).
Furthermore, scanning time, automation of the process
and the compatibility with other high-throughput assays
are important factors to consider.

Single-cell technologies

As discussed above, the identification of cell-cell interaction
in vivo, especially in humans, is still challenging, in par-
ticular in pediatric settings where blood samples are gener-
ally scarce in volume and tissues are not easily accessible
to allow collection. Most of the above-mentioned method-
ologies have been used for analysis of bulk populations,
and they are not fully optimized to detect rare subsets of
cells such as antigen-specific cells. The uniqueness among
immune cells in terms of phenotype, functionality and
plasticity has advanced the field towards the development
of single-cell technologies or lab-on-a-chip (LOC) able to
dissect spatiotemporal ~dynamics of immune cells.
Microfluidics-based approaches have been applied in a variety
of research lines, including genomics [55] and proteomics
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[56], and have already provided important insights into
the study of T cell signaling and migration [57-59] or NK
cells [60]. Using a relevant platform, we recently reported
the production of interleukin (IL)-21 by peripheral T fol-
licular helper cells (TfH) after in-vitro stimulation in HIV-
infected patients responding to influenza vaccination [61].
Considering the variety of data that could be collected
from each single cell (DNA sequence, mRNA transcripts,
proteins expression, etc.), it would be ideal to collect them
all at once in a cost-effective manner moving the field
towards an ‘integrated single-cell analysis’ [62]. Several
methodologies have been recently implemented in order
to perform single-cell RNA-Seq (scRNA-seq). The most
currently used are massively parallel RNA single-cell sequenc-
ing (MARS-seq), Fluidigm C1 single-cell full-length mRNA
sequencing (Fig. 1) and x10 genomic chromium single-cell
DNA sequencing. This last approach is able to perform a
rapid droplet-based encapsulation of single cells using a
gel bead in emulsion (GEM) approach. Each gel bead is
labeled with a unique barcode for molecular identification
of data acquired through RNA Seq [63-65]. Although this
technique is extremely promising, it still needs to be vali-
dated in the context of rare antigen-specific cells.
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Fig. 1. Tissue-specific cell subsets at low numbers (as small as 1 cell), stained for surface molecules and analyzed by flow cytometry can be sorted from

multiple subsets according to biological interest into tubes previously coated with specific polymerase chain reaction (PCR) buffer. After RNA

extraction and cDNA reverse transcription, novel microfluidics-based chip can be loaded with multiple assays and samples then mixed and analyzed
for real time-PCR (RT-PCR). After data collection with specific R packages, the bioinformatics pipeline can be used to obtain multiple gene

expression end-points (e.g. outliers, differentially expressed genes (DEGs), differentially induced genes (DIGs) and pathway analysis by gene set

enrichment analysis (GSEA).
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Quantitative antibodies assay

As previously stated, soluble markers such as chemokines
and cytokines interact with different cell types in the
context of the complex tissue microanatomy for the
proper functionality of the immune system. One of the
most dated assays, although still valuable, is represented
by the immunoblot and enzyme-linked immunosorbent
assay (ELISA). A possible application in SLO of such
an assay could be the measurement of chemokines and
cytokines with a critical role for GC function after vac-
cination. We recently demonstrated that, among the
circulating  cytokines/chemokines, the increase of
CXCL13 after flu immunization is significantly correlated
with the frequency of tonsillar TfH cells [9]. Modern
ELISA assays have been implemented to perform at
high-throughput levels, analyzing up to 100 cytokines
per single assay [66] (Luminex technology). Despite the
large use of these quantitative assays, concerns have
been raised about measuring antibody production as
the sole method for evaluating response to vaccines in
particular populations such as immunocompromised
patients [67-70]. Indeed, in these populations the achieve-
ment of a protective titer does not always correlate with
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a true protection of infection [71]). Evaluation of anti-
body-secreting cells (ASCs) at tissue level provides accu-
rate information concerning the presence of memory
response. Indeed, several factors may affect the levels
of detected serum antibodies, such as the history of
yearly vaccination (i.e. influenza), as well as the skewed
immunity (in terms of immune activation/senescence)
described in some groups of immunocompromised
patients [72]. From this perspective, several studies have
been conducted to search for additional and more
informative correlates of vaccination [73,74]. The enzyme-
linked immunospot (ELISPOT), and more recently the
FluoroSpot assays, are some of the methods to investigate
specific cell function (Fig. 2). Vaccine-specific ASC has
been detected by ELISPOT in SLO 1 week after vac-
cination in humans [9]. In order to detect multiple
cytokine production from the same cell, fluorescent
ELISPOT assays have been introduced in the field of
vaccine research, as simultaneous production of multiple
cytokines have been correlated with vaccine efficacy.

