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Abstract: Health problems are often idiosyncratic in nature and therefore require individualized
diagnosis and treatment. In this paper, we show how single-case experimental designs (SCEDs)
can meet the requirement to find and evaluate individually tailored treatments. We give a basic
introduction to the methodology of SCEDs and provide an overview of the available design options.
For each design, we show how an element of randomization can be incorporated to increase the
internal and statistical conclusion validity and how the obtained data can be analyzed using visual
tools, effect size measures, and randomization inference. We illustrate each design and data analysis
technique using applied data sets from the healthcare literature.
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1. Introduction

“Averaging data across many subjects can hide a multitude of sins: The experimental treatment
may fail to affect the behavior of some subjects, and may even lead to contrary effects in others.
As a consequence, statistically significant results based on large sample sizes are not persuasive.” [1].
Most people trust their healthcare providers with adequate care of a large variety of symptoms,
ranging from a simple cold to more complex health problems, such as chronic pain, chronic diseases,
or allergies. The opening quote by Perone highlights that rigorous experimental testing and persuasive
results are needed to justify the patients’ trust in their healthcare providers. Perone also highlights the
individuality of each person when it comes to finding an effective treatment, which by definition limits
the applicability of large-scale group studies for situations in which symptoms are highly idiosyncratic
in nature.

Following this logic, a shift towards individualized testing and experimental results in healthcare
followed the accumulation of evidence that general healthcare diagnoses and interventions often fail
to accurately describe and relieve patient symptoms (e.g., [2–4]). Already 25 years ago, McHorney
and Tarlov recognized that the available health status surveys at the time were not adequate for
individual patient monitoring in clinical practice [5]. McHorney and Tarlov reviewed five available
health status measures and concluded that “the most problematic feature of the five surveys was
their lack of precision for individual-patient applications. There was little evidence of the validity of
the five surveys for screening, diagnosing, or monitoring individual patients. At this time, however,
it seems that new instruments, or adaptation of existing measures and scaling methods, are needed for
individual-patient assessment and monitoring”. Similarly, finding effective treatments for individual
patients is difficult to achieve without individually tailored interventions. Turk argued in his influential
paper on customizing pain treatments that a substantial proportion of patients does not benefit from
generic treatments in spite of an increasingly better understanding of the mechanisms of pain [4].
According to Turk, limited success of chronic pain treatments at the time was caused by assuming
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homogeneity between patients, which Turk labeled as the “patient and treatment uniformity myths”.
In Turk’s view, the remedy to this myth is a better matching of empirical data to patient characteristics
in order to design individual treatment plans.

These limits of group studies, specifically in healthcare, were recognized in clinical practice after
decades, in which they were thought to be the gold standard and the “N-of-1 randomized controlled
trial” was included among the highest levels of evidence in the Oxford Centre for Evidence-Based
Medicine and in the Evidence-Based Medicine Guidelines of the American Medical Association [6–8].
Outside the medical field, N-of-1 randomized controlled trials have already long been in use under the
name single-case experimental designs (SCEDs). In this paper, we review and empirically demonstrate
the use of a specific form of individualized experimentation: randomized SCEDs. Vohra [9] accurately
summarized a shift towards SCEDs in healthcare and evidence-based medicine, when she said that
“although evidence-based medicine has embraced large parallel group trials as the gold standard for
health research, there are limitations in the ability to apply data from these trials into routine clinical
practice. Rigorous research methods that yield high-quality data from individual patients have the
opportunity to not only inform the care of that individual, but also the group of individuals who
suffer from the same condition(s). Rather than starting with a group, and extrapolating inferences at
the level of the individual, single-case experimental designs (sic) evaluate treatment response at the
level of the individual, and when combined, may inform how we should treat groups of patients with
similar conditions”.

As Vohra explained, SCEDs turn the logic of group studies upside down to find effective treatments
in healthcare applications, in which the individual is the unit of analysis and intervention. SCEDs
come with the additional advantage that they require fewer resources and are often practically more
feasible, for example when many variants of a therapy exist and they cannot all be tested in large-group
studies [10].

SCEDs are thus viable and powerful alternatives to group studies in healthcare research. To draw
valid conclusions from SCEDs about novel or existing treatments, it is pivotal to choose a strong design
and adequate data analysis tools. In this paper, we showcase how an element of randomization can be
incorporated into the design of an SCED to strengthen the internal validity of the experiment. We first
define SCEDs, distinguish SCEDs from other non-experimental forms of case research, and present a
typology of different types of SCEDs. We then move on to define and discuss each type accompanied
by an applied publication from the healthcare literature. For each applied data set, we explain stepwise
how an element of randomization can be implemented and how the obtained data can be analyzed
using visual analysis, effect size calculation, and randomization tests.

2. Single-Case Experimental Designs: Definition and Overview of Design Options

Contemporary textbooks on SCEDs follow a long tradition. An early and fierce proponent of
SCEDs was B.F. Skinner [11], proclaiming in his 1956 seminal paper on the scientific method that “we
are within reach of a science of the individual. This will be achieved, not by resorting to some special
theory of knowledge in which intuition or understanding takes the place of observation and analysis,
but through an increasing grasp of relevant conditions to produce order in the individual case”.

