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Abstract

In utero androgen excess reliably induces polycystic ovary syndrome (PCOS)-like reproductive 

and metabolic traits in female monkeys, sheep, rats and mice. In humans, however, substantial 

technical and ethical constraints on fetal sampling have curtailed safe, pathogenic exploration 

during gestation. Evidence consistent with in utero origins for PCOS in humans has thus been 

slow to amass, but the balance now leans towards developmental fetal origins. Given that PCOS is 

familial and highly heritable, difficulty in discerning genetic contributions to PCOS pathogenesis 

is puzzling and, to date, accounts for <10% of PCOS presentations. Unaccounted heritability 

notwithstanding, molecular commonality in pathogenic mechanism is emerging, suggested by co-

occurrence of replicated PCOS genetic variants and epigenetic alterations in DNA methylation at 

the same replicated, PCOS risk loci with bioinformatics-identified gene loci within monkey 

epigenetic alterations in DNA methylation array-determined gene networks from females exposed 

to testosterone (T) in utero. In addition, naturally occurring female hyperandrogenism in monkeys 

singles out females with PCOS-like reproductive and metabolic traits accompanied by somatic 

biomarkers of in utero T exposure. Such phenotypic and molecular convergence between highly 

related species, suggests not only dual genetic and epigenetic contributions to PCOS, as well as a 

developmental origin, but also common molecular pathogenesis extending beyond humans.
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Introduction

With a staggering 10–20% prevalence among premenopausal women, polycystic ovary 

syndrome (PCOS) is the most common endocrine and metabolic women’s health disorder 

[1]. Its diagnosis by Rotterdam criteria requires at least two of the following three: high 

testosterone (T) levels or hirsutism, intermittent or absent menstrual cycles, and 

ultrasonography-visualized polycystic ovaries, excluding endocrine mimics such as 

congenital adrenal hyperplasia [1]. Luteinizing hormone (LH) hypersecretion commonly 

accompanies hyperandrogenism likely due to T-diminished, estradiol (E2) induction of 

neural progesterone receptors in the mediobasal hypothalamus (MBH) [2,3], resulting in 

diminished E2-progesterone negative feedback regulation of gonadotropin-releasing 

hormone (GnRH) episodic release from the MBH [4]. Elevated ovarian granulosa cell anti-

mullerian hormone (AMH) commonly accompanies polycystic ovary morphology and 

provides an accurate biomarker for increased numbers of growing follicles [5].

Clinical sequelae for PCOS include acne, infertility, endometrial hyperplasia and 

malignancy, obesity, type 2 diabetes (T2D), sleep apnea, cardiovascular disease, mood 

disorders and sexual dysfunction [1,6,7]. PCOS is thus a uniquely challenging, multi-faceted 

disorder with several phenotypes, in which progressive obesity enhances severity of 

phenotype, diminishes wellbeing and quality of life [8]. Overt signs and symptoms of PCOS 

usually manifest at puberty, progressing with age from issues related to appearance and 

reproduction, to weight gain accompanying metabolic sequelae and diminished wellbeing 

[1].

Given its complexity, PCOS is highly heritable and familial, and hyperandrogenism is its 

most heritable trait [1]. Pathogenic mechanisms, however, have remained elusive, hindering 

progress towards a cure. In this regard, in utero findings of hyperandrogenic origins for 

PCOS-like traits in nonhuman primates [9,10], provided a novel, single pathogenic origin for 

PCOS that mimicked PCOS phenotypic diversity in women (hence PCOS-like traits), and 

provided a potential epigenetic amplification mechanism [11] effectively reprogramming 

diverse genetic backgrounds into PCOS-like individuals [12]. Confirmatory findings soon 

followed in sheep [13], mice [14] and rats[15], expanding into molecular insight of 

developmental pathogenesis [16–18]. While clinical acceptance of in utero hyperandrogenic 

origins for PCOS is not universal [19], accumulating supportive evidence from human 

studies is shifting the balance of evidence towards pathogenic onset for PCOS during fetal 

life [1,12,20]. This brief review will focus on current understanding emerging from human 

and animal model studies concerning in utero androgen excess contributing to PCOS and its 

potential pathogenic mechanisms, with an emphasis on nonhuman primate findings.

