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Mechanical deformation of amorphous solids can be described as
consisting of an elastic part in which the stress increases linearly
with strain, up to a yield point at which the solid either fractures
or starts deforming plastically. It is well established, however, that
the apparent linearity of stress with strain is actually a proxy
for a much more complex behavior, with a microscopic plastic-
ity that is reflected in diverging nonlinear elastic coefficients.
Very generally, the complex structure of the energy landscape
is expected to induce a singular response to small perturbations.
In the athermal quasistatic regime, this response manifests itself
in the form of a scale-free plastic activity. The distribution of
the corresponding avalanches should reflect, according to the-
oretical mean-field calculations [S. Franz and S. Spigler, Phys.
Rev. E 95, 022139 (2017)], the geometry of phase space in the
vicinity of a typical local minimum. In this work, we character-
ize this distribution for simple models of glass-forming systems,
and we find that its scaling is compatible with the mean-field
predictions for systems above the jamming transition. These sys-
tems exhibit marginal stability, and scaling relations that hold
in the stationary state are examined and confirmed in the elas-
tic regime. By studying the respective influence of system size
and age, we suggest that marginal stability is systematic in the
thermodynamic limit.

amorphous solid | elastic avalanche | marginal stability

The response of amorphous solids and yield stress fluids to a
mechanical deformation has attracted considerable attention

from the statistical physics as well as materials science commu-
nity in recent years. A large number of numerical and theoretical
studies have been devoted to the regime of stationary plastic flow
and, particularly in the limit of zero strain rate and negligible
thermal effects, the so-called athermal quasistatic (AQS) regime.
In this regime, it is now well accepted that the flow proceeds by
local instabilities called shear transformations that interact elas-
tically and can organize in larger-scale events called avalanches.
Each event results, at constant strain, in a stress or energy drop.
The statistics of these drops are typically a power law with a cut-
off that depends on system size. This behavior can be described
in terms of simple elasto-plastic models, in which subvolumes
of the glass are described as linear elastic elements that yield
above some critical stress, possibly triggering the yield of other
elements as the stress is transmitted through the system by an
elastic propagator. This simplified picture, while very successful
in describing the collective behavior at large deformation, com-
pletely ignores the fine structure of the energy landscape. This
structure is effectively responsible for the dynamics of the local
yield process, which in these models are described in terms of
some effective damping parameter.

Another set of studies has focused on the yield process itself,
i.e., the transition from an essentially reversible deformation
toward irreversible plastic flow or failure. This transition has
been shown to depend critically on the thermal history of the sys-
tem, with poorly annealed systems undergoing a rather smooth
transition to a flowing state, while very well-annealed systems
fracture abruptly (1). This difference, however, is not directly

related to the structure of phase space in the vicinity of a given
minimum, as it occurs only at large deformations.

Finally, considerable attention has been devoted recently to
the possible existence of so-called “marginally stable” glassy
states, in which the local phase space has a hierarchical orga-
nization that can be associated, in the language of spin glasses,
with a full breaking of the replica symmetry. Ordinary glasses,
on the other hand, have a simpler energy landscape, with many
minima separated by rather large barriers. The transition toward
marginally stable glasses was first explored in hard sphere sys-
tems (2–4), and some signatures of this structure have been
observed in recent simulations of soft spheres (5, 6), however
with a limitation to finite range interactions.

