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Abstract
Introduction: Functional connectivity alterations within individual resting state net-
works (RSNs) are linked to disorders of consciousness (DOC). If these alterations in-
fluence the interaction quality with other RNSs, then, brain alterations in patients 
with DOC would be characterized by connectivity changes in the large-scale model 
composed of RSNs. How are functional interactions between RSNs influenced by 
internal alterations of individual RSNs? Do the functional alterations induced by DOC 
change some key properties of the large-scale network, which have been suggested 
to be critical for the consciousness emergence? Here, we use network analysis to 
measure functional connectivity in patients with DOC and address these questions. 
We hypothesized that network properties provide descriptions of brain functional 
reconfiguration associated with consciousness alterations.
Methods: We apply nodal and global network measurements to study the reconfigu-
ration linked with the disease severity. We study changes in integration, segregation, 
and centrality properties of the functional connectivity between the RSNs in sub-
jects with different levels of consciousness.
Results: Our analysis indicates that nodal measurements are more sensitive to dis-
ease severity than global measurements, particularly, for functional connectivity of 
sensory and cognitively related RSNs.
Conclusion: The network property alterations of functional connectivity in different 
consciousness levels suggest a whole-brain topological reorganization of the large-
scale functional connectivity in patients with DOC.
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1  | INTRODUC TION

Disorders of consciousness (DOC) encompass a set of particular 
conditions occurring after coma (Bruno, Laureys, & Demertzi, 2013), 
including the minimally conscious state (MCS), in which patients 
exhibit signs of fluctuating, yet, reproducible remnants of nonre-
flex behavior, and the unresponsive wakefulness syndrome (UWS), 
related to patients who open their eyes, but remain unresponsive 
to external stimuli (Laureys & Schiff, 2012; Schnakers & Laureys, 
2012). Due to the difficult communication imposed by these con-
ditions, brain activity registered at rest (Biswal, 2012) is used to 
develop complementary diagnosis approaches. In particular, resting 
state functional magnetic resonance imaging (R-fMRI) protocols are 
used to understand brain activity while subjects are not exposed to 
stimuli (Demertzi et al., 2014; Sporns, 2013), overcoming the need 
for their active participation. R-fMRI studies in healthy controls (HC) 
suggest that the brain is organized into large-scale resting state net-
works (RSNs) of sensory/cognitive relevance (Fox & Raichle, 2007; 
Rosazza & Minati, 2011). At least ten of these functional entities 
were identified in HC including auditory, cerebellum, default mode 
network (DMN), executive control left (ECN Left), executive con-
trol right (ECN Right), saliency, sensorimotor, visual lateral, visual 
media, and visual occipital (Damoiseaux et al., 2006). RSNs provide 
a suitable representation to study the preservation of sensorial and 
cognitive brain functions without any explicit stimulation (Rosazza & 
Minati, 2011) specifically for DOC studies.

First analyses of RSNs in patients with DOC focused on al-
terations of the functional connectivity inside the DMN. This is a 
functional structure that encompasses specific brain regions linked 
to the consciousness emergence phenomenon (Boly et al., 2008; 
Demertzi, Soddu, & Laureys, 2013). Decreases in functional connec-
tivity within this network are linked to modifications of the level of 
consciousness in these patients. Posterior studies showed that DOC 
conditions may affect functional connectivity within multiple RSNs 
(Demertzi et al., 2014, 2013; Di Perri, Stender, Laureys, & Gosseries, 
2014; Di Perri, Thibaut, et al., 2014; Guldenmund et al., 2013; Heine 
et al., 2012; Ribeiro de Paula et al., 2017). In particular, variations in 
intrinsic connectivity for specific RSNs were related to alterations in 
sensorial and awareness functions (Boly et al., 2008; Demertzi et al., 
2013; Di Perri, Stender, et al., 2014). Additional evidence indicates 
changes in the connectivity between RSNs, for instance, reductions 
of the connectivity strength between RSNs in patients with DOC 
compared to HC subjects (Rudas et al., 2014) and alterations in the 
level of anti-correlation between RSNs associated with the recovery 
of consciousness (Di Perri et al., 2016). In summary, these analyses 
focused on alterations within particular RSNs or between specific 
pairs of RSNs that may have functional relevance for consciousness 
emergence.

Nevertheless, these approaches may be limited because they do 
not consider a more general view of the brain, regarding, for instance, 
the existence of multiple functional units in the brain and the inter-
actions among them (van den Heuvel & Hulshoff Pol, 2010). They are 
instead focused on specific consciousness-related circuits within the 

brain. A more general perspective is important because conscious-
ness preservation in these patients would also require functional 
units related not only to consciousness processing but also to stimuli 
and response, and possibly systems to orchestrate them (Tononi & 
Koch, 2015). The understanding of interactions among these units 
may provide valuable information about these conditions (Tononi 
& Koch, 2015). Recently, a model of functional connectivity among 
RSNs has been proposed in the so-called functional network con-
nectivity (FNC; Jafri, Pearlson, Stevens, & Calhoun, 2008), which 
considers the functional interaction between these large-scale units. 
This model provides a network representation in which interactions 
between high-order functional systems can be characterized using 
network measurements (Bullmore & Sporns, 2009, 2012; van den 
Heuvel & Hulshoff Pol, 2010). Lately, connectivity density decreases 
were associated with consciousness alterations in coma, providing 
a general description of FNC alterations (Malagurski et al., 2019). 
However, the specific reconfiguration of FNC associated with con-
sciousness states is not tackled.