In utero androgen excess: human studies

During early-to-mid gestation, ~40% of girls experience elevated circulating concentrations 

of unbound, bioavailable, testosterone (T) levels in the fetal male range [21]. This is relevant 

to PCOS since comparable circulating T excursions into the fetal male range generate 

PCOS-like traits in gestational T-exposed female rhesus monkeys [22] and sheep [23], 

revealing the devasting, life-long impact on females of in utero androgen excess. In short-
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gestation rodents, late gestation and the immediate post-partum period provide a comparable 

developmentally vulnerable period for females [12]. Perhaps not surprisingly, therefore, fetal 

male-similar T levels are found in mid-gestation amnionic fluid from daughters of women 

with PCOS, well exceeding those in mid-gestation daughters of women without PCOS [24]. 

As mid-gestation amnionic fluid T originates from the fetus [25], elevated T levels suggest 

hyperandrogenism in fetal daughters of women with PCOS during a crucial, developmental 

window when female nonhuman primates and sheep are vulnerable to PCOS-like 

reprogramming [12,16]. Approximately 50% of daughters born to PCOS women develop 

signs and symptoms of PCOS by adolescence [26], indicating the substantial risk for PCOS 

phenotype accompanying female in utero androgen excess in humans [12].

Pregnant women with PCOS retain hyperandrogenism throughout pregnancy [27], together 

with elevated AMH levels [28] and reduced placental aromatase expression [29]. Despite 

population differences [30], ~40% of PCOS women experience gestational diabetes [31] and 

other pregnancy complications [32], with maternal diabetes predisposing offspring to 

metabolic dysfunction in later life through fetal hyperinsulinemia [33]. Alternatively, a 

recent mouse model suggests that AMH expression in pregnancy (as seen in PCOS women) 

can promote both LH-mediated T excess and reduced placental aromatization of maternal 

androgens [28], thereby contributing to fetal hyperandrogenism in their daughters (Figure 1), 

although such a mechanism in humans is uncertain.

Post-natal consequences of in utero androgen excess are found as early as the newborn for 

women with PCOS. Infant daughters not only exhibit transient facial sebum [34], a 

biomarker of prior T exposure, but also demonstrate an elongated anogenital distance [35], a 

reliable biomarker for early-to-mid gestation androgen excess [36]. Newborn daughters of 

women with PCOS also exhibit elevated AMH levels indicative of increased numbers of 

ovarian antral follicles, a PCOS trait. In adulthood, women with PCOS retain an elongated 

anogenital distance ([37,38], typical of in utero, T-exposed, PCOS-like female monkeys [36] 

and sheep [23]. A diminished or exaggerated 2D:4D finger length ratio is also associated 

with both in utero androgen excess and PCOS, in women [39], their prepubertal daughters 

[24] and adult, early-to-mid gestation, T-exposed PCOS-like monkeys [36], since similar T- 

and E2-regulated genes control differentiation of gonads, hands and feet. Prepubertal 

daughters of women with PCOS also excrete increased concentrations of 

dihydrotestosterone (DHT) metabolites in their urine compared to prepubertal girls of 

women without PCOS [40], indicating increased 5-alpha reductase activity, and perhaps 

amplified target tissue androgen action, well before the onset of PCOS signs and symptoms 

at puberty.

Mixed umbilical cord blood androgen levels from human female fetuses at term, however, 

have yielded inconsistent results in support of late gestation fetal hyperandrogenism in 

daughters of PCOS women, regardless of whether “gold standard” liquid chromatography-

tandem mass spectrometry (LC-MS/MS) assays are employed. Increased T or 

androstenedione levels are reported in two studies [41,42], equivalent levels in one [43], and 

diminished levels in a further two [29,44]. Labor onset and duration, together with 

increasing term gestational age, however, diminish umbilical cord androgen levels and likely 

often confound understanding of late gestation female androgenic state [45]. Moreover, no 

Abbott et al. Page 3

Front Horm Res. Author manuscript; available in PMC 2020 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sex differences remain between circulating T levels in male and female human fetuses by 

late gestation [21], suggesting term birth is inauspicious for explore developmental 

hyperandrogenism.

