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Abstract: The main objective of this work was to evaluate the potential of Montmorillonite nanoclay
(Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) of two
classes of pollutants: metal ions and dyes. The attention was focused on two “model” pollutants:
Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in wastewaters
of various origins. These characteristics, together with their effect on human health, make them ideal
for studies on water remediation. Moreover, when separated from wastewater, they can be recycled
individually in industrial production with no or simple treatment. Clay/pollutant hybrids were
prepared under different pH conditions and characterized through the construction of the adsorption
isotherms and powder X-ray diffraction. The adsorption behavior of the two contaminants was
revealed to be significantly different: the Langmuir model reproduces the adsorption isotherm of
Ce(III) better, thus indicating that the clay offers a unique adsorption site to the metal ions, while the
Freundlich model proved to be the most reliable for the uptake of CV which implies heterogeneity
of adsorption sites. Moreover, metal ions do not adsorb at all under acidic conditions, whereas
the dye is able to adsorb under all the investigated conditions. The possibility to modulate the
adsorption features by simply changing the pH conditions was successfully employed to develop
an efficient protocol for the removal and separation of the different components from aqueous
solutions mimicking wastewaters.
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1. Introduction

The disposal of wastewaters from various origins represents a serious environmental issue due
to the simultaneous presence of different types of pollutants [1–4]. Dyes and metals are widely used
and often jointly released in large quantities from industrial activities such as dye manufacturing,
the textile and leather tannery industries, pulp and paper processing, battery production [5–11].

Owing to their toxic potential and their recalcitrant capacity, discharge of metal ions and dyes
effluents can cause potential hazards to environment and human health [12–24].

All conventional methods applied for the treatment of dyes and/or heavy metals [25–32] have
peculiar limitations related to cost, efficiency and operational difficulties [11,33–36]. Among them,
adsorption was revealed as one of the most effective methods due to its simple operation, versatility,
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high-treatment efficiency and low cost, and it is therefore widely applied for the treatment of
wastewaters [37–48].

Several kinds of natural or chemically modified materials including activated carbons, carbon
nanotubes, zeolites and clays [8,49–58], were investigated to remove contaminants from effluents.
In recent years, there has been growing interest in clay minerals which are green, inexpensive and
effective adsorption substrates [5,59–65].

Aside from their large surface area, the adsorption properties of clay minerals are mostly related
to the negative charges generated by isomorphic substitutions. Generally, these negative charges are
neutralized by exchangeable ions thus allowing the adsorption of positively charged cations through
cation exchange processes. For these reasons clay minerals display a strong attraction to cationic
species, such as dyes and metal ions [55,66–70].

Specifically, montmorillonite (Mt), whose structure consists of ~1 nm thick alluminosilicate layers,
was largely employed in remediation due to its noteworthy properties, including large specific surface
area and presence of nano-pores, high cations exchange capacity, presence of several types of active
sites on the surface, easy availability, eco-friendliness and non-toxicity [71–78].

In this context is inserted the present work where Mt mineral clay was employed for the treatment
of water samples containing two “model” pollutants. The organic dye crystal violet (CV) and the
Ce(III) metal ions were chosen as models for dye metals because they are both in the cationic form in
a wide range of pH, they are widespread in wastewaters of various origin, and have a toxic effect on
human health, making them ideal for a study on water remediation. Moreover, when separated from
wastewater, they can be recycled individually in industrial production [79].

In more detail, crystal violet is largely employed in textile and paper industries, in veterinary
pharmacology and in bacteriology as Gram stain [79]. In spite of the great range of applications, crystal
violet is a mutagen, carcinogenic and mitotic poison [80,81] and therefore the disposal of effluents is
an important environmental issue.

As for the Ce(III) species, it represents the most abundant element of rare earth metals and has
several applications in engineering, agriculture, catalysis, nuclear energy, metallurgy, pharmaceutical,
and removal from radioactive wastes [82–88]. Cerium compounds are considered to be moderately
toxic [89–92] with their tendency to accumulate in the bones, liver, heart and lung and to react with
enzyme and phospholipids [93,94]. Moreover, cerium in forms of nitrate and chloride could induce
chromosomal breaks [95] and intensifying the cardiac effects of magnesium deficiency [96], respectively.
Due to the toxic effect and the simultaneous technological importance of Ce(III), separation and
recovery of these metal ions from effluents has a significant environmental and economic impact.

