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ABSTRACT
Xenopus laevis frogs are a widely used organism to study aspects
of modern biology (Harland andGrainger, 2011). Its central nervous
system is particularly interesting, because in certain stages of
metamorphosis the spinal cord can regenerate after injury and
recover swimming. With this in mind, automatic gait analysis could
help evaluate the regenerative performance by means of a method
that automatically and quantitatively establishes the degree in froglets’
limb movement. Here, we present an algorithm that characterizes
spinal cord damage in froglets. The proposed method tracks the
position of the limbs throughout videos and extracts kinematic
features, which posteriorly serve to differentiate froglets with different
levels of damage to the spinal cord. The detection algorithm and
kinematic features chosen were validated in a pattern recognition
experiment in which 90 videos (divided equally in three classes:
uninjured, hemisected and transected) were classified. We conclude
that our system is effective in the characterization of damage to the
spinal cord through video analysis of a swimming froglet with a 97%
accuracy. These results potentially validate this methodology to
automatically compare the recovery of spinal cord function after
different treatments without the need to manually process videos. In
addition, the procedure could be used to measure the kinematics and
behavioral response of froglets to different experimental conditions
such as nutritional state, stress, genetic background and age.
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INTRODUCTION
Xenopus offers multiple advantages as a model organism to study
development, regeneration, behavior and evolution. Some of the
advantages it presents for experimentation are: (1) it is easy to breed
and generate hundreds of animals developing synchronously at a low
cost compared to rodents; (2) the availability of genomic resources
and methods to study gene function and availability of genomic
resources, and (3) the possibility to perform tissue transplantation
(Harland and Grainger, 2011). Xenopus frogs are particularly
attractive to study central nervous system (CNS) regeneration
because they swim at certain developmental stages when they are
able to regenerate the spinal cord after injury (SCI) and recover

the ability to swim. This ability is progressively lost throughout
metamorphosis resulting in non-regenerative froglets and adult
frogs that are no longer able to recover after SCI (Gaete et al.,
2012; Muñoz et al., 2015; Edwards-Faret et al., 2017). The
response to SCI in froglets has shown similar molecular, cellular
and clinical hallmarks compared to other animals such as rodents
and humans (Lee-Liu et al., 2014; Lee-Liu et al.; 2017), making
this a useful model organism to use in studies that could be
informative in understanding SCI in humans. In addition, it is
quite simple to achieve complex locomotor conditions like
paraplegia (with both posterior limbs paralyzed), or hemiplegia
( just one posterior limb is paralyzed); two types of lesions that are
also observed in humans.

SCI in mammals, including humans, leads to permanent paralysis
(paraplegia and quadriplegia) including loss of bowel, bladder and
sexual functions, chronic pain and autonomic dysreflexia, among
other symptoms. Currently, no efficient treatment for spinal cord
regeneration (SCR) has been established; however, using Xenopus as
a model organism could be of great help for this. The development of
a method that can measure froglets’ movement could quantify the
effects of new treatments and the recovery of injured animals. In
addition, this method could be used to study other behaviors in this
classic model organism. For the development of this method,
kinematics analysis emerges as an invaluable tool. Gait analysis has
been used to study many species, including horses (Barrey, 1999),
elephants (Hutchinson et al., 2006) and hummingbirds (Warrick et al.,
2005). Gait analysis allows the evaluation of pathological conditions
in humans (Abbass and Abdulrahman, 2014) as well as in other
animals (Swanson et al., 1998; Roxana et al., 2007). The swimming
of tadpoles and froglets has been analyzed before with kinematic
approaches in order to understand the transition from an axial-based
swimming to a limbed propulsion (Combes et al., 2004). These
approaches have been done for total distance covered or kinematics
analysis by drawing the body outline of the animal, making this
method very inefficient and laborious, and also not able to measure
more complex parameters such as coordination, or compare slight
changes in movement in different experimental conditions.