Genetic origins: PCOS risk genes are compatible with in utero 

hyperandrogenic pathogenesis for PCOS

Family-based and extensive genome-wide association studies have yielded 17 replicated 

PCOS risk genes, regulating gonadotropin secretion (FSHB), gonadotropin action and 

ovarian function (LHCGR, FSHR, DENND1A, RAB5/SUOX, HMGA2, C9orf3, YAP1, 
TOX3, RAD50, FBN3), and various metabolic functions (THADA, GATA4/NEIL2, ERBB4, 

SUMO1P1, INSR and KRR1) [46–48]. Of the genes regulating gonadotropin and ovarian 

function, a substantial number have been proposed as enabling ovarian hyperandrogenism 

[46,49]. A recent alternative approach, employing rare gene variant association testing, 

followed by targeted resequencing of AMH in a replication cohort, identified an additional 

17 PCOS-specific, rare coding and splice-site variants in AMH that diminish AMH 

signaling [49]. Ovarian hyperandrogenism is a potential outcome of reduced ovarian AMH 

inhibition of CYP17A1 expression [49]. While progress towards understanding gene variant-

based PCOS heritability has clearly advanced, a heritability gap between low incidence of 

PCOS risk genes (~10%) and the high heritability of PCOS (~70%) [50], indicates a 

pressing need to identify (1) more PCOS risk genes, as each may confer a small degree of 

disease risk, (2) rare gene variants, as each may confer unduly large degrees of PCOS risk, 

and/or (3) epigenetic mechanisms altering a wide range of gene expression that confer 

considerable risk for PCOS. Current thinking embraces a combination of polygenic, 

epigenetic and developmental contributions to PCOS pathogenesis that are ameliorated or 

exaggerated by lifestyle [1,47].

Epigenetic origins: developmental contribution to PCOS

T and its biopotent metabolites are highly effective regulators of DNA methylation during 

fetal development. They enable the majority of phenotypic sexual differentiation in multiple 

organ systems and tissues, including brain [51]. Increased or decreased DNA methylation 

can diminish or enhance, respectively, mRNA transcription of inherited gene variants [52]. 

Different pattern and amount of DNA methylation at any single gene locus, however, are 

specific to each organ system or cell type in each individual. Unlike GWAS, therefore, there 

is less certainty as to how genome-wide methylation studies generalize beyond an organ 

system or cell type. DNA is differentially methylated in a variety of organ systems in women 

with PCOS [53,54]. Gene-targeted DNA methylation studies of LHCGR have reported its 

hypomethylation in blood cells and subcutaneous (SC) adipose of women with PCOS, 

concurrent with increased LHCGR mRNA expression [55–57]. If comparable DNA 

hypomethylation of LHCGR occurs in PCOS ovarian theca cells, it would likely increase 

androgenic responses to LH pulses, causing or amplifying ovarian hyperandrogenism. 

GWMS and bioinformatic pathway analyses have identified clusters of differentially 

methylated genes in PCOS women that may alter a variety of cellular functions and 

processes, including immune response pathways (including autoimmunity), ovarian 
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steroidogenic and metabolic functions, and cancer-related pathways [56,58,59]. Notably, 

there are commonalties between identified PCOS risk genes and differentially methylated 

genes in PCOS women, including LHCGR, RAB5/SUOX, AMH/AMHR2 and INSR, 

suggesting convergence of molecular pathogenic mechanisms around the same critical 

genes. Do similar mechanistic insights emerge from animal models of in utero female 

hyperandrogenism?