All these assays, although informative, reflect a partial
view of the complex cell interaction and need to be con-
firmed in vivo, where the microenvironment is much more
intricate.
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Fig. 2. Enzyme-linked immunospot (ELISPOT) and FluoroSpot assays can be used for the quantification of antibody-secreting cells (ASCs) present in

the tissue-derived cells. Antigen-specific responses are examined by wells coated with specific antigens at a definite dilution. ELISPOT allows the
quantification of ASCs at the single-cell level through a chromogenic detection, while FluoroSpot employs fluorescence detection allowing the
quantification of immunoglobulin (Ig)G and IgM or IgA simultaneously. These assays can also be applied to the identification of specific cytokine-

secreting T cells.
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Computational data analysis

The performance of high-throughput assays leads to gen-
eration of high-volume data that need sophisticated com-
putational, mathematical tools for their robust analysis.

This is an absolute requirement when deep sequencing
data are under investigation. Although the volume of
produced data is smaller, the analysis of generated by
multi-parametric flow cytometry or CytoF or multiplexed
imaging platforms requires the development and applica-
tion of advanced computational tools/algorithms. A recent
example is the development of a method allowing for the
conversion of imaging data to flow cytometry type of
data (histocytometry) [75] and their further analysis using
powerful programs such as FlowJo (Fig. 3). This method
has found great applicability in numerous research fields
[45,46]. Using a multi-parametric approach combining
flow cytometry, confocal microscopy and histocytometry,
we recently showed for the first time immune mechanisms
in the SLO underlying seasonal influenza vaccine response
in tonsils isolated from vaccinated children. A significantly
higher frequency of follicular helper CD4 T cells was
found compared with the unvaccinated control group [9].
More recently, a similar approach was used to highlight
the dynamics of follicular cells in HIV-infected individuals
following influenza vaccination [76]. Such tools allow for
the quantitative analysis of multiplexed imaging data and
their further process with modeling/statistical algorithms.
Further development of this type of analysis (i.e. improv-
ing the time of data acquisition, data analysis, automation
of the process) [77] is a critical factor for their wide
application. During the past few decades, ‘systems biology’
has been applied to vaccine research in an attempt to
define molecular mechanisms orchestrating the immune
response upon immunization or infections [78,79]. These
high-throughput approaches are now able to dissect every
step involved in the process that lead genes (genomic),
through gene expression (transcriptomic), to the produc-
tion of proteins (proteomic) and their metabolism (metabo-
lomic). The generation of high-size, high-complexity data
using several platforms raises the need for computational
tools allowing for a holistic approach, where ‘merging’
data from different technologies can lead to deconvolution
of immune responses to pathogens and immunogens with
high resolution.

Understanding follicular immune dynamics

In the field of vaccinology and in infectious diseases in
general, systems biology approaches have been employed
to study the peripheral blood because of its easy acces-
sibility and known correlates of vaccine response and
protection. Although these peripheral correlates provide
an interesting and highly reproducible opportunity to study
immune responses following infections, they can only

provide a description of the peripheral surrogates of the
immune response development, which truly takes place
in SLO. Indeed, following the antigen uptake by either
antigen-presenting cells or B cells in the periphery, the
maturation of B cells takes place within the GCs through
somatic hypermutation and class-switch recombination;
these pathways have only been partially explored by OMICs
approaches. TfH cells are essential for the GC response.
In recent years standard methods have dissected phenotype
characteristics, transcriptional regulation and localization
or migratory properties. In 2009, several studies reported
how BCL6 intrinsic expression is crucial for TfH cell
development and GC formation [80]. In this context, the
high-dimensional OMIC approaches have led to important
discoveries. A combined micro-RNA study and gene expres-
sion analysis recently defined that BCL6 is silenced in its
helper function for T cell maturation within the SLO by
miR-31 [81]. Global transcriptome analysis further revealed
specific targets of the silencing action of miR-31, thus
showing crucial genes in the TfH activation (i.e. CXCRS5,
SAP, BTLA and CD28). A similar approach in the B cell
counterpart was explored by McHeyzer-Williams et al.,
who defined molecular programming driving the matura-
tion of single B GC cells after vaccination booster [82].
A two-gene signature (CD83 and PolH) was able to dis-
criminate the maturation phases which antigen-specific
B cells undergo within light and dark zones of the GC.
This process can be triggered by an effective vaccination
or booster and is able to induce high-affinity memory
B cells and durable antibody responses through a progres-
sive rediversification of B cell receptors (BCRs) and natural
selection of the BCRs. Transcriptional characteristics in
the peripheral memory B cells [83,84], as well as BCR
sequences of memory B GC cells analyzed by large-scale
OMIC approaches, may serve as crucial prediction tools
of vaccination efficacy and safety. However, this mechanism
is not T cell-independent, as TfH play an integral role
in B cell differentiation and affinity maturation [85]. An
innovative OMICs approach, combining high-dimensional
mass cytometry with T cell receptor (TCR) repertoire
sequencing, was recently used to interrogate the composi-
tion of gag-specific TfH cells in primary human SLO in
HIV-infected patients ([86]. These data, confirming evi-
dence produced in the peripheral blood, revealed that
during HIV infection TfH cells remain capable of respond-
ing to HIV antigen, but are oligoclonally restricted despite
persistent antigen stimulation, leading in turn to suboptimal
B cell distribution and function. Another crucial point
to stress is that most of these studies have been conducted
on antigen-specific cells rather than total subsets. This
was mainly performed to overcome the heterogeneity
problem found in cells of LMCs or PBMCs in order to
gain high-dimensional information from antigen-specific
cells involved in the maturation process within the SLO.
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Fig. 3. Specifically for lymph node (LN) immunology, multiplexed imaging allows for the evaluation of the heterogeneity within specific cell
compartments [i.e. T follicular helper cells (Tfh) based on the expression of other markers-CD57], the presence of potential suppressor CD4 T cells
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Taken together, OMICs approaches, dissecting high-dimen-
sional molecular data within tissues and PBMCs, currently
also represent essential tools for the proper characterization
of cancer subtypes and pathways involved [87,88].