The benefits of using automatic gait analysis for understanding
SCR are analysis of a larger number of videos and during longer
periods of time, less error than manual tracking and automatic
tracking of all limbs simultaneously. In this way, a model-based
visual tracking algorithm has been developed for zebrafish
(Fontaine et al., 2008) and fruit fly (Fontaine et al., 2009), both of
which achieved a more in-depth understanding of the animal’s
movement. For example, subtle differences in swimming between
normal and mutant zebrafish were measured. An advantage of
processing large amounts of videos is the ability to extract efficient
features that summarize the information. Features can then be used
to compare one or more videos. By using pattern recognition
techniques, it is possible to determine which features discriminate
best between two or more behaviors.Received 4 March 2019; Accepted 2 December 2019
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de Chile. 2Center for Aging and Regeneration, Facultad de Ciencias Biológicas,
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Here we present an algorithm that analyzes swimming videos and
automatically characterizes the level of damage to the spinal cord of
a Xenopus laevis froglet. From a dorsal view it measures the position
of each limb every frame and then analyzes their movement
throughout the video. This information is then summarized into four
kinematic features that are validated using pattern recognition in a
classification experiment. Even though both fore- and hindlimbs are
tracked by the algorithm, the analysis was centered on the latter
(Combes et al., 2004). We first describe the detection algorithm for
the froglet and its limbs. Subsequently, we define four kinematic
features derived from expected behaviors. And finally, we validate
the ability of the program to classify 90 videos into three levels of
spinal cord damage: uninjured, hemisected and transected animals.
The development of an algorithm as a tool with discriminative or
‘diagnostic’ capacity could be of great aid to screen for drugs that
have potential beneficial effects on SCR. Here we trained the
algorithm with previously well-known conditions using training

data, and we showed that after learning the algorithm is able to
classify blindly between different groups. This algorithm is a great
improvement in quantitatively assessing any improvement in SCR
after a given treatment. This algorithm would allow the detection of
slight improvements in swimming recovery compared to the current
methods developed in our own lab that only allow the measurement
of the distance swum by froglets (Gaete et al., 2012; Muñoz et al.,
2015); a parameter that is too broad to allow the detection of small
effects when screening for potential new treatments.

RESULTS
Kinematic features
For each video processed, a heatmap of the angles for the right
and left hindlimb were obtained and plotted in a 2D histogram
(Fig. 1 and 2). In the example of Fig. 1 an uninjured froglet shows
a positive correlation with the algorithm (0.636), instead of a
negative one for transected swimming (−0.768). So uninjured

Fig. 1. Synchronization variance in 2D
heatmaps and the expected output of
each behavior. An example is given of
each type of froglet compared to the ideal
correlation of each of the three types of
synchronization, previously defined as:
synchronized, independent and inverted.
Rows show: type of movement, ideal
correlation, ideal distribution, one
experimental example, measured
correlation and original class, respectively.

Fig. 2. Symmetry variance in 2D
heatmaps. Two experimental examples
illustrate how a difference in symmetry is
reflected in the heatmaps. The white line
shows perfect symmetry, while the black-
dashed line shows the corresponding line
of the estimated slope β0. We can see that
in the healthy froglet both black and white
lines are almost the same, giving a β0
almost equal to 1. On the other hand, in the
hemisected froglet the right foot tends to
move approximately half the distance of the
left foot’s stroke, making white and black
lines differ significantly, thus showing a lack
of symmetry.
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froglets are detected by displaying synchronized swimming,
according to the swimming description made by Combes et al.
(2004). Meanwhile in the example of a hemisected froglet in
same figure, the correlation is near to 0 (0.082), indicating an
independent or non-synchronized movement. On the other hand,
examples of symmetry of swimming are shown in Fig. 2. There,
an uninjured froglet has a coefficient equal to 0.98, close to 1,
but for a hemisected froglet the coefficient is equal to 0.55;
indicating a lack of symmetry because of the reduced stroke
movement of the right hindlimb (which was damaged) compared
to the left hindlimb.
All results of the videos were plotted in Fig. 3A for the two

kinematic features of symmetry and synchronization. As expected,
healthier froglets were identified by the algorithm through their more
synchronized swimming, which resulted in a positive symmetry
coefficient (F1). While most transected froglets had a negative
correlation of synchronization, indicating inverted movement,
hemisected froglets’ synchronization results varied, with a range
between −0.2 and 0.5, so not all of them were identified as having
independent movement of their hindlimbs by the algorithm.
However, the swimming of hemisected froglets differs from that of
uninjured and transected froglets since most of them obtained a
coefficient of symmetry (F2) of less than 0.9. Furthermore, both
transected and healthy froglets have a similar level of symmetry in
their swim, near to +1: in the case of the uninjured froglets this is
explained because they make similar strokes with both left and right
hindlimbs, and in the case of the transected animals it is because they
have little movement in both hindlimbs. The hemisected froglets
clearly show less movement in their right hindlimb in comparison to
the left. This is expected, as all hemisected froglets were damaged on
the right side of the spinal cord.
As expected, uninjured froglets have a relatively high range of