In this context, it was shown by Franz and Spigler (7) that the
hierarchical structure of phase space should result in a pecu-
liar response to mechanical deformation, somewhat similar to
the one observed in flowing systems. Shear transformations asso-
ciated with stress or energy drops have long been observed in
the elastic regime at low temperature both in experiment and in
simulation (8–11). However, the events observed at small defor-
mation are generally localized, partly reversible, and thermal-
history dependent, in contrast with the steady-state case (12–15).
Organization in avalanches displaying a power-law distribution
is observed only at large strains close to the yield point, the
exponent of the corresponding power law being still controver-
sial (11, 16–18). In contrast, the prediction made in ref. 7 is that
even at very small strains (vanishingly small in the mean-field
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calculation), the events are scale-free avalanches with a distri-
bution that reflects the structure of phase space described by
the Parisi function. A very specific prediction is made concern-
ing the exponent of the distribution of avalanche sizes in the
mean-field limit, and preliminary numerical (7) and experimen-
tal (19) results were shown to be close to this prediction. In
this work, we investigate avalanche statistics far below yielding,
in both 2 and 3 dimensions, for a system of particles interact-
ing through a Lennard-Jones potential. Different system sizes
and different thermal histories of the initial configuration are
considered. The simulations are carried out using the athermal
quasistatic protocol (AQS) in simple shear, volume-conserving
deformations. We find that even at very small strains, the mean
value of avalanche size is subextensive with system size, with
a finite-size scaling exponent that depends on thermal history.
By making a simple scaling ansatz, all of the data for the
avalanche size distribution can be collapsed onto a single mas-
ter curve, with a universal avalanche exponent in the transient
state clearly distinct from the one observed previously in the
steady plastic flow regime and close to the value predicted in
ref. 7. The mean-field calculation, being done in the limit of infi-
nite dimensions, does not convey any information concerning
the spatial structure and physical nature of the corresponding
events in real space. We therefore investigate the possibility
that the marginally stable state is amenable to an elasto-plastic
description (20) involving interacting zones characterized by a
“pseudogap.” Within this framework, a universal scaling relation
observed in the steady state is also valid in the transient state and
directly connects the avalanche energy with the dissipation in the
transient state at zero temperature and with the exponents char-
acterizing the pseudogap associated with marginal stability. The
latter is also found to behave as predicted by the elasto-plastic
models studied in ref. 20. By analyzing the dependence of the
results on thermal history and size, we infer that, in the ther-
modynamic limit, the amorphous solid shows intrinsic inelastic
behavior.

Results
Avalanche Number Density. To investigate the statistics of
avalanches, we use the avalanche number density R(S ,N ,Tini)
(21), which is defined as the number of avalanches per unit
of avalanche size (here measured by the corresponding energy
drop) S and per unit strain. N and Tini refer to the system size
(number of atoms) and the initial temperature from which the
system has been quenched to zero temperature. For reference,
the mode-coupling temperature is 0.325 in 2D and 0.435 in 3D
systems. The corresponding normalized avalanche distribution
P(S) and total avalanche number M per unit strain are

M (N ,Tini) =

∫ ∞
0

R(S)dS ;P(S ,N ,Tini) =R(S)/M [1]

and the total energy per unit strain dissipated in avalanches is

η(N ,Tini) =

∫ ∞
0

SR(S ,N ,Tini)dS =M 〈S〉. [2]

The systems and procedure are described in Methods. Here we
recall only that the range of strains used to collect the statis-
tics is γ ∈ [0, 0.02], much below the yield strain γY (γY≈ 0.06
and 0.08 in 2D and 3D systems, respectively). In this regime,
we have checked that R(S ,N ,Tini) is insensitive to the strain
interval used to collect the statistics, as illustrated in SI Appendix,
Fig. S5.

The number density of avalanches is shown as a function of
their size in Fig. 1. It displays a typical power-law distribution
with a cutoff that depends on system size and on thermal his-
tory. In contrast with the case of stationary plastic flow (13),
avalanches in the transient state are influenced by thermal his-
tory, which also determines the brittleness of the amorphous
material (1, 22). From Fig. 1 and SI Appendix, Fig. S4, it is seen
that, for a given system size, the cutoff value and the extent of
the power-law behavior in R become smaller as Tini decreases
and the stability of the initial configuration increases.