In this study, we hypothesize that the FNC model may highlight 
reorganizations of connectivity related to the underlying pathology 
characterizing the DOC condition. These interaction patterns were 
studied by assessing modifications in integration, segregation, and 
centrality properties, which have been suggested to be highly rel-
evant for consciousness emergence (Tononi & Koch, 2015). These 
properties were analyzed for three populations in different states 
of consciousness: healthy controls, subjects with MCS, and sub-
jects with UWS. In contrast to previous studies that only focused 
on a limited set of RSNs, we considered the interactions among the 
whole set of functional units. To reach this objective, the FNC was 
computed for each subject obtaining a general brain functional rep-
resentation with the interactions between RSNs. Next, we used a 
set of network measurements to assess the mentioned properties. 
In particular, degree, strength, clustering coefficient, between-
ness, and eigenvector centralities were used to understand key 
brain functional property modifications for different states of con-
sciousness. Degree and strength assess the integration between 
functional brain regions, that is, how the regions are connected 
and how strong are the connections, respectively. Clustering coef-
ficient measures the segregation of brain regions, that is, how the 
regions are interconnected creating functional units. Betweenness 
and eigenvector centralities evaluate the relevance of a region in 
the functional model, that is, how important a region is for the 
communication because it belongs to the shortest path or it is con-
nected to other relevant regions, respectively. Our results suggest 
that decreases in the level of consciousness in patients with DOC 
are related with a topological reorganization of large spatial scale 
connectivity, involving not only regions directly related to con-
sciousness, as DMN, but also other functional systems of senso-
rial and cognitive relevance. This finding has a major implication in 
functional studies related to consciousness, suggesting a reconfig-
uration of sensorial and cognitive systems, in particular, reconfigu-
rations that may involve brain adaptations due to communication 
impairment.
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2  | MATERIAL S AND METHODS

We aim to characterize a functional connectome for HC sub-
jects and patients with DOC (Bullmore, 2012; Calhoun, Adali, 
& Pearlson, 2001; Sporns, 2013; van den Heuvel & Hulshoff 
Pol, 2010), in particular, a connectome with RSNs as nodes. 
This connectome corresponds to a large-scale network of func-
tional relationships between functionally related brain regions. 
Network-based measurements computed on this connectome 
provide a functional depiction of synchronized, spontaneous, 
and segregated activity (Rubinov & Bullmore, 2013; Sporns, 
2013; van den Heuvel & Hulshoff Pol, 2010). Importantly, there 
is a methodological challenge in the characterization of the func-
tional relationship between large-scale areas (RSNs) in patients 
with severe brain damage. Particularly, brain-injured patients 
may present functional and structural affectations that may 
change the connectome properties. Therefore, in this study, a 
particular processing pipeline that accounts for these alterations 
were considered, including, severe structural affectations, large 
head motions, and individual variability, among others. Figure 1 
summarizes the process used to characterize functional connec-
tivity alterations at the general brain level of interactions be-
tween RSNs.

2.1 | Subjects and patients

Participants were healthy volunteers and patients with UWS or 
MCS following severe brain damage studied at least 5 days after 
acute brain insult. HC subjects were subjects free of psychiatric 
or neurological history. Clinical examination was performed using 
the French version of the Coma Recovery Scale-Revised (CRS-
R; Giacino, Kalmar, & Whyte, 2004; Schnakers et al., 2008). The 
CRS-R is a standardized measure for characterizing the level of 
consciousness and monitoring recovery of neurobehavioral func-
tion (Giacino et al., 2004). It consists of 30 hierarchically arranged 
items that comprise six subscales addressing auditory (5 items), 
visual (6 items), motor (7 items), oromotor/verbal (4 items), com-
munication (4 items), and arousal (4 items) processes. The scoring 
is based on the presence or absence of specific behavioral re-
sponses to sensory stimuli administered in a standardized manner, 
and the lowest item in each subscale represents reflexive activity 
while the highest item represents cognitively mediated behaviors 
(Giacino et al., 2004; Schnakers et al., 2008). Exclusion criteria 
were contraindication for MRI (e.g., presence of ferromagnetic an-
eurysm clips, pacemakers), MRI acquisition under sedation or an-
esthesia and large focal brain damage (>50% of total brain volume). 
Structural brain damage was assessed by visual inspection of two 
experts. Written informed consent to participate in the study was 
obtained from the healthy subjects and from the legal surrogates 
of the patients. The study was approved by the Ethics Committee 
of the Medical School of the University of Liège (Demertzi et al., 
2014).

2.2 | Data description

Acquisitions from 75 subjects were used for this study: 27 HC sub-
jects (14 women, mean age 47 ± 16 years), 24 patients with MCS 
(eight women, mean age 47 ±  16  years; nine of nontraumatic eti-
ology: two anoxic, three with cerebrovascular accident, three with 
hemorrhage, one with seizure; 14 of traumatic, and one of mixed 
etiology), and 24 with UWS (12 women, mean age 50 ± 18 years; 18 
of nontraumatic etiology: nine anoxic, six with cerebrovascular ac-
cident, two with hemorrhage, one metabolic; five of traumatic, and 
one of mixed etiology). Thirty-one patients with UWS and MCS were 
assessed in the chronic setting, that is, ≥50 days postinsult. Further 
details about the patients' demography can be found in Table S1.