movement in both feet, while transected froglets have a small range
(Fig. 3). Hemisected froglets fall in-between, having a similar range
to a healthy froglet in their left hindlimb, while the right is similar to
a transected froglet. In Fig. 4 two examples are shown, where a
healthy froglet reaches a 97° of movement, meanwhile a transected
froglet reaches a 38° of movement. There is more confusion in the
classification using range features than using synchronization and
symmetry features.

Classification results
In our experiments we tried to use both simple classifiers (e.g.
minimum distance and linear discriminant analysis) and more
complex ones (e.g. SVM and neural networks).

Each classification experiment was performed using cross
validation with ten folds (as described in the Materials and
Methods) and repeated ten times for each classifier used (Table 1).
Using only two features, synchronization and symmetry, common
classifiers such as k-nearest neighbors algorithm (KNN) with three
and five neighbors get over 90% accuracy, which is not considerably
lower than the 93.9% accuracy with a neural network. Using only the
right and left foot range almost all classifiers get close to an 80%
accuracy. Finally, the best result is obtained by combining all four
kinematic features in an LDA resulting in a 96.6% accuracy.

DISCUSSION
The main contributions of the paper are twofold. First, we define
four kinematic features (synchronization, symmetry, range of right

Fig. 3. Examples of distribution in the feature space of the 90 videos using two kinematic features. They are colored with their original class
(uninjured, hemisected and transected). In panel A the features synchronization (F1) and symmetry (F2) are shown, whereas in panel B features of right and
left foot angles range (F3 and F4) are shown.

Fig. 4. Two examples of the right foot range (F3) measured. The blue
shadow shows the moment where the froglet has its foot in the highest
position, while the green is the lowest position. The range is defined as the
arc between the highest and lowest position. The healthy froglet has a
relatively large range of movement while the transected one only moves it’s
pelvis, having a relatively small range of movement.
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foot and range of left foot) that can be used to characterize the
swimming behavior of the froglets. Second, we validate how
relevant these features are in a classification problem, where the
proposed features can be used to determine the level of the spinal
cord damage of the froglets and the identification of new treatments
for improving SCR.
We present a fully automatic detection algorithm that can

characterize the level of spinal cord damage of a froglet’s spinal
cord by tracking its hindlimb movements while it swims in
laboratory conditions. A 1 h processing time for every video may
seem lengthy, this process is completely unsupervised, not using the
researcher’s time. However, the alternative of having a human
segmenting and tagging each limb would be considerably slower
than 1.12 s per frame. This will let researchers process larger
amounts of videos without the need to manually label each limb in
each frame. In addition to the detections in less time, we have also
provided four kinematic features that can be used to summarize the
results and variance between healthy and injured froglets. An
example would be a froglet showing signs of recovery after
receiving treatment. The simple setup makes it easy to reproduce the
conditions of the experiment with common equipment.
Our approach has a high accuracy in classifying Xenopus laevis

froglets in three categories of spinal cord damage using four
kinematic features. It does not lose much accuracy by only using
two of them (synchronization and symmetry), by being able to show
the results in a 2D graph. As the proposed features create a high
difference between the classes, more complex classifiers get similar
results to simpler ones.
Also, this system could be used to compare the swimming of

froglets where the independent variable is something other than
spinal cord damage, like thermal stress (Padilla et al., 2019), genetics,
etc. Our algorithm does not evaluate the z axis, making it unsuitable
for a question about tridimensional behavior, which is considered as a
complex behavior in terms of mobility and locomotion (Macrì et al.,
2017). We did not evaluate this behavior because it induces
unnecessary stress in the respiration of the lesioned froglets, which
are not able to reach the surface when they need to.
It is worth mentioning that some videos fall outside of their class

distribution, making them prone to being erroneously classified.
These errors come from two different sources: the first one being
minor errors of tracking and measurement of said kinematic features
(this error is produced by our algorithm); the second source is

uninjured froglets that are turning while swimming. When a froglet
tries to turn to avoid the borders of the container, it uses only one of
its legs to swim forward. Thus, the algorithm interprets this as
independent movement. If the uninjured froglet turns for the whole
video, then the algorithm will wrongly interpret said movement.
This could be corrected by only analyzing frames where the froglet
is swimming far from the boundaries.