Fig. 1. Avalanche number density versus avalanche size. (A and B) Avalanche number density for different system sizes and thermal histories in 2D and
3D, respectively. (C and D) Data collapse using 2 exponents, df/d and b for the scaling as a function of system size, and 2 prefactors ξ1, ξ2 that depend
on thermal history (main text). The parameters are fitted from Fig. 2. The dashed line shows the avalanche exponent −1 predicted by mean-field theory
(7) near the ground state. The investigated strain range is far below yield strain, γ ∈ [0, 0.02], where the yield strain γY≈ 0.06 and 0.08 in 2D and 3D,
respectively.
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Scaling Analysis. Generally, one expects that the avalanche
number density R(S ,N ,Tini) can be described as a power-
law distribution with cutoff caused by finite-size effects, i.e.,
R(S ,N ,Tini)∼S−τ f (S/Sc), where Sc is the cutoff value influ-
enced by system size and thermal history, τ is the avalanche expo-
nent, and f (S/Sc) is a cutoff function. Introducing the reduced
size χ=S/Sc , we can make the following scaling hypothesis:

Sc ∼ ξ1N df /d [3]

R(S ,N ,Tini)∼ ξ2N bχ−τ f (χ). [4]

Here ξ1, ξ2 are prefactors which are determined by thermal his-
tory, and the exponents df /d and b, which a priori could also
depend on thermal history, describe the cutoff due to the finite
size of the system. Here df is the fractal dimension of avalanches
and d is the dimension of the system. The total avalanche energy
per unit strain η(N ,Tini) can then be written as follows:

η(N ,Tini)≡
∫ ∞
0

R(S ,N ,Tini)SdS ∼ ξ21ξ2N b+2df /d . [5]

For values of the avalanche exponent τ < 2, the cutoff value Sc

can be obtained from

Sc =

∫∞
0

R(S ,N ,Tini)S
2dS∫∞

0
R(S ,N ,Tini)SdS

∼ ξ1N df /d . [6]

One can then collapse the data onto a master curve, removing
the dependence on thermal history and system size. The param-
eters associated with system size (df /d and b) and with thermal
history (ξ1 and ξ2) can be fitted by the formulas Sc = ξ1N

df /d

and η(N ,Tini) = ξ21ξ2N
b+2df /d , for both 2D and 3D systems, as

shown in Fig. 2. The values of the fit parameters are given in SI
Appendix, Tables S1 and S2. In Fig. 1 C and D, after data collapse,
the avalanche number density shows a universal behavior and
the avalanche exponent is close to unity for 2D (τ = 0.98± 0.01)
and 3D (τ = 1.01± 0.01) systems. The fitting curve is shown in
SI Appendix, Fig. S6.

Energy Balance and Relation between Exponents. To check the con-
sistency of the scaling analysis, it is worthwhile to consider it in
relation with energy balance arguments. The total energy per
unit strain of the avalanches is η(N ,Tini) (Eq. 5), which depends
on system size and on thermal history. As the system is deformed
at zero temperature without thermostat, the avalanches consti-
tute the only mechanism that dissipates energy; therefore energy
balance implies that adding up this dissipated energy to the work
done on the system during loading should give the difference in
energy between an initial state at zero strain and the final strain
after straining by an amount γ. In other words, if NΓ(γ) is the
total energy dissipated in the process (which we expect to be
extensive), one has the identity

N γ−1(U (γ)−U (0)) =N γ−1ρ−1

∫ γ

0

σ(γ)dγ−NΓ(γ). [7]

Γ(γ) is the density of dissipated energy. It can be calculated from
the stress–strain curve using Eq. 7. The data displayed in Fig. 3 A
and B show that this quantity is indeed independent of system
size, as expected. If we now identify NΓ with the total energy of
the avalanches, we obtain the universal scaling relation

η(N ,Tini)∼N b+2df /d ∼N [8]

and the relation between exponents: b + 2df /d = 1. Fig. 3C
shows that this relationship, which was first obtained in the plas-
tic flow regime by Salerno et al. (21) and Salerno and Robbins
(23), also holds for the transient avalanches in the elastic regime.
Note that the expected relation for the prefactors, Γ = ξ21ξ2 is
also confirmed in Fig. 3D.