The removal of both Ce(III) and CV from aqueous solutions through adsorption onto various
substrates, including clay minerals, was investigated by various authors [20,24,34,81,83,97,98].
However, a systematic study aimed to develop an efficient procedure for their simultaneous removal
and separation is still lacking.

In the light of the above considerations, the aim of this work was to exploit the adsorption
features of Mt clay for the treatment of aqueous solutions containing crystal violet and Cerium(III) as
models for dyes and metals. Although different works concerning multicomponent adsorption were
performed [99,100] in order to better clarify the adsorption mechanism and to propose a separation
protocol, the adsorption behavior of the two contaminants separately was investigated here. Batch
adsorption experiments were performed under different pH conditions and the adsorption isotherms
were constructed in order to elucidate the adsorption mechanism and establish the nature of the
interactions. The sites of interactions of the clay surface were proposed on the basis of the XRD
results. Then, based on the information obtained, two different procedures were developed to remove
simultaneously and separate the metal ions and dyes from the effluent.
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2. Materials and Methods

2.1. Materials

All the reactants, i.e., K10-Montmorillonite (Mt), hydrochloric acid (HCl), sodium hydroxide
(NaOH) standard solutions, Ce(III) nitrate hexahydrate (Ce(III)) and crystal violet (CV, C25H30ClN3,
Mw = 407.99 g mol−1, water solubility = 50 mg mL−1 at 27 ◦C, Kow = 0.51) were purchased from Sigma
Aldrich and used as received. The structural formula of K10-Mt is reported as follows:

(K0.25Na0.118Ca0.022)(Al1.06Fe0.206Mg0.166)(Si7.39Al0.61)O20(OH)4.

The BET (Brunauer-Emmett-Teller) surface area is 220 m2/g, the CEC is 119 meq/100 g, the total
pore volume is 0.3 cm3/g and the average pore size is 6.25 nm. Pore size distribution (PSD) curves
reveal that 80% of pores have a diameter <25 nm with a peak at 4.04 nm [101].

Zeta potential measurements reported in literature for K10-Montmorillonite [78] showed that it
does not present isoelectric point, being the clay surface negatively charged at all pH values.

Deionized water from reverse osmosis (Elga, model Option 3), having a specific resistance higher
than 1 MΩ cm, was used to prepare all solutions.

2.2. Samples Preparation

Aqueous HCl and NaOH solutions at the desired pH were prepared by proper dilution of the
corresponding standard solution.

Pollutant stock solutions and Mt suspensions were prepared by weighing the proper amounts
of the components and dissolving them with the aqueous solutions at the required pH, according
to the procedure already reported in the literature [72]. When necessary the pH of the aqueous
solutions/dispersions were adjusted to the desired value by adding microvolumes of either HCl or
NaOH standard solution. The clay dispersions were stirred for about 2 h before use.

In order to construct the adsorption isotherms, appropriate aliquots of the metal or dye solutions
were added to the Mt dispersion at room temperature (25 ◦C). The pollutant concentrations were
changed in the range from (2.0 ± 0.1) × 10−4 to (4.0 ± 0.2) × 10−3 g dm−3, while the amount of Mt was
kept constant at 0.40 ± 0.02 g dm−3. The mixture was stirred at 100 rpm for 24 h, a stirring time which
ensures that the adsorption processes reaches the equilibrium, as demonstrated by preliminary kinetic
experiments. At the end of the adsorption process the pH of the obtained dispersions was checked.
No significant changes were observed. The dispersion was then centrifuged 1 h at 10,000 rpm by means
of a Centra MP4R IEC centrifuge (Thermo Fisher Scientific, Waltham, MA, USA). The supernatant was
separated from the solid, which was air-dried at room temperature, crushed in an agate mortar and
employed for X-ray diffraction (XRD) characterization.

The gathered supernatants were spectrophotometrically analyzed by registering the spectra
of the aqueous pollutant solutions in the wavelength range 200–700 nm with a diode-array
S600 spectrophotometer (Analytic Jena, Jena, Thuringia, Germany) equipped with thermostated
compartments for 1 cm × 1 cm × 5 cm cuvettes and an appropriate magnetic stirring apparatus.
Triplicate experiments were performed and the results are reported as the average value of each
single measurement.