Excellent introductory texts on SCEDs for healthcare professionals are available in Morgan
and Morgan [12,13], who credited Skinner as an important figure in the advancement of SCEDs for
behavioral and healthcare sciences. Other recommended textbooks on the methodology of SCEDs
include Barlow et al. [14], Kazdin [10], and Ledford and Gast [15]. In spite of the fact that many
different (sub-)forms of SCEDs exist, they all have some common underlying features. All the forms of
SCEDs comprise of repeated measurements (e.g., daily disability ratings) taken from a single entity
(e.g., a pain patient) under different levels of at least one independent variable (e.g., treatment for
chronic pain) [16,17]. Table 1 provides a typology of SCEDs with four overarching categories: phase
designs, alternation designs, multiple baseline designs, and changing criterion designs (cf. [18,19]).
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Within each of these categories, different design options exist. For further information about each
design example, interested readers are referred to the key references in Table 1.

Table 1. Overview of single-case experimental design (SCED) options with references for further reading.

Type of SCEDs Design examples Key References

Phase designs

AB
ABA

ABAB
ABAC

ABACA

[10,14,15]

Alternation designs
Completely randomized design

Randomized block design
Alternating treatments design

[16,20]
[21–24]
[25–28]

Multiple baseline design
Across participants
Across outcomes
Across settings

[29,30]

Changing criterion design Single-point criteria
Range-bound criteria

[31,32]
[33,34]

A systematic review of published SCEDs with health behavior outcomes is available in a
study by McDonald et al. [35]. As the authors pointed out, it is important to clearly distinguish
these types of single-case experimental research from other types of non-experimental case research.
In non-experimental case studies, no intervention takes place. Instead, the behavior of interest is
observed and measured over time as it occurs naturally. As such, observational case studies can give
valuable insights about how behaviors evolve naturally over time. Contrary to that, the ultimate
goal of SCEDs as a form of individualized experimentation is to assess whether a causal relationship
exists between the independent and dependent variables. This can give information about which
treatment works best for a patient by observing changes in the health outcome behavior under different
manipulations of the independent variable (e.g., different therapies for decreasing self-harming
behavior in a patient with depressive symptoms). McDonald et al. pointed out that, in experimental
forms of single-case research with health behavior outcomes, it is advised to incorporate randomization
into the design if possible. In the following paragraphs, we define the concept of randomization, define
each type of SCED, present published data sets from the healthcare literature for each type, and show
how an element of randomization can be included in each category to strengthen the internal validity
and analyze the data using the randomization tests.

3. Randomization in Single-Case Experimental Designs

The incorporation of an element of randomization in the design of experiments has a long-standing
history and interested readers are referred to Finch [36], Kempthorne [37], and Onghena [38] for an
extensive historical discussion of the concept. Randomization is not a prerequisite for conducting
an SCED. However, the added value of incorporating an element of randomization in the design
of an SCED has been extensively discussed in the literature. It is recommended that an element of
randomization should be incorporated whenever the research conditions under consideration allow it
to enhance the scientific credibility of SCEDs [39–42]. Onghena and Edgington further contended that
randomized experiments are in many aspects superior to non-randomized experiments due to stronger
control over confounding factors, such as time, the participants, or the setting [18]. Furthermore,
randomization facilitates some difficult decisions in the planning phase of an SCED. For example, the
randomization procedure helps make decisions about the order, in which treatments are presented to a
patient [43].

In addition to the advantages that randomization offers in terms of enhanced scientific credibility,
control over internal validity threats in the planning of an SCED, randomization has great added value
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to the statistical conclusion validity. Kempthorne pointed out that randomization in the design of
experiments frees the researcher from having to use statistical models, of which assumptions might
not actually have been met by the experimental procedure and resulting data [44]. Similarly, Todman
and Dugard asserted that the incorporation of randomization in the design of experiments makes such
experiments eligible for statistical tests based on the random assignment procedure actually utilized in
the experiment [45].

These statistical tests are called randomization tests. Randomization tests are valid and powerful
significance tests under the assumption that “in experiments in which randomization is performed,
the actual arrangement of treatments . . . is one chosen at random from a predetermined set of possible
arrangements” [24]. Comprehensive textbooks on randomization tests in general and in particular for
SCEDs are available in Edgington and Onghena [46] and Todman et al. [21], respectively. The steps
involved in conducting a randomized SCED and analyzing the obtained data with a randomization test
are explained in Heyvaert and Onghena [47] and Tanious et al. [48]. Briefly, these steps are as follows:
hypothesis formulation and determination of the significance level and the number of measurements;
determination of the randomization scheme; conduct of the experiment and calculation of the observed
test statistic; and obtaining of the reference distribution and p-value.

To better understand the concept of randomization in SCEDs, it might be helpful to reconsider
how randomization is used in group studies. In group studies, participants are assigned randomly
to the different experimental conditions. In SCEDs, where one entity is exposed to all the levels of
the independent variable(s), this is per definition not possible. Instead, measurement occasions are
randomly assigned to the different levels of the independent variable(s) [18,49]. In research practice,
however, oftentimes there are restrictions for this random assignment procedure of measurement
occasions to treatments in SCEDs due to ethical or financial reasons. It might, for example, be unethical
to withhold treatment from a patient with chronic pain just for the sake of adhering to the randomization
scheme. Similarly, the duration of a study and the length of an intervention phase depend, in part,
on the financial resources available. If financial resources are limited and the study duration is
accordingly short, a fast introduction of the intervention is preferred, which places restrictions on the
random assignment procedure. Additionally, the chosen SCED might place restrictions on the random
assignment procedure. These restrictions will be discussed per type of SCED in subsequent sections.

4. Phase Designs

Phase designs consist of measurements taken in consecutive phases that implement different
levels of the independent variable(s). In the terminology of phase designs, “A” stands for baseline
measures, i.e., measurements of the dependent variable(s) without any manipulation of the independent
variable(s), and “B” stands for experimental measures, i.e., measurements of the dependent variable
with the manipulation(s) of the independent variable(s) in place [14,15]. According to the What Works
Clearinghouse guidelines [50], three measurements per phase are required to meet the minimum
evidence standards and five measurements per phase are recommended to meet evidence standards
without reservation for all the designs under the phase category (see also [51–53]).