Mechanistic PCOS insight from nonhuman primate models of in utero 

female hyperandrogenism

To induce fetal male levels of T in fetal female rhesus monkeys, monkey dams require daily 

SC injections of 10–15mg T propionate to generate circulating T levels equivalent to 

nighttime adult male levels of T (~20 ng/ml). Such high maternal levels are needed to 

exceed the primate liver’s ability to produce sex hormone binding globulin (SHBG), 

rendering >90% of circulating T non-bioavailable, as well as the primate placenta’s avid 

capacity to aromatize, conjugate and metabolize T, thus delivering a small fraction (1–2%) 

of dam T concentrations to a female monkey fetus [22], as determined by LC-MS/MS. Why 

start with such a challenging animal model? Until PCOS-like traits are reliably replicated in 

a nonhuman primate with >90% of its genome shared with humans, and with highly similar 

neuroendocrine, reproductive, metabolic, developmental, aging and behavioral attributes to 

humans [60], animal models are always open to criticism.

As illustrated in Table 1, T exposure in monkeys during early-to-mid gestation is more 

effective at inducing reproductive and metabolic PCOS-like signs and symptoms in female 

offspring than T exposure during late gestation, reinforcing the concept of a particularly 

vulnerable, mid-gestation developmental window for in utero T reprogramming of females. 

Mid-gestation excessive maternal weight gain and transient hyperglycemia, accompanied by 

fetal hyperglycemia, are all T-induced metabolic sequelae contributing additional 

reprogramming to exposed female fetuses [61]. As late gestation T exposure-induced PCOS-

like traits demonstrate, however, a degree of fetal female monkey vulnerability to T 

reprogramming (and its gestational metabolic sequelae) remains beyond mid-gestation 

(Table 1). Increased incidence of gestational diabetes, as well as increased or diminished 

birthweight [54], accompanying PCOS gestations, closely emulating metabolic compromise 

of hyperandrogenic gestation in monkeys. Metabolically compromised gestation, alone, 

including obese monkeys and women [62], and women with T2D, is insufficient to cause 

PCOS. Increased T in utero, however, may reprogram female neurocircuitry controlling 

energy balance and increase vulnerability to in utero metabolic compromise [62].

Phenotypic manifestation of early-to-mid gestation T reprogramming of female monkeys 

begins with mid-gestation increase in fetal head size, followed in late gestation by 

hypolipidemia and fetal LH hypersecretion [22,61]. LH hypersecretion persists into early 

infancy, accompanied by modest hyperandrogenism [22], reflecting precocious development 

of insensitive negative feedback regulation of gonadotropin-releasing hormone (GnRH)/LH 

in the absence of mature ovarian hormone levels providing homeostatic constraint. While 

birthweight is normal, accompanying metabolic dysfunctions includes newborn 
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hypoglycemia, accelerated infant weight gain and relative hyperinsulinemia related to 

defective pancreatic beta cell compensation for insulin sensitivity and excessive beta-to-

alpha cell ratio in infant pancreatic islets [61,63]. Increased fetal growth, neonatal 

hypoglycemia and subsequent accelerated postnatal growth are typical of human 

pregnancies encountering excessive maternal weight gain and hyperglycemia [64], and such 

gestations greatly increase the risk of developing T2D in adulthood.

During adolescence, menarche is delayed by ~6 months in both early-to-mid and late 

gestation T-exposed female monkeys [65], but such pubertal delay is absent when lower 

amounts of T are administered to monkey dams [66]. Subsequent onset of menstrual cycles 

in early-to-mid gestation T-exposed monkeys is accompanied by a prolonged succession of 

luteal insufficiency [65], demonstrating adolescent origins of ovulatory cycle dysfunction, an 

attribute of adolescent girls presenting with PCOS [54].