The molar adsorption coefficient values (ε) of CV and Ce(III) at two different pH conditions were
determined by constructing the calibration curves (Table 1)

Table 1. Molar adsorption coefficient values (ε, M−1 cm−1) of crystal violet (CV) and Ce(III) at pH 3.0
and 7.0.

pH Conditions ε, M−1 cm−1

CV
(λ max = 591 nm)

pH 3.0 42000 ± 800
pH 7.0 73800 ± 300

Ce(III)
(λ max = 253 nm)

pH 3.0 740 ± 30
pH 7.0 860 ± 50
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2.3. X-ray Diffraction (XRD) Characterization

Powder X-ray diffractometry measurements were performed for the Mt/contaminant hybrids and
for the clay in the absence of additives. Samples were mounted on aluminum plates and the XRD
patterns were acquired at room temperature with an STOE D500 (Siemens, Monaco, Germany) with Cu
Kα radiation, λ = 1.5418 Å, generated at 40 kV and 20 mA, in the range of scattering angles 2θ = 4◦–25◦

at the rate of 0.01◦/s.

3. Results

3.1. Effect of pH Solution on Adsorption Efficiency

Since clay surface is negatively charged at all pH values [78], Mt surface is ideal for the uptake
of cations.

In order to compare the amount of the two contaminants adsorbed onto the clay under different
pH conditions (pH = 3.0, 5.0, 7.0, 9.0), preliminary experiments were performed by mixing 0.04 g dm−3

of CV or Ce(III) with 0.4 g dm−3 of Mt. The dispersion obtained was then stirred and centrifuged and
the supernatants were analysed spectrophotometrically as already described. The results, expressed in
terms of weight percentage, i.e (mass of adsorbed component/initial mass) × 100%, are summarized in
Table 2.

Table 2. Weight percentage of CV and Ce(III) adsorbed onto Mt mineral clay.

pH 3.0 pH 5.0 pH 7.0

CV 73 wt% 78 wt% 95 wt%
Ce(III) 0 0 50 wt%

Results are not reported for the highest value of pH (pH = 9.0), since it was observed that the
stability of the clay suspension is strongly decreased at high pH, thus leading to low reproducibility of
the experiments.

Despite the fact that both contaminants are in the cationic form at the investigated pH
range [102–104], a marked difference in the adsorption behavior between the species is clearly
evidenced from data in Table 2. In more detail, Ce(III) metal ions do not adsorb onto clay at acidic pH
at all, while the dye is able to adsorb at the three investigated pH conditions. The higher pH favors
significantly the uptake of the dye according to what is observed for instance in [76] for the adsorption
of methyl green dye molecule onto Mt clay.

As widely reported in the literature [72,105,106] the uptake of cationic species onto Mt clay occurs
through cationic exchange processes in the clay interlayer and electrostatic interactions with the
permanent negative charges on the clay surface. Moreover, the effect of the pH-dependent charges has
to be taken into account: the abundance of H+ ions at acidic pH, imparts a repulsive force toward the
positively charged species, thus hampering their uptake. The results obtained in the present work
seem to indicate that electrostatic repulsions are predominant in the case of the adsorption of Ce(III)
metal ions and less influent in the case of the crystal violet.

3.2. Adsorption Isotherms

The adsorption isotherms, where the equilibrium amount of pollutant adsorbed into the clay
(Cs, g g−1) is plotted as a function of the equilibrium concentration in solution (Ce, g dm−3), are reported
in Figure 1. In the light of the results reported in 3.1, two representative values of pH (pH 3.0 and
pH = 7.0) were taken under consideration. It is worth underlining that, under the applied experimental
conditions, no Ce(III) precipitation was observed.
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Figure 1. Adsorption isotherm of (A) CV and (B) Ce(III) onto Mt performed at pH = 7.0 (�)
and pH = 3.0 (�). Lines correspond to the fit by Freundlich and Langmuir models, for CV and
Ce(III) respectively.

As already observed the uptake of the dye is lower under the more acidic conditions, while the
metal ions adsorb onto clay only at the higher pH value.

The following two models were used for fitting the adsorption isotherms:

- Langmuir isotherm:

Cs =
qmKLCe

1 + KLCe

where qm and KL are Langmuir coefficients related to adsorption capacity and adsorption
equilibrium constant respectively;

- Freundlich isotherm model:
Cs = KFC1/n

e

where KF and n are Freundlich coefficients related to adsorption capacity and adsorption
intensity, respectively.

The discrimination between the two models was performed by means of the statistical criteria
described in [107] based on advanced statistical diagnostics and robust fitting techniques. The sorption
parameters obtained and the most commonly applied statistics are collected in Table 3.
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Table 3. Sorption parameters and selected figures of merit of the two applied models, for the adsorption
isotherms of the contaminants onto the Mt.