The most basic forms of phase designs are AB and ABA designs. In the former, initial baseline
measurements are followed by measurements taken under the manipulation of the independent
variable(s). In the latter, the intervention is withdrawn and the B-phase measurements are followed
by a second A-phase. The ABA design is often also referred to as the withdrawal design [14].
While both of these designs are initially appealing due to their simplicity, they come with significant
drawbacks. Guidelines on the conduct of SCEDs require at least three potential demonstrations of an
effect to demonstrate experimental control over a dependent variable (e.g., [50,54]). An effect can be
demonstrated with each phase change, and thus the AB design offers one potential demonstration,
while the ABA design offers two potential demonstrations. A related concern is that, with few phase
changes, any observed effect might coincide with external circumstances [50]. Ledford and Gast
summarized the problems associated with the AB and ABA designs as follows:
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(a) “The ABA design is more useful than the basic AB design from an experimental perspective.
However, you would not select this design at the outset to evaluate intervention effectiveness due
to the practical and ethical considerations of terminating a study with a participant in baseline
conditions. From a research perspective, if ethically defensible and practical, it would be more
appropriate to expand to an ABAB design, thereby replicating the effect of the independent
variable on the target behavior.” [15].

(b) As Ledford and Gast pointed out, sometimes practical and ethical reasons render it impossible
to implement more intricate designs [15]. Therefore, not to dismiss the AB design altogether,
Michiels and Onghena [55] and Onghena et al. [56] discussed techniques for increasing the
experimental validity of this design. These techniques include incorporating randomization into
the design, colleting a sufficiently large number of data points, and replicating across participants.

(c) As Ledford and Gast further explained, an ABAB design offers one more possibility of
demonstrating the effect of an independent variable than an ABA design. With three potential
demonstrations of an effect, the ABAB design is therefore the minimum phase design to meet
the quality standards. If phase designs implement more than one distinct manipulations of the
independent variable, each level is labeled with a distinct letter in alphabetical order. For example,
in the ABACA design, two additional levels of the independent variable are present (B and C). It is
also possible for two treatments to be administered within the same phase. The use of hyphens
between each distinctive phase is then recommended to delineate the phases from one another.
For example, in an A-B-A-BC design, intervention B is first administered separately and in the
second experimental phase together with intervention C.

Figure 1 presents the results of an ABAB design used to investigate the effectiveness of occupational
therapy with adults demonstrating agitation and post-traumatic amnesia following brain injury [57].
During the A-phases, subjects received daily standard occupational therapy, including systematic
instruction, task adaptation, environmental modification, physical guidance, and facilitation. During
the B-phases, daily occupational therapy was provided using the Perceive, Recall, Plan and Perform
(PRPP) System approach. As Nott et al. explained, the PRPP System is a dynamic intervention process
based upon all the stages of information processing [57]. During both phases, the subject’s information
processing capacity was measured daily as a percentage score of task performance. Thus, a higher
score indicates better information processing by the subject. Figure 1 shows the results of a 35-year-old
female with diffuse axonal injury resulting in restlessness, excessive response to external stimuli,
poor attention, and memory impairment.
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In phase designs, all the data are graphed as one continuous time-series, facilitating the observation
of changes over time. Vertical dashed lines indicate phase changes. For all analyses in this paper,
we look at the data aspect level, which may be operationalized as the mean score in a given phase [54].
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A visual inspection of the means in each phase reveals that there is a noticeable difference in the level of
the scores between A1 and B1. This change in level is not reverted when the intervention is withdrawn,
even though the level of the scores in A2 is lower than in B1. When the intervention is introduced
again (B2), there is a noticeable level change in score when compared to that in the preceding baseline
phase (A2).

A randomization test can supplement this visual assessment with a quantification (test statistic)
and information about the statistical significance of the effect (p-value). The general null hypothesis
is that the treatment is ineffective. The researchers expected that the intervention would lead to an
increase in information processing. Therefore, we chose this as our one-sided alternative hypothesis.
We chose the conventional significance level α of 0.05. To quantify the differences in level, we used
the sum of B-phase means minus the sum of A-phase means as our test statistic [58], which can be
written as:

(
B1 + B2

)
−

(
A1 + A2

)
. If a researcher expects the scores to be lower in the B-phases,(

A1 + A2
)
−

(
B1 + B2

)
might be a more suitable test statistic. Two-sided tests can be performed by

using the absolute difference between the sum of the B-phase means and the sum of the A-phase means

written as:
∣∣∣∣(A1 + A2

)
−

(
B1 + B2

)∣∣∣∣.
In total, 24 measurements were taken. For the validity of the randomization test, it is important

to assume that this had been determined a priori. In a phase design, an unrestricted randomization
scheme, in which each measurement can either be A or B, is, per definition, not possible. Therefore,
a restricted randomization scheme that takes the phase nature of the design into account should
be chosen. Following guidelines on the conduct and analysis of SCEDs, we chose a restricted
randomization scheme that allows for at least three measurements per phase. The number of possible

ways of randomizing 24 measurements was calculated as:
(

24− 3(3 + 1) + 3
3

)
= 455, so that each

of the four phases contains at least three measurements (cf. 58). Below is a non-exhaustive list of
randomizations for illustrative purposes (the experiment, as it was carried out, is marked in bold):

AAABBBAAABBBBBBBBBBBBBBB
AAAABBBAAABBBBBBBBBBBBBB
AAAAABBBAAABBBBBBBBBBBBB
AAAAAABBBAAABBBBBBBBBBBB

. . .