Conclusion Concerning the Avalanche Exponent. The avalanche
exponent in our system is consistent with the theoretical work
of Franz and Spigler (7), who confirmed their prediction by pre-
liminary simulations of soft elastic spheres above jamming. Our
system of Lennard-Jones particles with attractions is significantly
different, so that the result suggests a universal exponent for

Fig. 2. Cutoff of the distribution of avalanche sizes and total avalanche energy. (A and B) Cutoff value Sc versus system size in 2 and 3 dimensions and for
different thermal histories. The dashed line is a fit to a power law Sc = ξ1Ndf/d . (C and D) Total avalanche energy versus system size. The dashed line is a
power law η(N, Tini) = ξ2

1ξ2Nb+2df/d , where df/d, ξ1 are obtained from fitting Sc.
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of Γ for different sizes. (C) Universal finite-size scaling relation. (D) Correlation between energy dissipation and avalanche energy densities. The dashed line
is y = x. For Γ, the strain range is γ ∈ [0, 0.02].

avalanches in the elastic regime, independent of interactions and
of dimensionality. A similar avalanche exponent is also observed
in an independent work (24), in which the avalanche size is char-
acterized using stress drops. This exponent is clearly distinct from
the one obtained at large plastic deformation in the stationary
state using AQS or overdamped dynamics at zero temperature.
In the latter case, the avalanche exponent is larger than unity
(close to 1.3 in simulations and to 1.5 according to depinning
mean-field predictions) as confirmed both by simulation and by
theoretical work (23, 25, 26). This distinction is qualitatively con-
sistent with experiments performed in metallic glasses (16) or
simulations of athermal cycling shear (17), which show a sharp
transition from a transient regime to a steady state and a differ-
ent avalanche exponent in these 2 states. The large avalanches
in the steady state are system spanning and history independent,
and they can be described as metabasin to metabasin transition
on the potential energy landscape (PEL). In contrast, the small
strains applied here perturb the system within a metabasin state
of the PEL, and the avalanche is caused by basin to basin transi-
tion. Statistically, these 2 kinds of transition belong to 2 different
universality classes.

As mentioned in the Introduction, the Franz–Spigler result is
related to the hierarchical structure of the free energy landscape
in a high-dimensional system. While the analysis is consistent
with the Franz–Spigler result that the local minima within this
landscape are marginally stable, it does not give any insight into
the spatial structure and system size dependence of the asso-
ciated events. In the following, we pursue the analysis of our
simulation data to get some insight into this aspect, in an attempt
to relate it to the view of marginal stability proposed by Lin and
Wyart (20) in the context of elasto-plastic models.

Avalanche Mean Size < S> and Distribution Cutoff Sc . In addition
to the avalanche exponent (τ), the scaling parameters obtained
by fitting the data plotted in Fig. 2 also provide relevant infor-
mation on avalanche statistics. The fractal dimension df char-
acterizes the geometry of the avalanche event. We find that it

decreases when the initial stability of the system, characterized
by Tini, increases. Fig. 4 shows that the mean value of avalanche
size <S > is also sensitive to system size and thermal history,
with a scaling exponent α larger than zero and subextensive, as
in the steady state (13). This result contrasts with the view that
plastic activity in the elastic regime of amorphous solids is local-
ized and independent of system size (14, 27). Again, a check of
the consistency of the results can be obtained by relating the val-
ues of the different exponents. As first discussed by Lin et al.
(28, 29), for 1<τ < 2, a scaling relation α=

df
d

(2− τ) holds. In
our case, τ ≈ 1, the scaling relation reduces to α= df /d , so that
Sc ∼<S >. Fig. 4D confirms the relation α= df /d , and indeed
the data can be collapsed equally well using Sc or <S >, as
shown in SI Appendix, Fig. S6.