The algorithm depicted here could have potential applications in
screening libraries of compounds to identify new drugs that could be
used to improve functional recovery after SCI. Having this algorithm
should allow the measurement of small improvements in froglet
swimming capacity when comparing froglets treated with those
compounds with control froglets. Identifying compounds that
improve SCR in froglets could be a first and easy step in selecting
candidate drugs that could later be tested in more expensive model
organisms, such as mouse and/or monkeys, as another step before
performing clinical trials in humans.

MATERIALS AND METHODS
We used the supervised methodology of pattern recognition (Bishop, 2006).
This methodology uses the knowledge of an expert to train a model. In our
case, we know how injured the froglets are and the idea is to have an
algorithm based on the trained model that can predict the level of damage by
analyzing a video without the intervention of the expert. A typical computer
vision system based on pattern recognition follows a five-step schema:
(1) image acquisition, a digital image or video of the object under test is
taken (sometimes resized) and stored in a computer; (2) preprocessing, the
digital image is improved in order to enhance the details; (3) segmentation,
the image of the object of interest is identified and isolated from the
background of the scene; (4) feature extraction/selection, significant features
of the object are quantified and; (5) classification carried out by a classifier
(Bishop, 2006). The five steps must be designed for a specific application
using training data. In our case, the information is taken from videos of
swimming froglets that are processed and segmented in order to detect their
anatomy. Afterwards, certain features are extracted from the movement of
the froglets, which are used to determine the spinal cord damage category.

Following and adapting this scheme, we have divided our algorithm
into five blocks that are shown in Fig. 5. As we mentioned in the
Introduction, the objective of our experiment is to correctly classify all 90
videos into the three spinal cord damage categories (uninjured, hemisected
and transected). The algorithm first identifies the froglet in each frame and
segments its shadow for the next step. This image is then oriented so as to
always be looking upwards while in the dorsal view and detects the position
of its limbs with respect to the center of gravity. The whole process outputs

Table 1. Average accuracy (mean) and standard deviation (Std) of different combinations of classifiers and features

Accuracy [%]

Features→ All four features Symmetry and synchronization Right and left foot range

Classifier ↓ Mean Std Mean Std Mean Std
KNN-1 78.70 2.47 87.00 1.66 72.00 2.03
KNN-3 76.10 1.58 91.30 0.82 77.30 1.18
KNN-5 77.20 1.43 92.60 0.35 78.60 1.41
LDA 96.60 0.35 93.60 0.59 80.90 0.70
QDA 93.30 1.72 92.70 1.10 79.10 1.50
Neural network 95.10 1.55 93.90 1.31 79.90 0.47
SVM linear 94.70 1.05 90.70 1.46 81.80 0.70
Minimum distance 78.20 1.05 89.90 1.02 79.00 0.88
SVM RBF 91.20 1.83 90.40 1.66 78.00 2.17
Mahalanobis 91.90 1.41 91.20 0.97 79.10 0.94

Each experiment was done using ten group cross-validation and repeated ten times.
The designed classifiers divided the space of features in decision boundaries (Fig. 9). A classifier like the KNN-1 will have a more complex division as it bends to
capture all the data, but the result won’t generalize as well to new data. The neural network on the other hand, has straight lines and clearly defined regions,
leaving out some videos as exceptions in order to have a more generalized division.
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four kinematic features (synchronization, symmetry and range of the angles
for the right and left foot) and a 2D heatmap that shows the angles of both
legs of the froglet moved throughout the video. Then, a classifier is used to
predict to which of the three previously defined categories of spinal cord
damage the froglet belongs to. The following subsections describe in greater
detail each part of the algorithm.