By their reproductive years, early-to-mid gestation T-exposed female monkeys become 

comprehensive counterparts of women with PCOS. Ovarian and adrenal hyperandrogenism 

co-occur with intermittent and absent menstrual cycles, as well as large, polyfollicular 

ovaries [9,22]. Elevated LH levels are omnipresent, driven by increased hypothalamic GnRH 

pulse frequency and increased pituitary gonadotrope response to GnRH, both likely resulting 

from diminished sensitivity to E2- and progesterone-mediated negative feedback regulation 

[67], all neuroendocrine traits found in women with PCOS [68,69]. Oocyte developmental 

competence is compromised in these monkeys [70], and may reflect contributions from 

increased adiposity that accompanies diminished oocyte quality in women with PCOS [71]. 

Circulating AMH levels in T-exposed monkeys, however, do not exceed those of controls, 

and exhibit premature, aging-related decline [72]. While absence of AMH excess is not 

typical of women with PCOS, PCOS women over 30 years of age demonstrate a steeper 

decline in circulating AMH levels than their non-PCOS counterparts [73]. Early-to-mid 

gestation T reprogramming of ovarian follicle granulosa cells may therefore be less 

pronounced than ovarian theca, stroma or oocytes, and a maternal source of fetal 

hyperandrogenism, alone, may be insufficient to reprogram granulosa cell AMH 

hypersecretion or increased follicle number and proliferation.

Accompanying metabolic dysfunction is just as pronounced in adult T-exposed monkeys as 

in PCOS women, despite the monkeys’ non-obesogenic diet. Monkey visceral fat 

accumulation is increased (“metabolic obesity”), likely arising from PCOS-like 

hyperandrogenic adipogenic constraint, limiting SC adipocyte maturation and safe lipid 

storage [74]. Such pro-lipotoxic traits may contribute to hyperlipidemia-associated insulin 

resistance, impaired pancreatic beta cell compensation and compromised islet size [63] 

enabling increased progression to T2D [12]. Consistent with gestational origins of PCOS-

like metabolic dysfunction, increased postnatal weight gain is associated with increased risk 

of PCOS in women [54], as well as T2D [64]. Interestingly, DNA methylation array analysis 

of visceral adipose identifies transforming growth factor beta (TGF-beta) signaling as the 

most significantly altered pathway in adult, T-exposed female monkeys [11], implicating an 

influential signaling pathway regulating adipocyte catabolism (brown or beige adipose, 

BAT) and adipocyte accumulation of lipid (white adipose, WAT) that potentially enables 

positive energy balance [75,76] favoring weight gain.
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When T treatment of monkey dams begins peri-pubertally (renewable SC capsules 

generating circulating total T levels of ~ 1.5 ng/ml), and 50% are additionally switched to a 

“western-style diet” (T+WSD), age at first pregnancy is later, blood flow in the primary lobe 

of the placenta is diminished by early gestation, and these pregnant, T-treated females 

demonstrate glucose intolerance, hyperinsulinemia and insulin resistance, while female 

fetuses harvested during late gestation exhibit increased abdominal circumference suggestive 

of fetal adiposity [77]. Fetal female concentrations of T and other reproduction-related 

hormones, as well as postnatal phenotypes, have yet to be reported for female offspring of 

these T-treated female monkeys.

In utero androgen excess and female behavioral reprogramming

Sexual dysfunction [7] and depression [78] co-occur with PCOS in women. In this regard, 

and in addition to reproductive and metabolic dysfunction, early-to-mid gestation T 

exposure reprograms (“organizes”) prepubertal and adult female behavior. T-exposed female 

monkeys exhibit increased male-typical infant vocalizations, diminished intimate social 

grooming of mothers and interest in infants, increased mounting of peers, and diminished, 

but not absent, engagement in female-typical sexual interactions with males [79], all 

independent of circulating sex hormone levels. Such behavioral reprogramming is difficult 

to reconcile with traditional female gender roles in human societies, potentially leading to 

sexual dysfunction and depression. Recent reports from in utero androgen excess rodent 

models clearly demonstrate anxiety-like behavior in female offspring accompanied by 

upregulation of amygdala gene expression, including corticotropin-releasing hormone 

(CRH) [80], an identical neural site and neuropeptide system implicated in the pathogenesis 

of anxious phenotype in monkeys and humans [81], leading to depression.