Fig. 4C shows that the scaling exponent α is monotonically
decreasing with the ratio of shear to bulk modulus G/B , which
usually characterizes the ductility in amorphous materials (15,
30, 31). This suggests a relation between ductility and avalanche
behavior in the elastic regime. We also note that, when the sta-
bility of the initial state increases (Tini decreases), α becomes
smaller and could eventually vanish. That situation suggests a
transition from subextensive to localized avalanches, which could
be connected with ductile to brittle transition dominated by
initial stability (1).

First Avalanche Event and Pseudogap Exponent θ. We now dis-
cuss the interpretation of our data within the context of the
elasto-plastic model, concentrating on the statistics of the first
avalanche event observed upon applying strain to the system. To
this end, we consider the evolution of the dissipated energy Γ
with γ (Fig. 5). For a given thermal history, Γ as a function of
strain varies slowly except in the vicinity of the very first plastic
event, εγ |γ=0 (14, 32). Here εγ |γ is defined as the incremental
strain εγ needed to reach the next plastic event after the system
has been strained over an interval [0, γ] (SI Appendix, Fig. S7A).
The behavior shown in Fig. 5A interpolates between perfect elas-
tic behavior without dissipation for γ < εγ |γ=0 and the regime
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Fig. 4. Mean value of the avalanche size < S>. (A and B) < S> versus system size N for different thermal histories, in 2D and 3D systems. The dashed line
is a fit by the equation < S>∼Nα. (C) Finite-size exponent α versus shear to bulk modulus ratio G/B. (D) Correlation between mean value exponent α and
cutoff value exponent df/d for various thermal histories and dimensions.

εγ |γ=0� γ� γY in which dissipation is extensive and Γ(γ) =
ξ21ξ2. The strain scale for this crossover, εγ |γ=0, is a crucial quan-
tity in the analysis of systems presenting marginal stability, as
would be consistent with our observations for τ . Indeed, in a
system presenting a pseudogap for low-lying excitations of the

form P(x )∼ x θ (here x is the strain associated with the exci-
tation), extreme value statistics imply that the value of εγ |γ=0

scales with system size as <εγ >∼N−
1

1+θ (33). Here, a scaling
<εγ > |γ=0∼N−0.66 is obtained as shown in Fig. 5B, imply-
ing θ≈ 1/2. The latter value is consistent with the theoretical

Fig. 5. The mean value of first avalanche event strain. (A) Γ(γ) versus γ for N = 10,000 in a 3D system. (A, Inset) Zooming in Γ(γ) vs. γ curve for different
thermal histories, the vertical line shows the mean value of first avalanche event strain <εγ > |γ=0; from left to right is Tini = 0.87, 0.61, 0.479, respectively.
(B) <εγ > |γ=0 versus system size N for different thermal histories in the 3D system. The dashed line is N−0.66±0.02 where the exponent is fitted to the
data. (C) Evolution of θ with the strain window γ for different thermal histories. The dashed line is the mean value of θ over the interval γ ∈ [0.005, 0.015].
We define this value as the plateau value, from top to bottom, θPlateau = 0.26± 0.01, 0.21± 0.01, 0.11± 0.01 for Tini = 0.87, 0.61, 0.479, respectively. (D)
Correlation between finite-size scaling exponents α, df/d and the exponent θ/(1 + θ)|Plateau in the 3D system.
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prediction of a model of elastically interacting events (20) and
other simulation results (14, 32, 34–36).

Within the framework of elasto-plastic models (29), the expo-
nent θ can be related to the exponent α that governs the
dependence of the mean avalanche amplitude <S > on system
size. In the transient regime, the argument implies compar-
ing the number of avalanches over a stress interval, M ∼∆σ/
< εγ >, and the corresponding change in plastic strain,
<∆γ >p∼M <S >/N . As ∆σ/∆γp does not depend on sys-
tem size (SI Appendix, Fig. S8), one obtains the relation between
exponents α= θ/(1 + θ).