Spinal cord injury of X. laevis froglets
Xenopus laevis froglets were used at 2 weeks after reaching post-
metamorphic stage 66, at which point they measured approximately

1 cm wide and 1.5 cm long (Fig. 6). Spinal cord transection was
performed as described in Edwards-Faret et al. (2017). Animals were
anesthetized by immersing them in 0.02% MS222 0.2 g/l for 10 min
and they were then placed on a gauze over an inverted petri dish to
avoid any spinal cord damage. Using microdissection scissors, an
incision was made at the level of the sixth vertebrae and laminectomy
was performed followed by full spinal cord transection – or only the
right half of the spinal cord was transected for the hemi-section. After
injury, muscle and skin were put together using forceps to allow closure
and healing of the incision. After surgery, both hindlimbs were

Fig. 5. Diagram illustrating the five step process for each video. The whole video is processed frame by frame and then summarized in the feature
extraction phase. Finally, the video is classified into one of the three levels of spinal cord damage.

Fig. 6. Experimental Setup. (A) Illustration of spinal cord injuries in the 6th vertebrae of X. laevis froglets in the dorsal and frontal views, (i) uninjured,
(ii) transected and (iii) hemisected animals. (B) Picture of the setup used to record the movies of froglets. The tripod where the video camera is placed, a box
internally illuminated with LED lights, a glass container with Barth solution and a spoon and a Pasteur pipette for swimming stimulation of froglets. fv, frontal
view; dv, dorsal view of the spinal cord; sc, spinal cord; gm, grey matter; wm, white matter; cc, central canal.
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paralyzed in transected froglets, whereas only the right hindlimb was
paralyzed in hemisected froglets.

Careful postoperative manipulations were carried out as previously
described (Edwards-Faret et al., 2017). After surgery, the froglet was
maintained in the gauze and transferred to plastic tanks containing 200 ml of
0.1x Barth solution (it is not possible to specify a unit of measurement;
BARTH is the standard used with frogs) with 1x antibiotics, with nomore than
six froglets per tank. To allow breathing, the solution did not cover the froglets’
heads. The recovery of anesthesia occurred 5–10 min after the surgery, when
animals began tomove their upper extremities, theywere then transferred to the
larvae/froglet room at 20–21°C. We fed the animals 1 day after surgery with
Nasco Frog Brittle pellets and the pellets were brought to the forelimbs with a
Pasteur pipet to help them eat. The peeling skin was removed with forceps
under a dissecting microscope, once a week. It was necessary to change the
Barth x1 solution with antibiotics every other day and clean the tanks.

A total of 90 froglets were recorded, 30 froglets were used for each
condition. The swimming test was performed 3 h after surgery once
the animals had completely recovered from anesthesia. All experiments
with froglets and the procedures used in this work have been approved
by the Comité Ético Científico para el Cuidado de Animales y
Ambiente at the Pontificia Universidad Católica de Chile. Number of
identification: 150408002.

Video acquisition
Uninjured, hemisected and transected froglets were recorded in the dorsal
view using a GoPro Hero5 Black camera that was mounted on a tripod as

illustrated in Fig. 6. Animals were maintained in a glass container with
500 ml of 0.1x BARTH solution (pH 7.6) supplemented with penicillin-
streptomycin at room temperature (25°C). The froglets were placed on the
glass container using a spoon and filmed one-by-one for 1 min after
carefully touching the forelimbs with a Pasteur pipette (swimming
stimulation). The data was acquired at 120 color frames per second with a
resolution of 1920×1080 pixels for each color channel (red, green and blue).
The length of the videos is approximately 1 min.

Froglet segmentation
Yolo deep learning network
The first step of the segmentation is based on a deep learning algorithm
called Yolo-v3 (You Only Look Once) version 3 (Redmon and Farhadi,
2018 preprint). A subset of 1800 frames were selected randomly from 30
videos from of our dataset (ten videos of each spinal cord damage category).
In addition, we manually detected the froglets in each video in order to
generate the training dataset. The model was trained for 2000 iterations and
validated visually with images from the other 60 videos.

Area range calibration
During the identification and tracking, the algorithm filters out objects that
have an area too large or too small to be the froglet (to prevent the detection of
other objects located in the video). In order to do this, the area of the froglet is
measured. For each video six random frames are extracted, the froglet is then
detected in each image using the Yolo Network previously described. By
using a color threshold and the x, y coordinates of the detection in the frame,

Fig. 7. Diagram showing the steps to detect the froglet’s limbs. The algorithm detects limb zones, joint zones and endpoints for each of the four
quadrants. Each limb is defined by the endpoint furthest from its joint.
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the area of the froglet is measured in each of the frames of the video. The
calibration area is defined as the median of the measured areas of the images.
Then the froglet’s area range is defined as 10% larger and smaller than the
calibration area. Multiple thresholds were tested using our video database and
10% was observed as difference of area of the froglet throughout a video.