Langmuir
Cs =

qmKLCe
1+KLCe

qm, g g−1 KL, dm3 g−1 R2 χ2 ESS

CV
pH 3.0 0.155 ± 0.007 480 ± 60 0.969 6.0 × 10−5 1.3 × 10−3

pH 7.0 0.22 ± 0.02 430 ± 70 0.961 8.8 × 10−5 1.0 × 10−3

Ce(III) pH 7.0 0.122 ± 0.004 180 ± 20 0.984 1.0 × 10−5 9.2 × 10−5

Freundlich
Cs = KFC1/n

e

n KF, (g g−1) (dm3 g−1)1/n R2 χ2 ESS

CV
pH 3.0 2.2 ± 0.1 1.1 ± 0.1 0.985 2.9 × 10−5 6.3 × 10−4

pH 7.0 2.0 ± 0.1 2.3 ± 0.4 0.967 7.4 × 10−5 8.8 × 10−4

Ce(III) pH 7.0 2.5 ± 0.3 0.5 ± 0.1 0.923 5.0 × 10−5 4.5 × 10−4

The Freundlich model proved to be the most reliable for the uptake of CV which implies
heterogeneity of adsorption sites and/or formation of multilayers [108–111], while the Langmuir
model better reproduces the adsorption isotherm of Ce(III), indicating that the clay offers a unique
adsorption site to the metal ions. Adsorption isotherms reported in Figure 1 clearly evidences the
higher adsorption capacity of CV with respect to Ce(III). However, since the two contaminants adsorb
through different mechanisms, the adsorption parameters obtained are not suitable for comparison.

As for the dye uptake, KF coefficient is higher at the higher pH, thus confirming that the excess of
H + ions at the acidic pH hampers the CV adsorption. The Freundlich constant values n > 1.0 indicate
the occurrence of favorable adsorption [78] and do not show significant variation with pH within the
error bars. The obtained parameters are in line with those reported literature for the adsorption of CV
onto K10-Montnorillonite [78,112]. Comparison with other adsorbents evidences the higher efficiency
of Mt [33,113,114].

To the best of the authors’ knowledge, no data related to the adsorption of Ce(III) cations onto
K10-Mt are available. The adsorption capacity values reported in literature for the uptake onto different
supports [115–117] are of the same order of magnitude or lower than those obtained in the present work.

Comparable values of adsorption efficiency are achieved with the application of membrane
separation processes, i.e., micro-, nano- or ultra-filration or reverse osmosis [118–120] in the removal of
both classes of contaminants. However, although quite effective, these methods are characterized by
elevated maintenance and operation costs and high energy requirements [118,121] which make them
unsuitable, especially for small and medium industries.

Information about the kind of energy that governs the adsorption process was obtained by
applying the Dubinin–Radushkevich (DR) equation (Figure 2):

lnCs = lnXm−kε2 (1)

where
ε = RT ln (1 + 1/Ce) (2)

is the Polanyi potential, R (KJ mol−1 K−1 ) is the gas constant, T (K) is temperature, Xm (g g−1) is the
adsorption capacity of the adsorbent, and k (mol2 KJ−2 ) is the DR isotherm constant related to the
adsorption energy through the following equation:

E = 1/
√

(2k) (3)
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performed at pH = 7.0 (�) and pH = 3.0 (�); line corresponds to the fit by DR equation.

The obtained values of the sorption parameters are reported in Table 4.

Table 4. Sorption parameters of the Dubinin–Radushkevich model for the adsorption isotherms of the
contaminants onto the Mt.

Xm, g g−1 K, mol2 KJ−2 E, KJ mol−1 R2

CV
pH = 3.0 0.47 ± 0.08 (5.9 ± 0.2) × 10−4 9.2 ± 0.3 0.9599
pH = 7.0 0.29 ± 0.05 (6.7 ± 0.5) × 10−4 8.6 ± 0.6 0.9349

Ce(III) pH = 7.0 0.23 ± 0.01 (8.8 ± 0.7) × 10−4 7.5 ± 0.6 0.9377

As for the dye, the E values obtained were in the range of adsorption energy (8–16 KJ mol–1)
characteristic for adsorption systems dominated by chemical ion-exchange mechanism [122–124],
while for the metal ions a borderline value was obtained, thus indicating that occurrence of other
mechanisms than cation exchange, i.e., direct bonding between metal cations with the surface of clay
(electrostatic interactions) and/or surface complexation [125].