For each subject, fMRI data were acquired in a 3T scanner 
(Siemens Medical Solution). Three hundred fMRI volumes multislice 
T2*-weighted functional images were captured (32 slices; voxel size: 
3 × 3 × 3 mm3; matrix size 64 × 64 × 32; repetition time = 2,000 ms; 
echo time = 30 ms; flip angle = 78°; field of view = 192 × 192 mm2). 
The three initial volumes were discarded to avoid T1 saturation ef-
fects. In addition, for anatomical reference, a structural T1-weighted 
image was acquired. Patients were scanned in sedation-free condi-
tion, and healthy volunteers were instructed to close their eyes, relax 
without falling asleep and refrain from any structured thinking (e.g., 
counting and singing), as commonly performed in resting state par-
adigms (Beckmann, Luca, & Devlin, 2005; Guldenmund et al., 2013).

2.3 | Data preprocessing

Data preprocessing was performed using the Statistical Parametric 
Mapping (SPM8) (Friston, 2007) toolbox for Matlab (The Mathworks, 
Inc.). SPM preprocessing stages included realignment and adjust-
ment for movement-related effects, coregistration of functional 
onto structural data, segmentation of structural data, normalization 
into standard stereotactic MNI space, and spatial smoothing with 
a Gaussian kernel of 8 mm. To evaluate the data acquisition qual-
ity, the frame-wise displacement (Power, Barnes, Snyder, Schlaggar, 
& Petersen, 2012) was assessed on each population, further details 
Supplementary Material Section 2. Motion correction (e.g., small, 
large and rapid motions, noise spikes and spontaneous deep breaths) 
was applied by using ArtRepair toolbox for SPM (Demertzi et al., 
2014; Mazaika, Hoeft, Glover, & Reiss, 2009).

2.4 | Resting state networks identification

For each subject, the resting state networks (RSNs) were selected 
as follows: First, the rs-fMRI signal was decomposed into maximally 
independent spatial maps using spatial ICA (McKeown et al., 1998). 
ICA decomposition was performed with 30 components (Jafri et 
al., 2008) and the infomax algorithm as implemented in GroupICA 
toolbox (Calhoun et al., 2001). Each spatial map (source fMRI signal) 
has an associated time-course, which corresponds to the common 
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dynamic exhibit by the component. Second, RSNs were identified 
at individual level (Demertzi et al., 2014) by using a two-fold pro-
cess: template matching and neuronal/artifactual classification 
(see Supporting Information Section 4). Template Matching is an 
approach that aims to identify each RSN directly from the single 
subject sICA decomposition (Demertzi et al., 2014). It is a match-
ing problem with two constraints: (a) a template had to be assigned 
to one of the 30 ICs and (b) an IC could be labeled as an RSN or 
not. These two conditions ensure that all the templates (one for 
each RSN) have to be assigned and a unique identification of each 
IC, which deal with the potential concurrent component assigna-
tion. The pair between the template and the IC with the highest 
goodness-of-fit score was selected (Demertzi et al., 2014). Later, a 
neuronal/artifactual classification of independent components (ICs) 
was performed by using a machine learning-based labeling method 
(Demertzi et al., 2014). It consists of a binary classification approach 
by means of support vector machine (SVM) classifier trained on 19 
independently assessed healthy subjects. This SVM uses the fin-
gerprints obtained from ICA decomposition (n = 30 components) as 

the feature vector containing both spatial (i.e., degree of clustering, 
skewness, kurtosis, spatial entropy) and temporal information (i.e., 
one-lag autocorrelation, temporal entropy, power of five frequency 
bands: 0–0.008  Hz, 0.008–0.02  Hz, 0.02–0.05  Hz, 0.05–0.1  Hz, 
and 0.1–0.25 Hz). Commonly, components of artifactual origin en-
compasses (a) high-frequency fluctuations >0.1Hz, (b) spikes, one or 
more abrupt changes in the normalized time-course, (c) the presence 
of sawtooth pattern, and (d) the presence of threshold voxels in the 
superior sagittal sinus. Finally, neuronal time-courses of the RSNs 
were extracted at the individual level, and they were subsequently 
used for the functional connectivity computations.

2.5 | Functional network connectivity estimation

For each subject, a FNC matrix was computed by using a measure 
of dependency between pairs of representative time-courses, re-
sulting in a matrix with strengths of the interactions between the 
identified RSNs. The strength for edges pointing to RSNs marked as 

F I G U R E  1   Illustration of the methodological procedure defined as the sequence of the following processes: data acquisition consisting 
of 300 volumes of functional magnetic resonance imaging (MRI) at rest and a structural MRI for each subject; data preprocessing including 
brain extraction, alignment, registration, Gaussian smoothing, motion correction, and normalization; extraction of the resting state networks 
(RSNs) using spatial independent component analysis and a template matching strategy under a data-driven approach; computation of 
functional network connectivity (FNC) between RSNs by the lagged distance correlation method; and finally, computation of integration, 
segregation and centrality measurements to characterize the populations in different states of consciousness
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no-neuronal was set as zero, indicating no interaction. The measures 
of dependency level were computed using the distance correlation 
(DC) between time-courses (Székely, Rizzo, & Bakirov, 2007). DC 
aims to measure nonlinear dependencies between two random vari-
ables X and Y with finite moments in arbitrary dimension. In order 
to account for time delays, a circular shifted lagged version of the 
DC was used (Jafri et al., 2008; Rudas et al., 2014). Once the FNC 
was computed, it induces a functional connectivity matrix, which 
was used to characterize alterations of functional connectivity. In 
particular, a 10 × 10 weighted matrix was computed to model inter-
actions between different RSNs. Each one of them models a brain 
region associated with specific arousal and awareness regions re-
lated to consciousness emergence. An entry cij in this matrix cor-
responds to the interaction between the RSNi and RSNj assessed by 
using the lagged DC. Further details of this approach can be found in 
Supporting Information Section 5.