One is then faced with the paradoxical result that the data
indicate a significant dependence of α on the system prepa-
ration, while θ appears to have the universal value 1/2. This
discrepancy can be resolved by considering the fact that the
avalanches that contribute to the definition of α are actually
collected over a finite strain range, γ ∈ [0, 0.02]. On the other
hand, the value θ discussed previously involves only the very first
event at γ= 0, εγ |γ=0. If we now extend the analysis to finite
values of γ and define a γ-dependent value of θ (characteriz-
ing the statistics of εγ |γ), a very different value of θ is obtained,
as illustrated in Fig. 5C. In fact, θ drops immediately from its
initial value close to 1/2 to a much lower value that depends
on thermal history and remains roughly constant over the whole
strain interval. This behavior corresponds to the one predicted
by the model of ref. 20, and the corresponding value of θPlateau

is perfectly correlated to the one obtained for α, as illustrated
in Fig. 5D.

Discussion and Conclusions
We have presented a detailed study of the avalanches that take
place in the elastic portion of the stress–strain curve of an
amorphous solid, or “elastic avalanches.” We find several evi-
dences that these avalanches have the characteristics expected
for marginal states of dense amorphous packings; in particu-
lar, the avalanche exponent τ takes the value τ = 1 predicted
by mean-field theory for such packings (7). We propose to take
this observation as a possible indication of a locally hierarchical
energy landscape and explore the possibility that the corre-
sponding events can be described within the framework of an
elasto-plastic description in which marginal stability is associ-
ated with a pseudogap in the distribution of excitations. Within
this framework, the exponent characterizing the pseudogap has
a nontrivial evolution with strain, starting from a universal value
1/2 at zero strain and evolving rapidly toward a plateau that
depends on thermal history. This behavior also corresponds to
the expectations of the model described in ref. 20.

In addition, we find that the parameters characterizing
avalanche distribution, energy dissipation, and pseudogap are
related by 3 universal scaling relations b + 2df /d = 1, df /d =
α, and α= θ/(1 + θ) and an identity Γ = ξ21ξ2, regardless of
dimension. While these results are established using quasistatic
simulations, the corresponding analysis based on scaling argu-
ments and energy conservation should still hold at finite strain
rate and inertia.

In recent years, many efforts have been devoted to the iden-
tification of marginal stability in amorphous packings, and the
present consensus (4, 5) seems to be that this feature is observ-
able only in systems with finite-range, contact interactions, at
relatively low packing fractions in the vicinity of the jamming
point. It is therefore surprising that features of marginal sta-
bility are observed in systems with long-range interactions and
at packing fractions that are characteristic of high-density glassy
systems such as metallic glasses. We now tentatively explain this
observation based on 2 observations. First, the existence of a
true, dissipation-free elastic regime without avalanches depends
on the manner in which the thermodynamic limit and the limit
of zero strain are taken. The dissipation Γ(γ) vanishes at small

strain over a scale εγ |γ=0 that scales inversely to the system size,
so that one has the 2 equalities lim

N→∞
lim
γ→0

Γ(γ) = 0

lim
γ→0

lim
N→∞

Γ(γ) = ξ21ξ2
. [9]

The amorphous solid in the thermodynamic limit is therefore
intrinsically dissipative, as noted in previous theoretical (37) and
simulation (38) works. On the other hand, any finite system will
have a finite range of ideal elastic behavior. Our study, how-
ever, indicates that this range will be crucially dependent on the
thermal history and sample preparation. Indeed the behavior
observed for the pseudogap exponent and schematically summa-
rized in SI Appendix, Fig. S9, as well as the behavior of the expo-
nent α (Fig. 3), indicates that as the system is better annealed the
range of elastic behavior will rapidly increase and the avalanches
will become more fractal, with α= df /d approaching zero. As
a result, it can be expected that in very well-annealed systems
such as those studied in refs. 4, 5, and 36 the size needed
for observing large-scale avalanches at small strains could be
prohibitively large, so that observed excitations are limited
to localized defects. The need to use larger sizes to properly
describe the scaling behavior in the response of highly annealed
systems was also pointed out in ref. 36. Whether or not there is
an actual transition where α and θPlateau vanish as a function of
initial annealing conditions is an issue that cannot be addressed
here, although this may be consistent with the idea of a sharp
change from ductile to brittle behavior described in ref. 1.