Froglet detection
The algorithm processes one every two frames to reduce processing time (in
our experiments, this rate still maintained accurate results), while maintaining
accurate results. The first step was a threshold in the blue channel, which of
the three color channels has a larger difference between the froglet and the
background creating a better segmentation. This outputs a binary image
where the froglet was seen as white and the background as black. The area of
each object in the imagewasmeasured, filtering thosewhose area fell outside
the range defined in the calibration section. Of the remaining objects, the one
closest to the previous frame detection is chosen as the froglet. A fixed size
window of the frame is extracted, the coordinates of the center of the frame
are used for the detection of the next analyzed frame.

Orientation and limb detection
Orientation
The binary segmented image is virtually eroded in order to eliminate the
limbs, leaving only the body. Virtual erosion is accomplished by thinning
the outer pixels of the object in the binary image. The orientation is
measured using theMatlab function ‘Regionprops: Orientation’ (MathWorks,
2017). The image is then oriented so as to always be looking upwards
while in the dorsal view and detects the position of its limbs with respect
to the center of gravity. By checking the number of pixels in the bottom
half versus the top half of the image (because of a difference of pixels
between both halves) one can correct that the froglet is ‘looking up’ and
not ‘looking down’.

Limb detection
The limb detection algorithm (Fig. 7) starts with a binary image of
the previous step. By subtracting an eroded image from the original one,

the limbs are extracted. Both limbs and body of the froglet are then dilated
to find the area where they intersect. The dilation adds pixels to the
boundaries. This area is defined as the ‘joint’ of limbs and body. Using
Matlab function bwmorph: skel the ‘morphological skeleton’ is extracted
from the segmented image. Using bwmorph: endpoints, the endpoints
of the skeleton are extracted. These ‘points of interest’ are considered as
the hands or feet of the froglet. The information of both branches is
combined and divided into four quadrants, one for each limb. For each
quadrant the furthest point of interest from its joint is selected as the foot
or hand of the froglet.

After the limbs are detected in a frame, the angle-pair of the limbs (αR,αL)
is computed (Fig. 8). The angle-pair is defined as the two angles between the
right and left foot and the horizontal line. This makes it easier to compare the
movement of both legs. We define a 2D histogram as a matrix of 180×180
bins, where each axis represents the angles αR and αL, and each bin (with a
resolution 1°×1°) counts how many frames of the video have the legs in the
angle-pair defined by the bin. To show which angle-pairs were more
common to the froglet during the video, the histogram is normalized
between the maximum andminimum bin value and visualized as a heatmap.
The most common angle-pairs are shown with a red color, while a non-
detected angle-pair throughout the video is colored blue.

Feature extraction
Information from the videos are summarized in four kinematic features. The
contributions of these features are threefold: (1) they are highly discriminative,
that means in this classification problem they achieve a high level of variance
between classes and maintaining a low level of variance within a class.
(2) They are derived from expected visual behavior with an easy interpretation.
(3) They can be easily computed using a mathematical formula. In addition,
these features allow a rapid understanding of which parameters of froglet
swimming are altered and which can be improved with different treatments.

Synchronization
The first feature referred to the synchronization of hindlimb movement. It
captures the synchronization of the feet while swimming. Three types of

Fig. 8. Example of a 2D histogram is constructed and outputted by the algorithm. In the examples, the angle-pairs (αR, αL) are 49°, 88° and 52°, 45°.
For these frames, the bins – 49, 88 and 52, 45 – of the 2D histogram are increased by one. The histogram is represented on the right as a heatmap with a
color scale; the deepest red value is associated with the most common angle-pair observed throughout the video, while the blue is associated with an angle-
pair not seen during the video. The white line represents perfect symmetry, meaning that both feet are horizontally mirroring.
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synchronization are presented to illustrate the observable behaviors:
(1) ‘synchronized’, fore- and hindlimbs from the right and left move
forward or backwards at the same time. (2) ‘Independent’, only one of the

hindlimbs moves while the other stays still. (3) ‘Inverted’, one hindlimb
moves forward while the other moves backwards and vice versa. By
observation, the healthy froglet should swim synchronized, while a

Fig. 9. Examples of the output of a classifier plotting all 90 videos using two features: synchronization (F1) and symmetry (F2). (A) Diagram of a
classification process. Labeled training data is computed to a decision surface of the feature space. This is a mathematical formula that depends on the type
of classifier. New data can be tested and classified depending where it falls in the decision surface. (B) Different classifiers and how they divide the feature
space in decision boundaries.
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hemisected froglet should move only one hindlimb and a transected froglet
cannot move both hindlimbs, but the movement of the pelvis is identified as
an inverted movement of the feet by the algorithm.