2.6 | Network characterization

Functional network connectivity matrix contains a measure of de-
pendency between pairs of RSNs time-courses. To assess functional 
connectivity alterations, three network properties were computed 
for each FNC matrix, namely, integration, segregation and centrality 
of the functional connectivity between RSNs. FNC integration was 
assessed by degree and strength (Bullmore & Sporns, 2009, 2012; 
Rubinov & Sporns, 2010). FNC segregation was characterized by 
clustering coefficient (Bullmore & Sporns, 2009, 2012; Rubinov & 
Sporns, 2010), and FNC centrality was estimated by betweenness 
centrality and eigenvector centrality (Lohmann et al., 2010; see a 
brief description of the network measurements in Table S3). These 
computations were performed using the brain connectivity toolbox 
(Rubinov & Sporns, 2010).

Functional network connectivity degree values quantify the 
number of nonzero correlations of each RSN with other nodes in 
the network, while strength values indicate not only a correlation 
between RSNs but also the robustness of this correlation. They 
also provide a measure of the communication quality expressed in 
the correlation, that is, higher values for these two measurements 
indicate better communication. Similarly, FNC segregation was 
measured by clustering coefficient. This assessment indicates how 
well-connected neighbor nodes are in order to become a grouped 
unit. High clustering coefficient values indicate that a set of nodes 
are well connected among themselves. Additionally, FNC central-
ity was assessed by betweenness and eigenvector measurements. 
Higher betweenness centrality values of a RSN mean that a node 
belongs to a high number of the shortest paths (path with the min-
imum distance between two nodes) between pairs of nodes in the 
network. For example, when a RSN time-course is better related to 
other time-course in sequence, it presents a better communication 
path. Furthermore, a higher RSN eigenvector centrality value indi-
cates that this RSN is better connected to other central nodes. This 
estimates how central a RSN is based on the direct connections to 

others that have strong links. All measurements herein used were 
computed for each node, that is, for each RSN in the FNC. Average 
measurements were calculated to quantify communication quality 
among the network nodes. They describe the global network func-
tional connectivity properties and depict all the network variations 
associated with FNC alterations.

2.7 | Statistical analysis

To assess the discrimination power of the network properties, an un-
paired-sample t test (Welch, 1947; Bonferroni corrected) was com-
puted. For the statistical analysis, the following comparisons were 
performed: HC versus subjects with MCS, HC versus subjects with 
UWS, HC versus subjects with DOC (UWS and MCS), and subjects 
with MCS versus subjects with UWS.

3  | RESULTS

In this study, a set of network measurements were used to assess 
the integration, segregation, and centrality of the FNC between 
RSNs to characterize connectivity variations in different states of 
consciousness.

3.1 | Loss of functional network connectivity 
integration in DOC

Figure 2 shows degree and strength values for subjects in different 
states of consciousness for the 10 different RSNs herein studied. As 
observed in Figure 2a, degree values were higher for HC compared 
to subjects with altered states of consciousness (MCS and UWS) in 
all RSNs, except by the sensorimotor network. Significant differ-
ences (p < .005) were observed for the values of degree when com-
paring HC with MCS populations in auditory network, DMN, ECN 
Left and visual medial network. Significant differences (p  <  .005) 
were also found when comparing HC versus subjects with UWS and 
when comparing HC and subjects with DOC in auditory network, 
DMN, ECN Left, visual medial network, and ECN Right. Also, degree 
values for subjects with MCS were greater than the UWS in all RSN 
but no significant differences were observed. Table S4 reports sta-
tistical details of these assessments.

As observed in Figure 2b, strength values were higher for HC in 
comparison to subjects with altered states of consciousness in all 
RSNs except by sensorimotor and cerebellum networks. Significant 
differences (p < .005) in strength values were observed for HC com-
pared to subjects with MCS and for HC versus the population of 
DOC, in auditory network, DMN and visual medial network. HC pre-
sented strength values significantly higher than subjects with UWS. 
No significant differences were observed between strength values 
of subjects with MCS compared to subjects with UWS. Table S5 re-
ports the statistical details about strength value comparisons.
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Figure 3 shows the average degree and average strength val-
ues. Average values were estimated as a global characteristic of 
functional connectivity network between RSNs. As observed in 

Figure 3a, average degree values were higher for HC compared to 
altered states of consciousness. Significant differences were also 
found for HC (M  =  3.81, SD  =  2.10) when compared with UWS 

F I G U R E  2   Integration measurements. (a) Degree and (b) strength show a similar distribution across healthy subjects and patients with 
disorders of consciousness (DOC). Both evidence higher values for healthy controls (HC) than subjects with DOC in the same resting 
state networks (RSNs; auditory, cerebellum, default mode network [DMN], executive control network [ECN] Left, ECN Right, saliency, 
sensorimotor, visual lateral, visual media and visual occipital). Significant differences between HC and minimally conscious state (MCS) and 
unresponsive wakefulness syndrome (UWS) patients were assessed in RSNs associated with the phenomenon of consciousness emergence 
(auditory, DMN, ECN Left, ECN right, Saliency). Fingerprints lines indicate mean values, and thin lines indicate standard deviation values 
for each RSN. ✶ aims for significant difference between HC and MCS. ★ aims for significant difference between HC and UWS. ✠ aims for 
significant difference between HC and DOC

(a) (b)