AAAAAABBBBBBAAAAAABBBBBB
AAAAAAAAAAABBBBBAAAABBBB
AAAAAAAAAAAABBBBAAABBBBB.

The observed test statistic was calculated as: (63.67 + 85.67) − (29.67 + 54.33) = 65.33, meaning
that, on average, task performance by the subject increased by 65.33% during the intervention phases.
How does this observed test statistic compare to the test statistics that would have been obtained with
the other randomizations? To answer this question, we needed to locate the observed test statistic
in the reference distribution of all the test statistics possible, given the randomization scheme (see
Figure 2).

The vertical red line indicates the observed test statistic. All the test statistics on this line or
further to the right indicate test statistics at least as large as the observed one. In this case, none of
the other randomizations would have led to a test statistic as high as or higher than the observed one.
The p-value of a randomization test equals the number of test statistics as large as or larger than the
observed one (when the expected effect is an increase in the dependent variable). Thus, for the data
in Figure 2, the p-value was calculated as: 1

455 = 0.002, and we rejected the null hypothesis that the
treatment is ineffective.
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5. Alternation Designs

Contrary to phases designs, alternation designs do not consist of distinctive phases. Rather, as the
name suggests, alternation designs rely on the fast alternation of treatments that are each associated
with a distinct stimulus [25]. Another contrast to phase designs is that, in alternation designs, there
is no requirement for a minimum number of measurements under the same condition to establish a
steady pattern of responding before alternating the treatments [59]. In alternation designs, “A” refers
to measurements taken under the first treatment or baseline and “B” refers to measurements taken
under the second treatment. If more treatments are tested, each subsequent treatment is labeled
with a distinct letter in alphabetical order. The completely randomized design is the simplest design
in the alternation category [16,60]. In a completely randomized design, each measurement has an
equal chance of being either A or B. As Edgington pointed out, this random assignment procedure is
analogous to the random assignment of subjects to treatments in between-group studies [22]. While
this design has a strong internal validity, a researcher might end up with an undesirable order of
treatments [61]. For example, if a researcher conducts an experiment with 10 measurement occasions to
test the effect of a novel exercise therapy for patients with arthritis, one of the possible randomizations
would be AAAAABBBBB. Such a design has weak control over internal validity threats such as
history and maturation as discussed in the section over AB designs. Alternating treatments designs
and randomized block designs rule out such undesirable sequences. In an alternating treatments
design, a limit is placed on the maximum number of measurements taken consecutively under the
same condition. Recommended limits are two consecutive measures [27,28] or three consecutive
measures [14]. In some research situations, however, it is not feasible or undesirable to administer
the same treatment twice or three times in a row within a given timeframe. A randomized SCED that
takes this constraint into account is the randomized block design. Edgington [22] gave an example
of a randomized block SCED by referring to a study of Smith [62]. Smith tested the effectiveness
of three different drugs to relieve narcoleptic symptoms over a period of 15 days. Smith divided
the 15 days into five segments of three days. During each segment of three days, each drug was
administered once and the order of administration was determined randomly with one drug per day.
The logic of a randomized block SCED becomes clearer in comparison to the block logic in group
studies. In group studies using a randomized block design, participants are allocated randomly to
treatment blocks consisting of different conditions, whereas in a randomized block SCED treatments
closely together in time are grouped into blocks and the order of treatment administration within each
block is randomized [61].

Figure 3 presents the results of an alternating treatments design used to examine the effect of
androgen supplementation in six healthy oral contraceptive users, who experience mood disturbances
during regular oral contraceptive use [63]. Each study phase consisted of one menstrual cycle, during
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which the subjects continued their regular contraceptive use, supplemented either with a placebo
(A-measurements) or with supplemental androgen (B-measurements). For both treatments, daily mood
measures were taken with a single item question to be answered on a 5-point Likert scale, where
5 indicated a very positive mood. Figure 3 shows the results of a 23-year-old female who had been an
oral contraceptive user for nine years prior to the study.Healthcare 2019, 7, x 8 of 20 
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Whereas in phase designs the data for all treatments are plotted as one continuous time-series,
in alternation designs each treatment is plotted as its own time-series. Each data point represents the
mean mood score for that menstrual cycle. A visual inspection of Figure 3 reveals that two of the
A-measurements are higher—indicating a better mood—than all B-measurements. This is contrary to
the expected treatment effect.

For the randomization test, the null hypothesis and significance level remain the same as for the
phase design. The alternative hypothesis is that the treatment leads to an increase in mood score.
The researchers determined to take six measurements in total for each participant with each treatment
for three menstrual cycles. The researchers further determined that the same treatment should not
be administered for more than two consecutive menstrual cycles. With these constraints, there are
14 possible randomizations. Below is an exhaustive list of all possible randomizations for illustrative
purposes (the experiment, as it was carried out, is marked in bold):

AABABB
AABBAB
ABAABB
ABABAB
ABABBA
ABBAAB
ABBABA
BAABAB
BAABBA
BABAAB
BABABA
BABBAA
BBAABA
BBABAA.

To quantify the difference between the A- and B-measurements, Roumen et al. subtracted the
mean of the intervention measurements from the mean of the baseline measurements by using (A− B).
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The observed test statistic for the data in Figure 3 was calculated as: 3.97 − 3.89 = 0.08, meaning that,
on average, the subject’s mood score was 0.08 higher on the 5-point Likert scale during the baseline
measures. Figure 4 shows the reference distribution for the alternating treatments design.Healthcare 2019, 7, x 9 of 20 
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As the researchers expected the treatment to lead to an increase in mood scores, all the test statistics
on the red line or to its left indicate randomizations that would have led to a higher treatment effect.
There are 11 randomizations, for which the treatment effect is higher than the observed one. Thus,
the p-value was calucated as: 11

14 = 0.79. Accordingly, we did not reject the null hypothesis that the
treatment is ineffective for this subject.