Synchronization was measured as the correlation between the angles αR
and αL (Fig. 8). If the correlation between the feet was close to 1 then we
determined that both feet were synchronized in their swimming. On the
other hand, if the correlation was close to −1, the movement of the feet was
inverted. And, if the correlation was close to 0 then the feet were moving
independently of each other, which potentially means the froglet is moving
one foot while leaving the other still. As the froglet will have slightly
unsynchronized movements, the expected synchronization coefficient for
synchronized swimming will be closer to 0.5, while an inverted movement
will be close to −0.5.

Symmetry
The second feature is symmetry in the feet’s strokes. In the average stroke of
a healthy froglet, we observe that both feet should move in a similar arc.
Alternatively, a hemisected froglet will move the healthy foot in a larger arc
than the damaged side. In our observations, the transected froglet has little
movement of its legs, but said movement will tend to be symmetrical.

Stroke symmetry can be measured with a first order linear regression. The
linear regression finds out the relationship between the angles αR and a

L
by

finding the slope β which best solves the equation:

aR ¼ b0aL; ð1Þ
where β is the symmetry coefficient. If both feet move symmetrical to each
other, β₀ will be close to 1, but if the right foot moves half of the arc of the
left foot, then β will be close to 0.5.

Range
The last two features are the range of angles αR and αL. A healthy froglet
has a relatively larger range of angles of both of its legs, while a transected
one will have a relatively smaller range. The non-injured leg of a hemisected
froglet will fall somewhere in-between, having more movement in its
uninjured side than the damaged side. To measure this, the detections of each
foot are smoothed using a bivariate kernel density estimator (KDE) and a
Gaussian convolution (Botev et al., 2010), which is a good solution for noise
reduction. A threshold is applied to the result and an area of movement of the
foot is obtained. The highest and lowest point is calculated from that area
and the range of movement is the arc made by both points and the center of
gravity of the froglet.

Classification
The final step of the algorithm is a classifier. In our case, the idea of the
classifier is to assign the froglets to one of the three classes: uninjured,
hemisected and transected. The classifier takes the extracted features of a
froglet and assigns the froglet to one of these classes. The extracted features
are arranged in a vector of n elements that are represented in a feature space of
dimension n. For example, if we extract the features F1 (synchronization) and
F2 (symmetry), the feature space is a 2D space, where x, y axes correspond to
the variables F1 and F2, respectively. Thus, a froglet was represented as a
point in this 2D space as illustrated in Fig. 9. In order to design a classifier,
the feature space is divided into three regions, which we called ‘decision
regions’, one for each class. This step is called training, in which a model that
finds the decision regions is estimated. After training if we want to classify a
new froglet we extract the proper feature vector, a point in feature space, and
classify it according to the decision region to which the point belongs.

It is worth mentioning that when designing a classifier, two stages are
taken into account: training and testing. On the one hand, in the training
stage, training data (froglets for training purposes) are used to define the
decision regions. Typically, a classifier defines the decision regions
according to the concept of similarity: features that are similar are
assigned to the same class. On the other hand, in the testing stage, testing
data (other froglets that were not used in the training stage) were used to
evaluate the performance of the classifier. That means features were
extracted from the testing froglets and classified using the trained model. In
the evaluation, the accuracy defined as the ratio of test froglets correctly
classified is computed. In our experiments, we tested simple classifiers

because of the small number of samples that were available. The
classifiers that we used were: minimum distance, linear discriminant
analysis (LDA), k-nearest neighbors (KNN) with 1, 3, 5 neighbors; and
more complex ones such as: quadratic discriminant analysis (QDA), a
shallow neural network, Mahalanobis distance and support vector
machine (SVM) in both its linear and radial basis function kernel
(RBF) (Bishop, 2006). To this end, we used the implementation of Balu
Matlab Toolbox (Mery, 2011).