The different modes of adsorption and their dependence on the pH conditions suggest the
possibility to properly modulate the removal and recovery of effluent contaminants. Therefore,
the employment of Mt nanoclay as sorbent offer a versatile method for the decontamination and
valorization of wastewaters containing different types of pollutants.

3.3. XRD Characterization

XRD patterns of unmodified and modified Mt samples, registered in the very low angle range, are
reported in Figure 3.
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Figure 3. X-ray diffraction (XRD) patterns of pristine Mt (black line), CV/Mt hybrids (red line) and
Ce(III)/Mt (blue line) at prepared at pH = 3.0 (A) and pH = 7.0 (B).

Perusal of diffractograms evidences the presence of the peaks characteristic of the hydrated
montmorillonite k10 clay, i.e., one at 2θ approximately equal to 8.9◦ (peak 1) which corresponds to
the basal interlayer, and a reflection peak at a lower 2θ value (~6◦) (peak 2), which, according to
literature [74,126–130], is attributed to the majority of the interlayer spaces being intercalated with water
molecules as proved by the disappearance of this refection peak after dehydration processes [129].

Comparison between the XRD patterns of the unmodified Mt hydrated at the pH 3.0 and 7.0,
reveals that acidic conditions lead to a shrinking of the clay interlayer. This can probably be due to
exchange processes between H+ and the larger cations placed in the clay structure.

Hybrid samples have structural characteristics nearly identical to the unmodified Mt, thus
indicating that the clay structure is maintained during the adsorption processes.

As for the positions of the peaks, no changes are detected in the presence of the metal Ce(III),
which means that the clay interlayer was not affected by Ce(III) exchange reactions. This behavior is
consistent with the results of the adsorption isotherms previously described and it is in line with the
study of [131] that suggested that metal cations were fixed solely on the outer surfaces of the clay.

By contrast, the adsorption of CV leads to a small shift in the peaks positions. In more detail, peak
1 moves towards higher 2θ values, at both investigated pH values, thus indicating a contraction of the
basal interlayer. The lower interplanar distance after dye adsorption could be taken as an indication
of the occurrence of cation exchange processes which displace cations from the interlayer spaces as
already observed in (Bromberg et al., 2011; Calabrese et al., 2017; Cui et al., 2008).

A perusal of the position of peak 2 reveals that the entrance of CV at pH 3.0 leads to an enlargement
of the interlayer spaces intercalated with water molecules from d = 14.5 Å to d = 15.0 Å, while at pH
7.0 the dimension of the clay interlayer is already d = 15.0 Å and no changes are detected.

It is worth to underline that the different behavior of metal and dye is in accordance with the
results of the adsorption isotherms and it corroborates the hypothesis that the dye adsorbs onto Mt
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clay through both exchange processes and interaction with the outer surface, while metal ions do not
enter the clay interlayer.

3.4. Protocol for the Removal and Separation of Pollutants

The information obtained about the different behavior of the two pollutants on varying pH was
exploited to develop a procedure for the removal and separation of the two species from a solution
mimicking an effluent containing the same amount of the two contaminants (~8 × 10−2 g dm−3).

The solution was treated, according to the method already developed in the first part of the
present work, with a suspension of Mt (2.0 g dm−3) at pH 3.0 in order to remove only the CV.
The ultraviolet–visible (UV–vis) spectrum of the supernatant obtained from the centrifugation of the
obtained dispersion was registered (see Figure 4), then pH was brought to 7.0 and treated again with
Mt, in order to remove the metal ions from the solution.
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Figure 4. Ultraviolet–visible (UV–vis) spectrum of a mixture containing ~8 × 10−2 g dm−3 of CV and
Ce(III) after the treatment with Mt at pH 3.0 (black line) and after the subsequent with Mt at pH 7.0
(red line).

The spectrum of the pollutant’s mixture after the treatment with Mt at pH 3.0 (black line) reveals
the presence of a peak corresponding to ~8 × 10−4 g dm−3 of CV (λ = 591 nm) indicating the removal of
the 99% of the dye, and a peak corresponding to ~8 × 10−2 g dm−3 of Ce(III) (λ = 253 nm) indicating that
the applied procedure does not remove the metal from the solution at all. The subsequent treatment at
pH 7.0 (red line) leads to the total removal of both the contaminants.