F I G U R E  3   Distribution of the average integration measurements for the three populations herein studied. (a) Degree and (b) Strength. 
Red lines indicate the mean, black lines indicate the median and red wine lines indicate the maximum. Each dot in the violin represents the 
measurement on a single subject. ✶ aims for a significant difference between healthy controls (HC) and minimally conscious state (MCS; 
p < .05). ★ aims for a significant difference between HC and unresponsive wakefulness syndrome (UWS; p < .05). ✠ aims for a significant 
difference between HC and patients with disorders of consciousness p < .05)
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(M = 1.71, SD = 2.59; t = 3.16, p = .003). Similarly, significant differ-
ences in average degree were also found when HC subjects were 
compared with DOC (M = 1.97, SD = 2.69; t = 3.03, p = .003). Further, 
the average degree presented a decreasing tendency which corre-
sponds to the increase in DOC severity. As observed in Figure 3b, 
average strength values were higher for HC compared to altered 
states of consciousness. No significant differences were observed 
for these averages when compared among populations, in contrast 
to the previous observation of decreases in the average degree 
values. Also, average degree and average strength values exhibit 
greater spread distributions for subjects with MCS and subjects with 
UWS than for HC subjects.

3.2 | Loss of functional network connectivity 
segregation in DOC

Figure 4 reports the clustering coefficient values for subjects in dif-
ferent states of consciousness. Higher clustering coefficient values 
were obtained for HC in comparison to altered states of conscious-
ness except in sensorimotor, cerebellum and visual lateral networks 
(Figure 4a). Clustering coefficient values for HC present significant 
differences (p <  .005) compared to subjects with MCS in auditory 
network and DMN. Significant differences (p < .005) also were ob-
served when comparing HC and subjects with UWS for auditory and 
visual medial networks. No significant differences of clustering co-
efficient values were observed for the RSN when compare subjects 
with UWS and subjects with MCS. Finally, differences between sub-
jects with DOC and HC subjects were significantly distinct (p < .005) 
for auditory network, DMN and visual medial network. Table S6 re-
ports statistical details about the comparisons performed for the 
clustering coefficient.

Figure 4b shows the average clustering coefficient values. 
These values were higher for HC compared to altered states of con-
sciousness. Average clustering coefficient values were significantly 
higher for HC (M = 0.20, SD = 0.06) compared to subjects with MCS 
(M  = 0.12, SD  = 0.12; t  = 2.95, p  =  .004). Similarly, significant dif-
ferences were also higher when comparing HC and subjects with 
DOC (M = 0.12, SD = 0.14; t = 2.97, p = .004). Further, distributions 
of the average clustering coefficient were narrower for HC than for 
subjects with DOC while their means exhibit a slightly decreasing 
tendency in correspondence with the severity of DOC.

3.3 | Alterations of functional network connectivity 
centrality in DOC

Betweenness centrality and eigenvector centrality values are re-
ported in Figure 5. Betweenness centrality values were higher for 
HC in contrast to subjects with altered states of consciousness for 
DMN, ECN Left, ECN Right, salience network and cerebellum net-
work, as observed in Figure 5a. These centrality values of subjects 
with UWS were higher when comparing to subjects with MCS and 

when comparing to HC subjects, for auditory, sensorimotor, visual 
lateral, visual medial and visual occipital networks. Also, ECN Right 
and salience network has values of zero of betweenness central-
ity for UWS patients, indicating that these nodes were not part of 
any shortest path in the network. Table S7 reports statistical details 
about these comparisons.

As observed in Figure 5b, eigenvector centrality values were 
higher for HC compared to subjects with DOC except by auditory 
and sensorimotor networks. Higher values of eigenvector central-
ity for HC with significant differences (p < .005), were observed for 
DMN, ECN Left, ECN Right, and visual medial network compared 
with subjects with DOC. Similarly, when contrasting HC and sub-
jects with MCS, significant differences (p  <  .005) were obtained 
for DMN. Eigenvector centrality values were significantly different 
(p < .005) for DMN, ECN Left, ECN Right and visual medial network 
in comparison with HC and subjects with UWS. Further, eigenvector 
centrality values were higher for subjects with MCS compared to 
HC, and for subjects with MCS versus UWS for the sensorimotor 
network. Finally, auditory network eigenvector centrality values 
were higher for subjects with UWS compared to subjects with MCS, 
which were also higher than HC. This observation in the auditory 
network indicates an increasing tendency in centrality, which cor-
responds with the severity of the pathology. For this network, sig-
nificant differences (p  <  .005) were found between subjects with 
UWS and HC. Table S8 reports statistical details about eigenvector 
centrality comparisons.

Figure 6 illustrates average betweenness centrality and aver-
age eigenvector centrality. Average betweenness centrality values 
were higher for HC in contrast to subjects with altered states of 
consciousness. Also, the distribution of these values is narrower for 
MCS compared to HC and subjects with UWS (Figure 6a). Similarly, 
higher values of average eigenvector centrality were observed for 
HC when comparing to subjects with DOC (Figure 6b). Significant 
differences were observed when compare the populations, between 
HC (M = 0.25, SD = 0.06) and subjects with MCS (M = 0.19, SD = 0.08; 
t = 3.61 p = .00071), between HC and subjects with UWS (M = 0.16, 
SD = 0.08; t = 5.04 p = .00001), and between HC and subjects with 
DOC (M = 0.18, SD = 0.08; t = 4.54 p =  .00002). Further, average 
eigenvector centrality values exhibit a decreasing tendency as the 
severity of the pathology increases. They also showed a narrower 
distribution for HC in comparison to subjects with DOC.