Discussion

The complex microenvironment regulating the immune
system is able to drive the maturation and differentiation
of the immune cells through close cell-cell interactions.
Thus, we need a comprehensive approach able to elucidate
the intrinsic mechanisms leading to the proper generation
of the immune response after antigen exposure.

Most studies focus their attention upon animal models
where different types of samples are easily accessible; also,
when performed in humans, the majority of these studies
utilize blood samples for practical and ethical reasons.
Both approaches present serious limitations. Animal experi-
ments are carried out on subjects living in captivity and
usually in germ-free conditions, and thus with limited
exposure to the influence of the environment (i.e. infec-
tions and vaccination); moreover, animal models do not
reproduce the genetic inter- and intra-individual variability
among human populations. Of note, human studies using
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tools currently available to answer the unresolved questions
in the field of immunology. To do so, now more than

ever, scientists from different fields - mathematics,
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bioinformatics, statistics, biology — must collaborate to build
computational methods for more comprehensive and inte-
grative data analysis. This is the purpose of systems biology
[89,90] (Fig. 4). Systems approaches, merging analytical,
informatic and computational skills, can be used to char-
acterize the status of the immune system and to predict
its plasticity in response to different stimuli (infection,
vaccination, cancer) in a uniform and reliable manner
[90-92]. Some groups are currently focusing their efforts
on the generation of computational infrastructures and
tools for immunology analyses. For example, the National
Institute of Allergy and Infectious Diseases (NIAID) of
the US National Institutes of Health (NIH) created the
Human Immunology Project Consortium to build large
data sets on human subjects under different conditions
(HIPC; http://www.humanprofiling.org).

In addition, the complexity of the immune response
and the different ways we can dissect it within modern
immunology give rise to the necessity for scientists
worldwide to share their knowledge using a more stand-
ardized approach. This is the only way to truly advance
our understanding of immunity. Only with an in-depth
understanding of the immune system we can fuel the
proper development of personalized medicine predicting
the usefulness of a therapeutic intervention in a given
patient.

Conclusion

In conclusion, most human studies are performed on
blood for practical reasons, and most data derive from
ex-vivo experiments. Of note, it must be kept in mind
that the trustworthiness of data coming from such ex-
vivo approaches needs to be confirmed in vivo, where
the microenvironment is much more intricate. Human
tissues samples are difficult to obtain, especially during
wellbeing and in particular populations, such as pediatric
populations. As pediatricians, our group is trying to
validate tonsils as valuable SLO in children that can be
used to investigate the intricate dynamics leading to
the generation of an immune response. Considering that
tonsils are routinely surgically removed, the use of these
tissues could allow the performance of high-standard
immunological studies in those populations who have
particular biological characteristics, but this is still poorly
evaluated. Moreover, tissue samples are removed daily
for various reasons, such as colon sections from new-
borns affected by necrotizing enterocolitis, gut biopsies
during inflammatory bowel diseases evaluation, thymus
following major cardiac surgery, spleen (post-traumatic
or in certain hematological conditions) and lymph nodes
for diagnostic purposes, etc. In these selected situations,
the problem does not reside in the availability of such
tissues but on the laboratories’ skills and the presence

How to dissect the plasticity of antigen-specific immune response

of personnel dedicated to such analysis. However, in
other conditions (i.e. the study of HIV reservoirs in
humans or the T/B cell interaction following immuniza-
tion) the possibility of gaining access to tissues still
remains challenging. Finally, high-throughput data sets
are generating more data than we are able to analyze.
Systems immunology probably represents the key to
elucidate how the actors of the immune response interact
between them and in the microenvironment. The biol-
ogy community in general, and the immunology com-
munity in particular, should apply itself to using
standardized protocols and to share their knowledge.
The time is ripe for a major leap forward.
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