In the light of the results obtained it can be concluded that the proposed protocol can be efficiently
applied for the separation and removal of the two different kinds of pollutant, if simultaneously present
in a wastewater sample. Although, at this stage, experiments on the regeneration of the clay were not
still performed, the results obtained open up the possibility to recover and re-use the two contaminants

Experiments were also performed where a solution containing the same amount of Ce(III) and CV
(8 × 10−2 g dm−3) at pH 7.0 was treated with 2.0 g dm−3 of Mt. It was observed that the procedure
allows the removal of both contaminants and can be applied efficiently when the separation of the
contaminants is not required.
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4. Conclusions

The performance of montmorillonite clay in the decontamination of aqueous solutions containing
different types of contaminants were verified here. Crystal violet and Cerium (III) were chosen as
models for dyes and metals. The adsorption process from effluents containing the two pollutants
separately was first investigated at pH 3.0 and pH = 7.0, thus revealing significant differences in
the behavior of the two species under the different experimental conditions. Adsorption isotherms
and XRD measurements were performed in order to characterize the system. Then, based on the
information obtained, a procedure was proposed and successfully applied to remove simultaneously
and separate the metal ions and dye from wastewaters containing both contaminants.

These results can be helpful for further studies in scale-up processes using real effluents
characterized by the presence of different types of pollutants.
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Natural and Modified Zeolite—Alginate Composites. Application for Removal of Heavy Metal Cations
from Contaminated Water Solutions. Minerals 2018, 8, 11. [CrossRef]

55. Park, Y.; Ayoko, G.A.; Kurdi, R.; Horváth, E.; Kristóf, J.; Frost, R.L. Adsorption of phenolic compounds by
organoclays: Implications for the removal of organic pollutants from aqueous media. J. Colloid Interface Sci.
2013, 406, 196–208. [CrossRef]

56. Potgieter, J.H.; Potgieter-Vermaak, S.S.; Kalibantonga, P.D. Heavy metals removal from solution by
palygorskite clay. Miner. Eng. 2006, 19, 463–470. [CrossRef]

57. Rodeghero, E.; Chenet, T.; Martucci, A.; Ardit, M.; Sarti, E.; Pasti, L. Selective adsorption of toluene and
n-hexane binary mixture from aqueous solution on zeolite ZSM-5: Evaluation of competitive behavior
between aliphatic and aromatic compounds. Catal. Today 2019. [CrossRef]

http://dx.doi.org/10.1016/j.jallcom.2003.11.058
http://dx.doi.org/10.1016/j.jcis.2004.08.078
http://dx.doi.org/10.1016/j.seppur.2004.01.008
http://dx.doi.org/10.3390/nano9060890
http://dx.doi.org/10.1016/j.jhazmat.2004.09.016
http://dx.doi.org/10.1021/ie4012084
http://dx.doi.org/10.3390/nano9050731
http://www.ncbi.nlm.nih.gov/pubmed/31083562
http://dx.doi.org/10.1016/j.hydromet.2007.09.006
http://dx.doi.org/10.1016/j.cej.2010.08.012
http://dx.doi.org/10.1016/S0043-1354(02)00540-7
http://dx.doi.org/10.1080/10643389.2017.1421845
http://dx.doi.org/10.1016/S1002-0721(10)60443-7
http://dx.doi.org/10.1016/j.cis.2014.04.002
http://dx.doi.org/10.1038/s41598-019-39035-2
http://dx.doi.org/10.1016/j.scitotenv.2019.04.237
http://dx.doi.org/10.1021/es000013c
http://dx.doi.org/10.1016/j.jcis.2004.08.028
http://www.ncbi.nlm.nih.gov/pubmed/15533402
http://dx.doi.org/10.1002/jctb.280380206
http://dx.doi.org/10.3390/min8010011
http://dx.doi.org/10.1016/j.jcis.2013.05.027
http://dx.doi.org/10.1016/j.mineng.2005.07.004
http://dx.doi.org/10.1016/j.cattod.2019.09.015


Nanomaterials 2019, 9, 1699 13 of 16

58. Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 2007,
58, 49–52. [CrossRef]

59. Bertolino, V.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Biopolymer-Targeted Adsorption onto Halloysite
Nanotubes in Aqueous Media. Langmuir 2017, 33, 3317–3323. [CrossRef]

60. Cataldo, S.; Lazzara, G.; Massaro, M.; Muratore, N.; Pettignano, A.; Riela, S. Functionalized halloysite
nanotubes for enhanced removal of lead(II) ions from aqueous solutions. Appl. Clay Sci. 2018, 156, 87–95.
[CrossRef]

61. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sanzillo, V. Modified Halloysite Nanotubes: Nanoarchitectures
for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Appl. Mater. Interfaces 2014, 6, 606–612.
[CrossRef] [PubMed]

62. Ehsan, A.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Native, acidic pre-treated and composite clay efficiency for the
adsorption of dicationic dye in aqueous medium. Water Sci. Technol. 2016, 75, 753–764. [CrossRef] [PubMed]

63. Lvov, Y.; Aerov, A.; Fakhrullin, R. Clay nanotube encapsulation for functional biocomposites. Adv. Colloid
Interface Sci. 2014, 207, 189–198. [CrossRef] [PubMed]

64. Mushtaq, M.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Eriobotrya japonica seed biocomposite efficiency for copper
adsorption: Isotherms, kinetics, thermodynamic and desorption studies. J. Environ. Manag. 2016, 176, 21–33.
[CrossRef] [PubMed]

65. Zhao, Y.; Abdullayev, E.; Vasiliev, A.; Lvov, Y. Halloysite nanotubule clay for efficient water purification.
J. Colloid Interface Sci. 2013, 406, 121–129. [CrossRef]

66. Santos, S.C.R.; Boaventura, R.A.R. Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium
and kinetic studies in batch mode. J. Environ. Chem. Eng. 2016, 4, 1473–1483. [CrossRef]

67. Baskaralingam, P.; Pulikesi, M.; Elango, D.; Ramamurthi, V.; Sivanesan, S. Adsorption of acid dye onto
organobentonite. J. Hazard. Mater. 2006, 128, 138–144. [CrossRef]

68. Bergaya, F.; Lagaly, G.; Vayer, M. Chapter 12.10 Cation and Anion Exchange. In Developments in Clay
Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1,
pp. 979–1001. ISBN 1572-4352.

69. Klika, Z.; Pustková, P.; Dudová, M.; Capkova, P.; Kliková, C.; Matys Grygar, T. The adsorption of methylene
blue on montmorillonite from acid solutions. Clay Miner. 2011, 46, 461–471. [CrossRef]

70. Vopálka, D.; Gondolli, J.; Drtinová, B.; Klika, Z. Cesium uptake by Ca/Mg bentonite: Evaluation of sorption
experiments by a multicomponent two-site ion-exchange model. J. Radioanal. Nucl. Chem. 2015, 304, 429–434.
[CrossRef]

71. Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-biosurfactant materials as functional
drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Appl. Clay Sci. 2017, 135,
567–574. [CrossRef]

72. Sciascia, L.; Turco Liveri, M.L.; Merli, M. Kinetic and equilibrium studies for the adsorption of acid nucleic
bases onto K10 montmorillonite. Appl. Clay Sci. 2011, 53, 657–668. [CrossRef]

73. Calabrese, I.; Cavallaro, G.; Scialabba, C.; Licciardi, M.; Merli, M.; Sciascia, L.; Liveri, M.L.T. Montmorillonite
nanodevices for the colon metronidazole delivery. Int. J. Pharm. 2013, 457, 224–236. [CrossRef] [PubMed]

74. Calabrese, I.; Gelardi, G.; Merli, M.; Ritwo, G.; Sciascia, L.; Liveri, M.L.T. New tailor-made bio-organoclays
for the remediation of olive mill waste water. IOP Conf. Ser. Mater. Sci. Eng. 2013, 47, 012040. [CrossRef]

75. Chaari, I.; Medhioub, M.; Jamoussi, F. Use of Clay to Remove Heavy Metals from Jebel Chakir Landfill
Leachate. J. Appl. Sci. Environ. Sanit. 2011, 6, 143–148.

76. Sharma, P.; Borah, D.J.; Das, P.; Das, M.R. Cationic and anionic dye removal from aqueous solution using
montmorillonite clay: Evaluation of adsorption parameters and mechanism. Desalin. Water Treat. 2016, 57,
8372–8388. [CrossRef]

77. Sciascia, L.; Casella, S.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Princivalle, F.; Parisi, F. Olive mill wastewaters
decontamination based on organo-nano-clay composites. Ceram. Int. 2019, 45, 2751–2759. [CrossRef]

78. Sarma, G.; Gupta, S.; Bhattacharyya, K. Adsorption of Crystal violet on raw and acid-treated montmorillonite,
K10, in aqueous suspension. J. Environ. Manag. 2016, 171, 1–10. [CrossRef]