6. Multiple Baseline Design

Conceptually, multiple baseline designs are closely related to phase designs. The multiple
baseline designs consist of a series of replicated AB designs. The term was coined by Baer et al. [29],
“An alternative to the reversal technique may be called the ‘multiple baseline’ technique. This
alternative may be of particular value when a behavior appears to be irreversible or when reversing
the behavior is undesirable. In the multiple-baseline technique, a number of responses are identified
and measured over time to provide baselines against which changes can be evaluated. With these
baselines established, the experimenter then applies an experimental variable to one of the behaviors,
produces a change in it, and perhaps notes little or no change in the other baselines.”

As Baer et al. [29] pointed out, there are situations, in which a change in a dependent variable is
irreversible. For example, if a patient suffering from cardiac arrhythmia receives a pacemaker to reduce
his/her feelings of dizziness, the pacemaker cannot simply be removed again to assess whether the
feelings of dizziness increase again as a result (as is for example done in an ABAB design). In situations
like that, the multiple baseline design provides a valid alternative. Baer et al. first defined the multiple
baseline across outcomes design. However, replications in the multiple baseline design can also be
established across participants or settings, and the intervention is introduced in a staggered way to the
different units [64].

The staggered introduction of the intervention is an important feature for the validity of all
variants of the multiple baseline design. Consider a novel therapy designed to reduce feelings of
claustrophobia in a patient, who avoids crowds, narrow spaces, and windowless rooms. The staggered
introduction of the intervention implies that, while the therapy is applied to the first setting (crowds),
the other settings (narrow spaces and windowless rooms) remain in the baseline measures. When the
therapy is applied to the second setting (narrow spaces), the third setting (windowless rooms) remains
in the baseline measures. Finally, the intervention is introduced to the third setting (windowless
rooms). If the feelings of claustrophobia decrease only in the setting to which the therapy is applied,
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and in the other settings that are in the baseline measures, no changes in feelings of claustrophobia
are observed, then the multiple baseline design gives powerful evidence for the effectiveness of the
therapy. In general, “the power of such designs comes from demonstrating that change occurs when,
and only when, the intervention is directed at the behavior, setting, or subject in question” [14] (p. 202,
emphasis in original).

Figure 5 shows the results of a multiple baseline design across participants used to investigate the
effectiveness of video-based cognitive behavior therapy for treating eating disorders in five patients
living far from urban centers [65]. During the baseline phases, subjects registered their daily eating
patterns and symptoms of disordered eating. During the intervention phases, subjects received
cognitive behavioral therapy sessions via a mobile video application. These sessions focused on
establishing a regular meal schedule. Furthermore, subjects were encouraged to regularly record
their weight, but these data were not recorded by the researchers. Figure 5 displays the number of
daily meals consumed by the subjects, which Abrahamsson et al. [65] chose as the main outcome
variable. Subjects self-recorded their daily eating frequency by means of a treatment-specific food
diary. The researchers hypothesized that the treatment would lead to a higher frequency of daily meals,
indicative of less binge eating.
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In a multiple baseline design, each participant, outcome, or setting is plotted as its own time-series.
For the first participant, the intervention was introduced on the 17th day; for the second participant,
the intervention was introduced on the 19th day; for the third participant, the intervention was
introduced on the 22nd day; for the fourth participant, the intervention was introduced on the 27th
day; and for the fifth participant, the intervention was introduced on the 28th day. A visual inspection
of the graphed data reveals that the magnitude of change after the introduction of the intervention
differs between participants. For participants three, four, and five, the increases in level seem higher
than for participants one and two.

The null hypothesis and the significance level remain the same as in the previous examples.
The alternative hypothesis is that the video-based cognitive behavior therapy leads to a higher
frequency of daily meals. A restricted randomization scheme for multiple baseline designs has to
take into account the staggered introduction of the intervention across participants, meaning that
the intervention cannot start on the same day for more than one participant. Abrahamsson et al.
determined a priori that the total duration of the study is 55 days [65]. Furthermore, the researchers
determined a priori that the moment of phase change from the baseline to the intervention would occur
randomly for each participant between the 15th and 36th day. This randomization scheme was chosen
so that each participant has a baseline length of at least two weeks and an intervention phase length
of at least 20 days. For the chosen randomization scheme, there are 3,160,080 (calculated by 22!

(22−5)! )
randomizations that allow for a staggered introduction of the intervention. Below is a non-exhaustive
list of baseline phase lengths per participant (the ones actually used in the experiment is marked
in bold):

14,15,16,18,30
16,18,21,26,27
18,19,21,22,28
22,24,28,30,34
. . .

26,29,30,32,35
28,29,30,31,32
29,30,31,32,33
31,32,33,34,35.

To quantify the intervention effectiveness, we choose the mean difference between the
intervention and the baseline measurements as our test statistic, which can be calculated by(

¯
B1+

¯
B2+

¯
B3+

¯
B4+

¯
B5

)
−(A1+A2+ A3+A4+A5)

5 . The observed test statistic for the data displayed in Figure 5

was calculated as: (3.59+3.46+3.68+4.97+5.5)−(2.81+2.67+1.86+2.85+2.96)
5 = 1.61, meaning that the intervention

leads, on average, to an increase of 1.61 in the frequency of daily meals. Given the large number of
possible randomizations, it is computationally not feasible to locate the observed test statistic in the
reference distribution of all possible randomizations. Therefore, Abrahamsson et al. used a Monte
Carlo random sampling procedure [65]. This procedure takes a random sample of 1000 randomizations
based on all permissible randomizations. Figure 6 shows how the observed test statistic compared to
the test statistics that would have been obtained by the other 999 randomizations.