4  | DISCUSSION

In this paper, we studied whole-brain functional connectivity 
changes in different states of consciousness: HC, subjects with MCS 
and subjects with UWS. Unlike previous approaches, which mainly 
focus on functional units that seem to be associated to conscious-
ness, that is, DMN, the proposed model considers a more general set 
of functional units that represents connectivity between RSNs, in-
cluding sensory and cognitive-related ones. So, this model provides a 
general perspective of the cognitive and sensory RSNs connectivity 
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variations in altered states of consciousness. We assessed the in-
teractions between these RSNs, resulting in a FNC model that al-
lows describing whole-brain system-level interactions. We used a 
model of functional connectivity among RSNs, which corresponds 
to large spatial scale segregated functional units. In this model, the 
interaction between pairs of representative time-courses of each 
RSN is computed (Biswal, 2012), resulting in a FNC model that al-
lows describing whole-brain interactions (Jafri et al., 2008). The pro-
posed model provides a general perspective which overcomes the 
specific or single consciousness-related region studies (Demertzi et 
al., 2013; Di Perri, Thibaut, et al., 2014; Guldenmund et al., 2013). 
It allows describing the entire brain functional reconfiguration in a 
broad scale of regions related to sensory and cognitive processes. 
This reconfiguration description goes further than previous gen-
eral density studies in coma (Malagurski et al., 2019) depicting the 
functional variations between functional units associated with the 
consciousness level. The proposed model differs from the previous 
EEG holistic functional model which is used to discriminate MCS 
and UWS patients using a hemispheric division of Brodmann Areas, 
that is, 84 regions, to build the functional connectome and a set of 
network measurements revealing alterations in the small-worldness 
topology associated with the consciousness level (Cacciola et al., 
2019). The mentioned general brain network model is affected by 
single RSN variations linked to changes in the level of conscious-
ness. Additionally, in contrast to the usual description of the interac-
tion between pairs of functional units, we assessed the more global 

properties of integration, segregation, and centrality that have been 
suggested to be critical in the emergence of the consciousness phe-
nomena (Tononi & Koch, 2008).

Our analysis indicates that loss of consciousness in patients with 
DOC is associated with significant changes in the functional connec-
tivity at the RSN level for the three properties studied here. More 
specifically, severity of consciousness impairments was related to 
reductions of integration in sensory and cognitively related RSNs, 
decreases in segregation level for sensory-related RSNs, and in-
creases of centrality for sensory-related RSNs. The functional anal-
ysis of altered states of consciousness, from the proposed general 
perspective, reveals a topological reorganization of the large-scale 
functional regions which are not described in previous analyses 
which mainly focused in specific circuits within the RSNs. In sum-
mary, we propose a large-scale (RSNs) functional connectivity model 
to explore network properties linked to the consciousness phenom-
ena, and we found a reconfiguration of the functional connectivity 
properties in altered states of consciousness.

The discussion continues arguing about the main findings and 
implications related to the variations found in the measurements 
of integration, segregation, and centrality, associated with the con-
sciousness level. It starts by discussing the results over alterations 
of the integration values from a general perspective, and their link 
with specific brain circuits in the section, Integration alterations in 
DOC. Following, section Segregation alterations in DOC considers 
the variations of the segregation assessments and their relationships 

F I G U R E  4   Segregation measurement between resting state networks by clustering coefficient. (a) fingerprint (b) violin plot. Higher 
clustering coefficient values were observed for healthy controls (HC) than for subjects with disorders of consciousness (DOC) except by 
sensorimotor network. ✶ aims for a significant difference between HC and patients with minimally conscious state (MCS). ★ aims for a 
significant difference between HC and unresponsive wakefulness syndrome (UWS). ✠ aims for a significant difference between HC and 
patients with DOC

(a) (b)
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with previous findings. Then, in section Centrality alterations in 
DOC, the changes in the centrality measurements of the large-scale 
regions are interpreted. Finally, the discussion indicates some limita-
tions of the presented approach and introduces some perspectives 
to go further.

4.1 | Integration alterations in DOC

Integration measurements suggest that RSNs related to awareness 
are better connected for conscious subjects (Hannawi, Lindquist, 

F I G U R E  5  Centrality measurements. (a) Betweenness centrality exhibits a central role changing in auditory, sensorimotor, visual lateral 
and visual occipital networks for subjects with disorders of consciousness (DOC). Similarly, (b) eigenvector centrality presents a role 
alteration for auditory and sensorimotor networks in subjects with DOC. ✶ aims for a significant difference between Healthy Controls 
(HC) and patients with minimally conscious state (MCS). ★ aims for a significant difference between HC and patients with unresponsive 
wakefulness syndrome (UWS). ✠ aims for significant difference between HC and patients with DOC

(a) (b)