79. Mohanty, K.; Naidu, J.T.; Meikap, B.C.; Biswas, M.N. Removal of Crystal Violet from Wastewater by Activated
Carbons Prepared from Rice Husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171. [CrossRef]

80. Au, W.; Pathak, S.; Collie, C.J.; Hsu, T.C. Cytogenetic toxicity of gentian violet and crystal violet on mammalian
cells in vitro. Mutat. Res. Toxicol. 1978, 58, 269–276. [CrossRef]

http://dx.doi.org/10.1016/j.seppur.2007.07.008
http://dx.doi.org/10.1021/acs.langmuir.7b00600
http://dx.doi.org/10.1016/j.clay.2018.01.028
http://dx.doi.org/10.1021/am404693r
http://www.ncbi.nlm.nih.gov/pubmed/24328045
http://dx.doi.org/10.2166/wst.2016.435
http://www.ncbi.nlm.nih.gov/pubmed/28234276
http://dx.doi.org/10.1016/j.cis.2013.10.006
http://www.ncbi.nlm.nih.gov/pubmed/24268974
http://dx.doi.org/10.1016/j.jenvman.2016.03.013
http://www.ncbi.nlm.nih.gov/pubmed/27039361
http://dx.doi.org/10.1016/j.jcis.2013.05.072
http://dx.doi.org/10.1016/j.jece.2016.02.009
http://dx.doi.org/10.1016/j.jhazmat.2005.07.049
http://dx.doi.org/10.1180/claymin.2011.046.3.461
http://dx.doi.org/10.1007/s10967-014-3884-5
http://dx.doi.org/10.1016/j.clay.2016.10.039
http://dx.doi.org/10.1016/j.clay.2011.05.021
http://dx.doi.org/10.1016/j.ijpharm.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/24076230
http://dx.doi.org/10.1088/1757-899X/47/1/012040
http://dx.doi.org/10.1080/19443994.2015.1021844
http://dx.doi.org/10.1016/j.ceramint.2018.08.155
http://dx.doi.org/10.1016/j.jenvman.2016.01.038
http://dx.doi.org/10.1021/ie060257r
http://dx.doi.org/10.1016/0165-1218(78)90019-8


Nanomaterials 2019, 9, 1699 14 of 16

81. Rahimi, R.; Kerdari, H.; Rabbani, M. Adsorptive Removal of Crystal violet (CV), a Carcinogenic Textile
Dye, from Aqueous Solution by Conducting Polyaniline/Hollow Manganese Ferrite Nanocomposites.
In Proceedings of the ECSOC-14: The 14th International Electronic Conference on Synthetic Organic
Chemistry, Basel, Switzerland, 1–30 November 2010.

82. Bumajdad, A.; Eastoe, J.; Mathew, A. Cerium oxide nanoparticles prepared in self-assembled systems.
Adv. Colloid Interface Sci. 2009, 147–148, 56–66. [CrossRef]

83. Dubey, S.S.; Rao, B.S. Removal of cerium ions from aqueous solution by hydrous ferric oxide—A radiotracer
study. J. Hazard. Mater. 2011, 186, 1028–1032. [CrossRef] [PubMed]

84. Hagen, A. Waste management-nuclear power, man and the environment. IAEA Bull. 2007, 24, 3–5.
85. Hung, I.M.; Wang, H.P.; Lai, W.H.; Fung, K.Z.; Hon, M.H. Preparation of mesoporous cerium oxide templated

by tri-block copolymer for solid oxide fuel cell. Electrochim. Acta 2004, 50, 745–748. [CrossRef]
86. Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Study of adsorption and degradation of acid orange 7 on the surface of

CeO2 under visible light irradiation. Appl. Catal. B Environ. 2009, 85, 148–154. [CrossRef]
87. Park, J.-W.; Jeong, J.-H.; Yoon, W.-L.; Jung, H.; Lee, H.-T.; Lee, D.-K.; Park, Y.-K.; Rhee, Y.-W. Activity and

characterization of the Co-promoted CuO–CeO2/γ-Al2O3 catalyst for the selective oxidation of CO in excess
hydrogen. Appl. Catal. Gen. 2004, 274, 25–32. [CrossRef]

88. Yamashita, M.; Kameyama, K.; Yabe, S.; Yoshida, S.; Fujishiro, Y.; Kawai, T.; Sato, T. Synthesis and
microstructure of calcia doped ceria as UV filters. J. Mater. Sci. 2002, 37, 683–687. [CrossRef]
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