Two randomizations would have led to a test statistic as large as the observed one or even larger.
The p-value thus equals 0.002, calculate by 2

1000 , and we can reject the null hypothesis that the treatment
is ineffective.
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7. Changing Criterion Design

The last category in the typology of SCEDs is the changing criterion design. This design was
first introduced and demonstrated by Hartmann and Hall [31]. In the changing criterion design,
a criterion that the subject has to meet is set. This criterion changes constantly between adjacent
phases to systematically decrease or increase the frequency of the dependent variable. After the initial
baseline measures, treatment is never withdrawn [43]. Barlow et al. argued that the lack of treatment
withdrawal throughout the course of the study is a major strength of the changing criterion design and
that this feature makes the design especially attractive for clinical studies, for example in the treatment
of dangerous behaviors such as self-harming [14]. Klein et al. elaborated that the changing criterion
design is especially valuable in situations, in which an immediate, abrupt increase or decrease in a
dependent variable may be difficult to achieve or undesirable [32]. Furthermore, the stepwise changes
in the frequency of the dependent variable may facilitate habitual changes in a subject’s behavior [66].
In their seminal paper, Hartmann and Hall conducted two experiments using the changing criterion
design. In the first study, Hartmann and Hall used a reward strategy to increase the number of math
problems correctly solved by a behaviorally disordered boy. In the second study, a financial incentive
strategy was used to stepwise reduce the number of cigarettes smoked by a heavy smoker. Hartmann
and Hall [31] emphasized several important factors to ensure a valid implementation of the changing
criterion design: “Successful implementation of the changing criterion design requires particular
attention to three design factors: length of baseline and treatment phases, magnitude of changes in
the criterion, and number of treatment phases or changes in criterion. All phases should be long
enough to ensure that successive changes in a therapeutic direction are not naturally occurring due to
either historical, maturational, or measurement factors (see Campbell and Stanley, 1963). In addition,
treatment phases should differ in length, or if of a constant length, should be preceded by a baseline
phase longer than each of the separate treatment phases. This is to ensure that stepwise changes in the
rate of the target behavior are not occurring naturally in synchrony with criterion changes” (p. 530).

Klein et al. recommended incorporating “mini-reversals” into the changing criterion design [32].
Such a reversal entails reverting to a previous criterion. For example, if the daily caloric intake for
an obese person has been reduced by 200 and 400 calories per day in the first two phases compared
to mean caloric intake during the baseline measures, a mini-reversal would entail going back to
the 200 calories phase. In actual research practice, such reversals depend, of course, on ethical and
practical considerations. If ethically and practically feasible, such reversals can greatly strengthen the
demonstration of experimental control over the dependent variable. Klein et al. further recommended
that at least three criterion changes should be implemented for repeated observation of intervention
effectiveness [32]. Regarding the minimum number of data points required per phase, clear guidelines
are still lacking for the changing criterion design. Given the phase structure of the changing
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criterion design, a reasonable recommendation might be at least three and preferably five data
points. The effectiveness of an intervention is demonstrated with a changing criterion design, when
the dependent variable consistently changes to criterion levels set by the researcher [66]. In the
range-bound version of the changing criterion design [33], the researcher sets a range of acceptable
occurrences of the dependent variable instead of a single criterion. Barker et al. gave an example of an
injured athlete in rehabilitation [43]. To prevent overtraining and the likelihood of reinjury, it may
be useful to place an upper limit on the number of training sessions per week. Similarly, to prevent
stagnation in the rehabilitation process, it may be useful to set a lower limit on the acceptable number
of weekly training sessions. If the athlete trains no more than the upper limit criterion and no less
than the lower limit criterion, then the intervention leads to an acceptable amount of exercising. Thus,
the only difference between the classical changing criterion design and the range-bound changing
criterion design is that in the former a single-point criterion is set that has to be met by the participant
while in the latter an acceptable range is specified.

Figure 7 shows the results of a changing criterion design using a mindfulness-based health
wellness program to reduce the weight of a morbidly obese man [67]. After an initial baseline phase of
12 weeks, during which the subject’s weight was recorded, the intervention was introduced consisting
of physical exercise, a food awareness program, mindful eating to manage rapid eating, visualizing
and labeling hunger, and a mindfulness procedure as a self-control strategy. Adherence to the physical
exercise program resulted in a reward in the form of purchasing an item from the subject’s wish list of
reinforcers. During the baseline and all the intervention phases, the subject’s weight was recorded
weekly. After the baseline phases, the criterion for each consecutive phase was to lose five pounds.
The criterion changed after three successful measures (i.e., the subject’s weight equaled or was below
the criterion). Due to the nature of the experiment, ethical considerations rendered it impossible to
incorporate a reversal. Neither did the researchers vary the magnitude of criterion changes between
phases in consideration with the patient to keep him motivated. In total, the researchers applied the
intervention for 270 weeks. To be able to present all the data in a single time-series graph, Figure 7
only shows the data for the first 95 weeks.

Healthcare 2019, 7, x 13 of 20 

 

criterion design is that in the former a single-point criterion is set that has to be met by the participant 
while in the latter an acceptable range is specified. 