Methods
Sample Preparation. We use 2 well-studied glass-forming models to inves-
tigate the avalanche behavior within the elastic regime: One is a 2D
Lenard-Jones binary model (35), and the other one is a 3D Lenard-Jones
binary model (39) with force shift (40). All of the units are reduced by the
mass m, length scale σ, and energy ε. The number density is fixed at ρ= 1.02
and 1.20 for 2D and 3D systems, respectively. The number ratio between
large (NL) and small (NS) atoms is NL : NS = (1 +

√
5)/4 in 2D and 80 : 20 in

3D. We first annealed the sample to equilibrium state at Tini = 0.335, 0.4, 1.0
in 2D (SI Appendix, Fig. S1) and Tini = 0.479, 0.61, 0.87 in 3D using the NVT
ensemble, respectively. The temperature was controlled by a Nosé–Hoover
thermostat (41) with periodic boundary conditions. The energy was then
minimized to obtain the inherent structure at zero temperature, and we
use Tini to represent the thermal history of each system. In our 2 different LJ
systems, we can take as a reference the mode-coupling temperature TMCT,
where TMCT = 0.325 in 2D (35) and TMCT = 0.435 in 3D (42). All of the sim-
ulations were conducted with the molecular dynamics simulation software
LAMMPS (43).

Avalanche Statistics in the Elastic Regime. To investigate finite-size effects
and the statistics of avalanche distribution, we prepared series of samples
with different sizes for each Tini: In 2D, we used 2,000 independent samples
for N = 200, 500 samples for N = 1,000, 100 samples for N = 10,000, and
50 samples for N = 100,000 and in 3D we used 50 samples for N = 2,000,
20 samples for N = 10,000, 10 samples for N = 80,000, and 1 sample for
N = 640,000. Due to the complexity of the potential energy landscape, the
avalanche events are highly dependent on the deformation direction (44)
(SI Appendix, Fig. S3), and we used the directional simple shear protocol
to improve the statistics, in which a simple shear deformation gradient was
used in different directions. As illustrated in SI Appendix, Fig. S2, in the 2D
system, 12 directions from 0 to π in the xy plane are used for each sample,
and in the 3D system, simple shear deformation was applied in the xy, xz,
and yz planes, respectively, and with again 12 directions from 0 to π in each
plane.

Although strain and stress are tensors, for the simple shear deformation,
the shear strain and shear stress dominate the mechanical deformation, and
then we describe the deformation using the scalars γ and τθ . As shown
in SI Appendix, Fig. S3, we used an athermal quasistatic shear protocol to
deform the sample. First, the sample is affinely sheared by a small step strain
and then the sample is minimized at a deformed strain, repeating the pro-
cess until the total strain reaches the desired value. The step strain both in
2D and in 3D is ∆γ= 10−5 for all systems except the largest sample in 3D,
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where we used ∆γ= 2× 10−6. During the avalanche event, there is a stress
drop and an energy drop and we define the avalanche size S as

S = N(∆U + ∆γτθ/ρ), [10]

where ∆U is the potential energy drop per atom during avalanche, ∆γ is
the strain step, τθ is the stress just before the avalanche, and ρ is the num-
ber density. We use S> 0.01 as a threshold to recognize avalanche events.
We have tested different thresholds from 0.01 to 0.1, with qualitatively sim-
ilar results. Following ref. 23, we define the avalanche number at a given
avalanche size and system size per unit strain as R(S, N, Tini). Note that both
the avalanche number and avalanche size in the elastic regime not only

depend on the system size N, but also depend on the thermal history Tini (SI
Appendix, Fig. S4).

Data Availability. All data relevant to this paper are available at https://doi.
org/10.17605/OSF.IO/U6PYF.
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