Mechanistic PCOS insight from non-primate animal models of in utero 

female hyperandrogenism

Non-primate models of in utero androgen excess emulate many of the reproductive and 

metabolic traits found in PCOS women and T-exposed monkeys (Table 1). With their 

relative in expense and ease of manipulation, these models have generated a plethora of 

incisive pharmacological and molecular manipulations that provide additional insight into 

pathogenic mechanisms engaged by in utero androgen excess (recently reviewed by [16–

18]). Differential gestational timing or duration of T exposure in female sheep (Table 1), 

illustrate the skew in gestational vulnerability to PCOS-like reprogramming of both 

reproductive and metabolic traits reported in female monkeys, and suggest that longer 

durations of T exposure commencing before mid-gestation induce a more pronounced 

PCOS-like phenotype. By late gestation, following cessation of maternal early-to-late T 

administration, increased ovarian theca cell expression of CYP17A1 and increased release of 

androstenedione are already present [82]. Postnatally, however, circulating androgen levels 

in such T-exposed sheep are not elevated, but ovarian androgen receptor expression is 

increased suggesting “functional hyperandrogenism” within an androgen target organ [83]. 

Early-to-late DHT exposure, while recapitulating T reprogramming of reproductive traits 

and insulin resistance, does not disrupt maturation of regular ovarian cycles or ovarian 
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morphology (Table 1), suggesting limits to androgen receptor-mediated PCOS-like 

reprogramming. Maternal co-administration of the androgen receptor antagonist, flutamide, 

along with T during early-to-late gestation prevents early puberty, and likely LH 

hypersecretion, as well as onset of ovulatory dysfunction, PCOS-like ovarian morphology 

and ovarian steroidogenic abnormalities [84]. Gestational flutamide co-treatment, however, 

fails to prevent metabolic phenotype, including insulin resistance, adipogenic constraint, 

hyperlipidemia and fatty liver [16], again demonstrating limits to androgen receptor-

mediated, PCOS-like reprogramming. In this regard, flutamide treatment of adult female 

mice previously exposed to fetal T reverses their acyclicity [14], and in some PCOS women, 

improves fertility, menstrual cyclicity and LH levels [85], as well as normalizing 

progesterone negative feedback regulation of episodic GnRH/LH release [69].

Gestational co-administration of the peroxisome proliferator-activated receptor gamma 

(PPARG or NR1C3), a nuclear transcription factor crucial for adipocyte maturation, along 

with T during early-to-late gestation, prevents insulin resistance and early puberty onset, and 

likely LH hypersecretion, in T-exposed female lambs, but does not prevent adipogenic 

dysfunction, hyperlipidemia and fatty liver [16]. In this regard, it is interesting that treatment 

of late gestation DHT-exposed female offspring as adults with the insulin sensitizer, 

metformin, restores normal cyclicity, as well as normalizing androgen and LH levels. Taken 

together, these findings suggest that while reprogramming of a variety of PCOS-like 

reproductive traits involves androgen receptor and/or insulin-mediated actions, adipogenic 

and lipogenic traits may involve additional reprogramming, perhaps engaging estrogenic T 

metabolites.

Mouse models have predominantly used the more biopotent androgenic T metabolite of 

DHT to induce late gestation in utero androgen excess and PCOS-like reprogramming (e.g., 

[14,17,18]). Late gestation DHT administered to female GnRH-green fluorescent protein 

(GFP)-transgenic mouse dams (derived from CBB6/F1 strain) produces PCOS-like female 

offspring exhibiting hyperandrogenism, intermittent/absent cycles, aberrant ovarian follicle 

morphology, LH hypersecretion derived from accelerated episodic GnRH release, fatty liver 

and enlarged adipocytes, without accompanying increased adiposity and insulin resistance 