Figure 7 shows the results of a changing criterion design using a mindfulness-based health 
wellness program to reduce the weight of a morbidly obese man [67]. After an initial baseline phase 
of 12 weeks, during which the subject’s weight was recorded, the intervention was introduced 
consisting of physical exercise, a food awareness program, mindful eating to manage rapid eating, 
visualizing and labeling hunger, and a mindfulness procedure as a self-control strategy. Adherence 
to the physical exercise program resulted in a reward in the form of purchasing an item from the 
subject’s wish list of reinforcers. During the baseline and all the intervention phases, the subject’s 
weight was recorded weekly. After the baseline phases, the criterion for each consecutive phase was 
to lose five pounds. The criterion changed after three successful measures (i.e., the subject’s weight 
equaled or was below the criterion). Due to the nature of the experiment, ethical considerations 
rendered it impossible to incorporate a reversal. Neither did the researchers vary the magnitude of 
criterion changes between phases in consideration with the patient to keep him motivated. In total, 
the researchers applied the intervention for 270 weeks. To be able to present all the data in a single 
time-series graph, Figure 7 only shows the data for the first 95 weeks. 

Similar to the phase designs, all the data in a changing criterion design are plotted as a single 
continuous time-series. It is customary to label each phase chronologically in alphabetical order. A 
visual inspection of the graphed data reveals that the participant lost weight continuously during the 
course of the experiment. However, it can also be seen that there are several data points in each phase 
that clearly deviate from the criterion. 

 
Figure 7. Example of a changing criterion design. The red horizontal lines indicate the criterion in 
each phase. Data from Singh et al. [67]. 

Specific randomization schemes for changing criterion designs have only recently been 
proposed by Onghena et al. [7] and Ferron et al. [68]. Similar to phase designs and multiple baseline 
designs, a changing criterion design is not eligible for an unrestricted randomization scheme. The 
specific structure of the changing criterion design has to be taken into account when determining the 
randomization scheme. The specific structure of the changing criterion design needs to be preserved 
with its successive phases and criteria when constructing the reference distribution [7]. Another 
factor that has to be taken into account is that Singh et al. determined that the subject had to record 
the criterion weight for three weeks before changing the criterion and moving to the next phase [67]. 

To introduce an element of randomization, we constructed a randomization scheme under the 
assumption that the researchers determined a priori that the phase change occurs randomly within 
the next two weeks after the criterion weight had been recorded for at least three consecutive weeks. 
This leaves us with two possible phase change moments per phase: weeks 19 and 20 in phase B, weeks 

Figure 7. Example of a changing criterion design. The red horizontal lines indicate the criterion in each
phase. Data from Singh et al. [67].

Similar to the phase designs, all the data in a changing criterion design are plotted as a single
continuous time-series. It is customary to label each phase chronologically in alphabetical order.
A visual inspection of the graphed data reveals that the participant lost weight continuously during
the course of the experiment. However, it can also be seen that there are several data points in each
phase that clearly deviate from the criterion.
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Specific randomization schemes for changing criterion designs have only recently been proposed
by Onghena et al. [7] and Ferron et al. [68]. Similar to phase designs and multiple baseline designs,
a changing criterion design is not eligible for an unrestricted randomization scheme. The specific
structure of the changing criterion design has to be taken into account when determining the
randomization scheme. The specific structure of the changing criterion design needs to be preserved
with its successive phases and criteria when constructing the reference distribution [7]. Another factor
that has to be taken into account is that Singh et al. determined that the subject had to record the
criterion weight for three weeks before changing the criterion and moving to the next phase [67].

To introduce an element of randomization, we constructed a randomization scheme under the
assumption that the researchers determined a priori that the phase change occurs randomly within
the next two weeks after the criterion weight had been recorded for at least three consecutive weeks.
This leaves us with two possible phase change moments per phase: weeks 19 and 20 in phase B, weeks
26 and 27 in phase C, and so on. There are 256 (calculated by 28) possibilities to assign the eight phase
change moments in this way.

However, this does not take into account the baseline phase as there is no criterion present in the
baseline phase. The different possibilities for incorporating the baseline phase in the randomization
procedure and calculation of the test statistic are discussed in Onghena et al. [7]. One possibility would
be to drop the baseline measures. As this would result in a loss of possibly valuable information,
we do not recommend this option. Another option would be to select a score based on the subject’s
characteristics. For example, the subject recorded a weight of 308 pounds when entering the study.
One might argue that this would be a sensible criterion under the assumption that the subject will
not gain weight. However, this does not take into account how the data pattern in the baseline phase
evolves over time and basing a criterion on a single data point seems arbitrary given that this data
point might be an outlier. Therefore, we followed the recommendation to take the median value of the
baseline phase (311 lbs.) as a criterion [7].

Still, the question—which possible phase change moments to identify for the change from the
A- to the B-phase—remains. Given that there are two possible phase change moments in the other
phases, we might follow the same logic for the baseline phase, so that in total there are 512 (calculated
by 29) randomizations. If Singh et al. had incorporated an element of randomization in the planning
phase of the experiment, the B-phase might have started randomly after at least five weeks of baseline
measures (cf. earlier discussion on the minimum phase length required to meet the evidence standards).
Below is a non-exhaustive list of the 512 possible phase change moments for illustrative purposes
(the experiment that has actually been carried out is marked in bold):

12, 19, 26, 36, 44, 54, 64, 77, 85
12, 19, 26, 37, 44, 55, 64, 77, 85
12, 20, 26, 36, 44, 54, 64, 77, 85

. . .

13, 20, 26, 37, 44, 54, 64, 77, 86
13, 20, 27, 36, 45, 54, 65, 77, 86
13, 20, 27, 37, 45, 55, 65, 78, 86.