The performance of the classification was evaluated using cross-
validation (Mitchell, 1997). In our experiments, the data are divided into
ten folds (independent groups), because it has become the standard method
in practical terms (Witten and Frank, 2005). That means 90% were used
for training (81 frogs) and 10% for testing (nine frogs). This experiment
was repeated ten times, interchanging training and testing data to evaluate
the stability of the classifier. Then, when training was performed, the
samples that were initially removed could be used to test the performance
of the classifier on these test data. For each test, the performance defined
as the rate of samples correctly classified is computed as ηi, for i=1…10.
Thus, we evaluated the generalization capabilities of the classifier by
testing how well the method classified samples that had not been already
examined. The estimated accuracy, η, is calculated as the mean of the ten
percentages of the true classifications that are tabulated in each case:
η=(η1+…+ η10)/10.

To validate both the algorithm and kinematic features, the performance of
different pattern recognition classifiers was measured to see how much
variance exists between the three categories of spinal cord damage. A high
accuracy of classification shows that the proposed system of algorithm and
features can be used to differentiate levels of spinal cord damage, which is
useful in comparing damage levels in different froglets.

Implementation
The algorithm was implemented in Matlab except for the Yolo approach,
which was done using the original implementation given by the author
(Redmon and Farhadi, 2018 preprint). The average processing time was
1.12 s/frame in a 3.4 GHz Intel i7 processor, which takes about 1 h of
processing for each 1-min video. The output of our code is a list of the
detection information for each frame, the classification of the froglet (one of
the three spinal cord damage categories) and the four kinematic features that
can be used to further study the swimming performance. Code and videos
are available (see https://domingomery.ing.puc.cl/material/).
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We thank members of the Larraıń Lab for their support, especially our dedicated
former animal caretaker E.M.-O. who was a CONICYT PhD fellow.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: S.D.V., E.M.-O., M.P., J.L., D.M.; Methodology: S.D.V., E.M.-O.,
M.P., J.L., D.M.; Software: S.D.V., D.M.; Validation: S.D.V., E.M.-O., M.P., J.L., D.M.;
Formal analysis: S.D.V., E.M.-O., M.P., J.L., D.M.; Investigation: S.D.V., E.M.-O.,
M.P., J.L., D.M.; Resources: J.L., D.M.; Data curation: S.D.V., J.L., D.M.;
Writing - original draft: S.D.V., E.M.-O., M.P., J.L., D.M.; Writing - review & editing:
S.D.V., E.M.-O., M.P., J.L., D.M.; Visualization: S.D.V., D.M.; Supervision:
J.L., D.M.; Project administration: J.L.; Funding acquisition: J.L.

Funding
This work was supported in part by Fondo de Fomento al Desarrollo Cientıf́ico
y Tecnológico (Fondef) [grant no. ID15I10349], CARE Chile UC-Centro de
Envejecimiento y Regeneración [PFB 12/2007] and in part by Fondo Nacional
de Desarrollo Cientıf́ico y Tecnológico (Fondecyt) [grant no. 1161314]
from Comisión Nacional de Investigación Cientıf́ica y Tecnológica (CONICYT),
Chile.

Data availability
Code and videos are available on https://domingomery.ing.puc.cl/material/.

References
Abbass, S. J. and Abdulrahman, G. (2014). Kinematic analysis of human gait

cycle. College of Engineering Journal (NUCEJ) 1616, 208-222.

9

METHODS & TECHNIQUES Biology Open (2019) 8, bio042960. doi:10.1242/bio.042960

B
io
lo
g
y
O
p
en

https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/


Barrey, E. (1999). Methods, applications and limitations of Gait analysis in horses.
Vet. J. 157, 7-22. doi:10.1053/tvjl.1998.0297

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York,
USA: Springer.

Botev, Z. I., Grotowski, J. F. and Kroese, D. P. (2010). Kernel density estimation
via diffusion. Ann. Stat. 38, 2916-2957. doi:10.1214/10-AOS799

Combes, D., Merrywest, S. D., Simmers, J. and Sillar, K. T. (2004).
Developmental segregation of spinal networks driving axial- and hind limb-
based locomotion in metamorphosing Xenopus laevis. J. Physiol. 559, 17-24.
doi:10.1113/jphysiol.2004.069542

Edwards-Faret, G., Mun ̃oz, R., Méndez-Olivos, E., Lee-Liu, D., Tapia, V. S. and
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