F I G U R E  6  Average centrality distribution measurements (a) Betweenness Centrality, (b) Eigenvector Centrality. Red lines are the mean, 
black lines are the median, red wine lines are the maximum. Average eigenvector centrality shows narrower distributions for Healthy 
Controls (HC) than subjects with disorders of consciousness (DOC). Also, a decreasing tendency is observed in correspondence with the 
consciousness content. ✶ significant difference between HC and patients with Minimally Conscious State (MCS). ★ significant difference 
between HC and patients with Unresponsive Wakefulness Syndrome (UWS). ✠ significant difference between HC and patients with DOC
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Caffo, Sair, & Stevens, 2015). Higher degree values of auditory net-
work, DMN, ECN Left, ECN Right, and visual medial network for HC 
indicate that, for this population, these RSNs are more connected 
to other RSNs than in subjects with DOC (Figure 2). This reduction 
of the degree values in altered states of consciousness could be un-
derstood as a reduction of relationships between RSN time-courses, 
that is, representative time-courses are less or not correlated, sug-
gesting an alteration of the functional connectivity structure in this 
patients. This result corroborates the disruption of external and in-
ternal awareness networks (Demertzi et al., 2013) and the decrease 
in anti-correlated connectivity previously observed in subjects with 
DOC (Di Perri, Thibaut, et al., 2014). Also, functional connectivity 
of salience network was reported as diminished in altered states of 
consciousness (Guldenmund et al., 2013). This network is usually 
associated with the orchestration between internal attention and 
task-related-states, and its alterations were linked to consciousness 
disorders (Heine et al., 2012). In our experiment degree values for 
salience network support this observation. A more detailed analysis 
of the integration phenomena can be obtained by studying strength 
values alterations (Figure 3). These values were also reduced in al-
tered states of consciousness indicating that the amount of informa-
tion that different time-courses share is lower for subjects with DOC. 
This observation confirms the functional disruption associated with 
the severity of the pathological condition, as was reported for highly 
detailed networks in distinct consciousness states (Ribeiro de Paula 
et al., 2017). Further, this reduction could result from a deterioration 
process of the connectivity between RSNs, which can be an effect of 
the connectivity drops in small regions (Hannawi et al., 2015). Also, 
averaged integration measurements, both degree and strength, sug-
gest that preserved levels of consciousness seem to be related to 
narrow distributions for integration values. In particular, patients 
with UWS seem to exhibit a larger variety of connectivity values 
including hyperconnectivity (increment of connectivity) and discon-
nections, when compared to healthy subjects. Subjects with altered 
states of consciousness not only reduce the number of connections 
between RSNs, but also degrade the ones that remain, suggesting 
a reduction of the synchronization level associated with the com-
munication between networks. Importantly, the measures herein 
proposed were computed in large spatial regions that contain previ-
ously studied areas, such as the thalamo-cortical circuit (Demertzi 
et al., 2013). Therefore, breakdowns in integration seem to appear 
not only for small brain areas, as reported for strength reductions 
in the connectome computed from EEG (Cacciola et al., 2019), but 
also for larger functional systems. Similarly to our results, Cacciola 
et al. (2019) compute integration measurements for subjects with 
MCS and UWS, but they were also not significant to discriminate be-
tween those populations. To conclude, the local integrations meas-
urements corroborates previous findings of connectivity disruptions 
for patients with DOC, while global integration describes the global 
integration assessments exhibits a decreasing tendency related to 
the consciousness level, that is, the conscious subjects seem to be 
better integrated than patients with MCS, and patients with MCS 
seem to better integrated than patients with UWS.

4.2 | Segregation alterations in DOC

High values in clustering coefficient of the DMN seem to be related 
to the level of synchronization of this network with other RSNs. This 
result was previously reported in specific awareness circuits involv-
ing the DMN (Demertzi et al., 2014). Segregation measurement as-
sessed by clustering coefficient confirms that consciousness could 
be a phenomenon involving segregated functional units that work in 
an integrated manner (Tononi, Sporns, & Edelman, 1994). RSNs could 
be understood as segregated regions that execute specific tasks 
(Biswal, 2012) but share information in consciousness phenomena 
(Heine et al., 2012). Sensory and cognitive-related networks appear 
to be more clustered for HC. In contrast, the segregation increases 
for sensorimotor in DOC with no significant differences between 
MCS and UWS. A similar finding was reported in an experiment with 
altered states of consciousness and anesthesia (Guldenmund et al., 
2017) where an increment of functional connectivity between thala-
mus and sensorimotor network was found in altered states of con-
sciousness. Altered segregation values in the sensorimotor region, 
jointly with integration changes, are suggesting a variation in the 
sensorimotor time-course behavior, becoming more synchronized 
with other high-related RSNs; thus, these variations suggest the con-
figuration of a segregated functional unit. This behavior seems to be 
a consequence of different scenarios out of the scope of the present 
study that could be analyzed in future explorations. However, this 
finding is contrary to the reported by Cacciola et al. (2019) were they 
reveal an increment of the clustering coefficient in the patients with 
UWS when compared against MCS, the mentioned difference could 
be a result of the computation of the clustering coefficient using a 
binary matrix instead of a weighted connectivity matrix, as in our 
case. In brief, variations of the segregation measurements in patients 
with DOC seem to be caused for a reconfiguration of the functional 
synchronized groups.

4.3 | Centrality alterations in DOC

Centrality measurements indicate how central a node is in the net-
work. High centrality scores in auditory and sensorimotor networks 
suggest that these functional units play a central role in patients 
with altered states of consciousness, revealing a behavior alteration 
phenomenon even if these regions exhibit a functional connectivity 
reduction in patients with altered states of consciousness, as was 
previously reported (Demertzi et al., 2013, 2014; Kirsch et al., 2017). 
This observation could be further explored to understand the kind 
of variation induced by DOC that reveals a centrality increment. 
Similarly, higher scores in sensorimotor network suggest that this 
network also change its nature, becoming more important in sub-
jects with altered states of consciousness. Interestingly, even if the 
sensorimotor input-output loops were reported as not required for 
consciousness (Tononi & Koch, 2008), the circuits involving these 
RSN were altered by the pathology (Di Perri, Stender, et al., 2014). 
A surprising finding is the increment of centrality values for this 
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external awareness network in subjects with DOC, which is not ex-
pected due to its associated behavior to sensory stimuli and motor 
reaction. A similar finding was reported by Cacciola et al. (2019), 
where an increment of the betweenness centrality in posterior cin-
gulate and visual areas were stated for patients with UWS. However, 
this finding at RSN level can be a result of a brain reconfiguration in 
response to not-conscious stimuli response (Tononi & Koch, 2015). 
Increases of centrality values of functional connectivity between 
RSN in altered states of consciousness suggest a modification of 
their time-courses nature, becoming more relevant in subjects with 
DOC. Nevertheless, this new central role of some RSNs would be 
not suitable for consciousness phenomena, where a sort of equilib-
rium between segregation and integration is required (Cacciola et al., 
2019; Tononi & Koch, 2008, 2015; Tononi et al., 1994). Summarizing, 
centrality alterations describe a reconfiguration of the relevant 
functional units in altered consciousness states that seem to be not 
suitable for the emergence of consciousness.