(Table 1). Elegant use of genetic manipulation to globally delete androgen receptor (ARKO) 

protects fetal female mice (>98% C57BL/6J strain) from fetal DHT-induced, PCOS-like 

reprogramming, including absence of intermittent/absent cycles, aberrant follicle 

morphology and enlarged adipocytes [86]. The wild type mice from which ARKO females 

are derived, nevertheless, do not exhibit fetal DHT-induced hyperandrogenism or LH 

hypersecretion, possibly reflecting GnRH-GFP and ARKO mouse strain differences in fetal 

female susceptibility to DHT fetal reprogramming. Neural androgen receptor expression 

may be particularly crucial for DHT-mediated, PCOS-like reprogramming since selective 

deletion of neuronal androgen receptor expression, NeuroARKO, provides the best 

protection against peri-pubertal onset, DHT induction of PCOS-like traits [87]. NeuroARKO 

mice, however, have not yet been challenged with late gestation DHT to ascertain whether 

absence of neuronal androgen receptor abrogates in utero PCOS-like reprogramming. With 

less resemblance to in utero androgen excess in sheep, androgen receptors in in utero DHT-

exposed female mice mediate the majority of PCOS-like reprogramming.
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GnRH-GFP transgenic mice have also enabled neuro-immunohistochemical delineation of 

hypothalamic changes that may underlie PCOS-like reprogramming of GnRH release and its 

negative feedback regulation. Late gestation DHT increases anatomical and functional 

gamma-aminobutyric acid (GABA) neuronal connectivity to GnRH neurons, generating 

increased episodic release of GnRH, as well as LH hypersecretion, related to diminished 

progesterone negative feedback regulation [14,88]. Such enhanced GABA excitatory 

connectivity, originating from the hypothalamic arcuate nucleus, is established well before 

puberty, when circulating androgen levels are low [88]. Since GABA neurons express 

progesterone, estrogen and androgen receptors, and GnRH neurons do not express the 

former, aberrant GABA excitatory connectivity may mediate diminished progesterone (and 

E2) negative feedback regulation demonstrated by in utero androgen excess female mice, 

and potentially rats, sheep and monkeys.

Unexpectedly, long-term administration of flutamide to adult, DHT-treated female mice 

normalizes neuronal connectivity between GABA and GnRH neurons, as well as episodic 

release of GnRH, circulating LH levels, negative feedback regulation of GnRH/LH, ovarian 

cyclicity and follicle morphology [88], suggesting extant, extra-ovarian androgen excess is 

crucial to maintain neuronal reprogramming and its PCOS-like sequelae. Figure 2 illustrates 

hypothetical sites, implicated by animal models, for specific, androgen receptor-mediated, in 
utero programming of PCOS-like traits. The implication, emphasized by sheep and 

transgenic mouse studies, is that abrogation of androgen production and action in specific 

organ systems may effectively normalize PCOS traits.

Naturally occurring in utero androgen excess and female 

hyperandrogenism: Origins of PCOS beyond humans?

Naturally occurring high levels of T confer athletic advantage in women [89] and 

accompany female behavioral dominance in some, but not all, nonhuman primates [90,91]. 

About 15–25% of women in their reproductive years exhibit androgen excess, but most have 

PCOS [92]. Naturally occurring, hyperandrogenic (high T) female macaque monkeys 

emulate PCOS women in the co-occurrence of PCOS-like traits [93,94]. In a multi-Primate 

Research Center study, adult female macaques with average BMI and in prime reproductive 

years, were identified with high levels of T, 1SD above each population mean, in three 

separate laboratory populations of macaques. In the Wisconsin rhesus monkey population 

[94], PCOS-like traits of high T females exhibited generalized hyperandrogenism and 

increased steroidogenesis, including elevated circulating levels of unbound, “free” 

testosterone (unpublished results), hypersecretion of both LH and AMH, as well as uterine 

endometrial hyperplasia and infertility (Table 1). Intriguingly, a predominance of infertility 

and insulin resistance are found among high T monkeys with the most extreme elevations of 

T, 2SD above the monkey population mean (unpublished results), and equivalent to 

hyperandrogenic criteria required for peer-reviewed clinical studies of PCOS [95].