To quantify the intervention effectiveness, we chose the mean absolute deviation as a test statistic [7].
The mean absolute deviation equals the sum of the absolute differences between each individual data
point and the criterion within that phase divided by the total number of data points N, which can be

written as:
∑∣∣∣Ci−mij

∣∣∣
N , where Ci stands for the criterion in phase i and mi stands for the jth measurement

in phase i. The observed test statistic for the data in Figure 7 equals 2.11, meaning that, on average,
the subject’s recorded weight deviated 2.11 lbs. from the criterion. For the mean absolute deviation,
lower scores indicate a better match between the scores and the criteria. Thus, a score of zero for the
absolute mean deviation would indicate a perfect match between the scores and the criterion for all the
measurements. Figure 8 shows the distribution of test statistics for all the possible randomizations.
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Since for the mean absolute deviance smaller values indicate better adherence to the criterion,
we had to look at the left tail of the distribution to calculate the p-value. There are 511 randomizations
in the distribution that would have led to a lower mean absolute deviance. The p-value thus equals
0.998 (calculated by 511

512 ), and we did not reject the null hypothesis that the treatment is ineffective.

8. Discussion

In the present paper, we showed how randomized SCEDs can be utilized in healthcare research
to find individually tailored interventions. For each design type of SCEDs, we presented published
studies from the healthcare literature, illustrated how an element of randomization can be incorporated,
and how the obtained data can be analyzed by means of visual analysis, effect size measures, and
randomization tests. We put the emphasis on the randomization tests because they are a flexible
and versatile data analysis technique that can be adapted to many situations encountered in applied
research. This emphasis on the randomization tests, however, does not mean that the obtained p-value
is an all-or-nothing indicator of intervention effectiveness. Visual analysis and effect size calculation,
as well as qualitative data, should be considered when judging the success of an intervention for the
patient. For example, the p-value for the changing criterion design example was nearly 1. At the same
time, visual analysis indicated that the patient continuously lost weight throughout the course of the
experiment. The patient deviated on average only a bit over 2 lbs. from the criteria. Even though
the randomization test indicated a non-significant treatment effect, the weight loss of the patient
throughout the experiment can increase his quality of life and overall health. Therefore, we always
recommend an integrated approach to analyzing data obtained through SCEDs.

It should be noted that some of the example data sets used in this paper did not incorporate an
element of randomization in the planning phase of the study. The analysis of the changing criterion
design in particular was loaded with heavy assumptions that were not met in the actual design of
the study and the randomization test was calculated only on a subset of data from the original study.
However, at the same time, this enabled us to illustrate a possible randomization procedure for the
changing criterion design if the researchers incorporated an element of randomization in the planning
phase of the study. The randomization tests for the changing criterion design and the ABAB design
were therefore carried out under the assumptions that an element of randomization was incorporated
a priori and that the experiments as they were carried out were actually chosen at random from all
possible randomizations. Alternative ways of analyzing SCED data by means of masked graphs have
been proposed for situations, in which the randomization procedure has not (entirely) been determined
a priori [69,70]. If the results are analyzed by means of a randomization test when the randomization
assumption has not been met, the Type I error might deviate from the predetermined α [71].
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An important consideration when conducting any kind of significance testing is the power of
the test to detect a treatment effect. The power of randomization tests for phase designs varies as a
function of both the number of phases and the number of observations per phase [72]. For multiple
baseline designs, it has been found that the power of randomization tests depends, among other
things, on the between-case stagger separation, meaning that if the introduction of the intervention
is further apart from one case to the next, the power increases [30]. Another important factor in the
power of randomization tests for multiple baseline designs is the number of cases, behaviors, or
settings under investigation. The power increases considerably when comparing at least three different
cases, behaviors, or settings with at least 20 measurements each [18]. For the alternating treatments
designs, the power of randomization tests depends largely on the number of observations and the
number of permissible successive observations under the same treatment [18]. Research on the specific
factors influencing the power of randomization tests for the changing criterion designs is still needed.
For SCED randomization tests in general, the lowest possible p-value is the inverse of the number of
possible randomizations. For the alternating treatments design example, the lowest possible p-value
was: 1

14 = 0.07. When less than 20 randomizations are possible, a randomization test has zero power at
a conventional level α of 0.05 [73]. Conversely, as was the case in the multiple baseline design example,
the number of possible randomizations can be so high that it becomes computationally unfeasible to
calculate the exact p-value. As shown, in such cases, a Monte Carlo random sampling procedure can
be employed to approximate the exact p-value.

Another important consideration in the analysis of SCED data is the choice of data aspects that are
of interest to the researcher. Widely accepted guidelines regarding the conduct and analysis of SCEDs
recommend inspecting six data aspects: level, trend, variability, overlap, immediacy of the effect,
and consistency of data patterns [50]. In the present paper, we focused only on the data aspect level
for illustrative purposes. A procedure for assessing all the six data aspects simultaneously through
multiple randomization tests has been proposed by Tanious et al. [48]. We do not recommend isolating
one data aspect and base a conclusion regarding the effectiveness of an intervention on that data aspect
alone. A user-friendly web-based application, where the analyses for phase designs, multiple baseline
designs, and alternation designs can be executed, is available at https://tamalkd.shinyapps.io/scda/ [74].
Generic R-code for analyzing changing criterion designs is available in [7]. Further discussion of
randomization tests for phase and alternation designs and available software for analyzing these
designs are available in a study of Heyvaert and Onghena [75].

9. Conclusions

Randomized SCEDs are valid alternatives to large-group studies for applied healthcare
professionals, especially when patient symptoms are highly idiosyncratic in nature. Randomization
tests allow for powerful inferences regarding treatment effectiveness based on the random assignment
procedure actually used in the experiment.
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