4.4 | Limitations and future directions

The analysis developed in this experiment presents some meth-
odological limitations. A potential confounding factor is related to 
head motion. In order to study this potential bias source, frame-wise 
displacements (FWD; Power et al., 2012) were computed for each 
group to evaluate data quality acquisition. According to FWD, im-
ages with major displacements have to be removed for the func-
tional connectome computation of each subject. Average FWD for 
HC subjects was 0.02 (SD = 0.003), for patients with MCS was 0.3 
(SD = 0.005), and for patients with UWS was 0.04 (SD = 0.007). 
These values indicate that the variation ranges are similar even 
if the values for MCS and UWS were higher (see Figures S1–S3). 
Therefore, it is reasonable to assume a small influence of large head 
motions in the results herein reported. Another potential confound-
ing result is related to the brain gray matter reduction in patients 
with DOC. Gray matter volume can influence the functional con-
nectome measurements by reducing the amount of voxels which 
are considered to be in a region, that is, in a RSN, (Table S2). In ad-
dition, the proposed analysis was made for functional connectivity 
between RSNs, that is, for a 10 × 10 matrix representing a broad pic-
ture of the brain functionality. This feature limits more specialized 
analyses as those made to study the topology for larger networks, 
that is, hubs (Bullmore & Sporns, 2012), and small-world (Rubinov & 
Bullmore, 2013; Sporns, 2003). A matrix with more regions would 
provide a detailed connectivity matrix which exhibits variations in 
the nodal measurements while the global network assessments re-
main similar. Indeed, the regions of the detailed matrix can be sorted 
to arrange the regions into RSN to compare the individual and global 
measurements. Another consideration to address is the amount 
of information corresponding to the size of the samples for each 
population associated to a different state of consciousness, which 
in this experiment corresponds to 48 patients with DOC (24 MCS 
and 24 UWS). Additionally, in this study each large-scale region was 

represented by an averaged time-course which explains the neu-
ronal activity of the entire region. This representative time-course 
was built from a data-driven approach, a combination of spatial ICA 
of neuronal nature (Jafri et al., 2008). Functional connectivity be-
tween the representative time-courses of each RSN was computed 
by using the lagged distance correlation (Rudas et al., 2014). This 
approach captures nonlinearities which favors the communication 
(delayed synchronization) dynamic between RSNs. The window size 
used in this lagged approach was defined for the HC subjects, tak-
ing into account that this fixed size in subjects with DOC might not 
be suitable if the alterations induced by the pathology affect the 
synchronization time, that is, cause a communication delay between 
RSNs. Besides, integration, segregation and centrality measure-
ments herein used permit a broad exploration in a small network. 
Other graph measurements, like small-world, rich club, efficiency 
and shortest paths, have been successfully applied to analyze func-
tional connectivity alterations associated to different pathologies 
(Rubinov & Sporns, 2010). These measurements provide a better 
understanding of network topological alterations; however, they 
require large networks, that is, networks with a large number of 
nodes. Statistical analysis was based on the family-wise approach 
that does not require interpretation of any property. In this work 
Network-Based Statistic (Zalesky, Fornito, & Bullmore, 2010; NBS) 
was not used to identify differences between networks due to the 
following considerations: (a) the network size; each FNC has 10 
nodes that means a maximum of 45 comparisons per network, (b) 
the power of the contrast ratio suggested in NBS was not suitable. It 
looks for preserved connections between nodes at different thresh-
old computations which impose a minimum strength in the relation-
ships. These conditions were also indicated by the NBS author, who 
highlights that the connections comprised the contrast of interest 
might form components, that is, regions with high power. If they do 
not form components, or if the extent of the components formed 
are too small, the NBS is ineffective. This is the case for the 10 × 10 
FNC. Finally, in order to get a clear idea about integration, segrega-
tion, centrality and topological alterations related to specific areas 
or circuits in the brain, functional connectivity networks in differ-
ent scales for the entire brain can be explored. This permits further 
understanding of time-courses alterations in sensorimotor and audi-
tory networks to capture the essence of modifications induced by 
the altered state of consciousness.

5  | CONCLUSIONS

We use a general model of brain functionality to study its modifica-
tions in different states of consciousness. We found that this general 
model built from large-scale areas exhibits connectivity alterations 
induced by the pathology. In particular, we use network measure-
ments to observe modifications of the FNC linked to consciousness 
level. Our results suggest that the FNC is better integrated and seg-
regated for healthy subjects than for patients with DOC except by 
the sensorimotor network. Besides, FNC centrality indicates that 
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there exists a role alteration in sensorimotor and auditory networks 
for patients with DOC where these RSNs become more important.
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