Thus, within limits, high T may not impair either fertility or metabolic function. Subtle 

changes in anatomical biomarkers of prior T exposure suggest fetal origins for naturally 

hyperandrogenic female rhesus monkeys [94], analogous to findings in behaviorally 
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dominant female Malagasy lemurs [91], a more ancient branch of nonhuman primates. 

Interestingly, mild-to-moderate PCOS-like phenotypes formed the majority of those 

identified among naturally hyperandrogenic female monkeys, emulating PCOS phenotype 

prevalence in studies of women recruited from local populations, and not from clinical 

referrals (Table 2). The contrast of predominantly mild-to-moderate phenotypes in naturally 

occurring PCOS-like monkeys and PCOS women recruited from local human populations to 

the predominantly severe and classic phenotypes of early-to-mid gestation T-exposed 

monkeys and clinically referred PCOS women suggests commonality in PCOS phenotype 

may include duration or degree of gestational T exposure, and age and BMI (younger age 

and normal BMI with more mild-to-moderate phenotype). Naturally occurring PCOS-like 

phenotypes beyond humans certainly supports increasing speculation of survival and 

reproductive advantages from hyperandrogenic, energy-conserving, insulin resistant, delayed 

fecundity, female phenotypes [1,96].

In utero Androgen Excess and Androgen Receptor: Developmental 

Commonality and Molecular Gateway to PCOS?

Mounting evidence from human and animal studies repeatedly implicates appropriately 

timed in utero androgen excess, from either maternal and/or fetal sources, as high risk for 

PCOS emerging at adolescence. Figure 1 provides a diagrammatic representation of 

maternal and fetal sources of gestational androgen excess, together with relevant PCOS risk 

genes, programming for ovarian androgen excess. Figure 2 illustrates hypothetical sites for 

female reprogramming mediated by androgen receptor, as identified by genetically 

manipulated mouse studies [17,18]. Such a unified hypothetical model is compatible with 

postnatal androgen activating reprogrammed function, such that anti-androgens or androgen-

diminishing consequences of weight loss interventions, including lifestyle, diet, bariatric 

surgery, and insulin sensitizing treatments, ameliorate PCOS traits in adulthood. Increasing 

sophistication of bioinformatics to assess risk for functional outcome of genomic and 

epigenomic variants vulnerable to in utero androgen excess, hold promise for identification 

of PCOS risk in newborn, enabling early intervention.
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Figure 1. 
Hypothetical maternal and fetal contributions to in utero female androgen excess 

reprogramming for a hyperandrogenic female offspring.
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Figure 2. 
Hypothetical target sites for androgen receptor mediated in utero androgen excess female 

fetal reprogramming for reproductive and metabolic PCOS-like traits.
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Table 2.

Classification of PCOS-Like Phenotypes in PCOS-like Adult Female Rhesus Monkeys and in women with 

PCOS

Female Population

PCOS-Like/PCOS Phenotype
1

(% of PCOS-like and PCOS individuals)

Type A Type B Type C Type D

Early-to-mid gestation T-exposed female monkeys
2 38 25 12 25

PCOS women
3
 (from clinical referrals)

49 13 14 17

Naturally occurring PCOS-like female monkeys
4 25 8 42 25

PCOS women
5
 (from unselected human populations)

25 19 35 20

1
Type A: hyperandrogenism or hirsutism (HA) + intermittent/absent cycles (OD) + (polycystic ovary morphology) (PCOM); Type B: HA + OD; 

Type C: HA + PCOM; Type D: OD + PCOM, as described in Abbott, 2017

2
Derived from Abbott et al., 2013

3
Derived from Norman et al., 2007 Lancet 370:685; Wild et al., 2010 J Clin Endocrinol Metab 95:2038; Dumesic et al., 2015 Endocr Rev. 36:487

4,5
Derived from Abbott, 2017
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