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Abstract: Electroencephalography (EEG) signals are frequently contaminated with unwanted
electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks
that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively
in manual and automatic methods to remove artifacts. By decomposing the signals into neural
and artifactual components and artifact components can be eliminated before signal reconstruction.
Unfortunately, removing entire components may result in losing important neural information present
in the component and eventually may distort the spectral characteristics of the reconstructed signals.
An alternative approach is to correct artifacts within the independent components instead of rejecting
the entire component, for which wavelet transform based decomposition methods have been used
with good results. An improved, fully automatic wavelet-based component correction method is
presented for EOG artifact removal that corrects EOG components selectively, i.e., within EOG activity
regions only, leaving other parts of the component untouched. In addition, the method does not
rely on reference EOG channels. The results show that the proposed method outperforms other
component rejection and wavelet-based EOG removal methods in its accuracy both in the time and the
spectral domain. The proposed new method represents an important step towards the development
of accurate, reliable and automatic EOG artifact removal methods.

Keywords: EEG; EOG artifacts removal; independent component analysis; discrete wavelet
transform (DWT)

1. Introduction

Electroencephalography (EEG) is a non-invasive method for measuring brain activity. Due to its
low cost and high temporal resolution, it is routinely used in clinical diagnostics, epilepsy surgery
and cognitive psychology research. A major concern when processing EEG measurement data is
the presence of various artifacts that are generated by extra-cerebral sources, such as eye blinks and
eye movements (electrooculographic/EOG artifacts), muscle movement (neck, jaw and face muscles;
electromyogram/EMG artifact) or heart-related EEG disturbances (electrocardiography/ECG artifact
and pulse artifact). Unfortunately, these artifacts distort the measured EEG signals and, in the worst
case, can make entire measurement datasets unusable. Artifact removal is therefore an essential step in
correct EEG data pre-processing [1].

The simplest artifact removal approach is to discard artifact contaminated data segments from the
measurement, and process only the remaining clean segments. This approach, however, requires visual
data inspection as well as manual rejection of artifact contaminated data segments or epochs. Besides
being a very labor-intensive task that requires a trained expert, this method cannot be automated.
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Furthermore, rejection of data epochs can result in significant loss of trials, which in turn can have
adverse effects in event related potential (ERP) studies. Using a reduced number of epochs in averaging
can result in critically low signal-to-noise ratio.

More sophisticated artifact removal methods rely on cross-correlation filtering, which, in turn,
requires the use of reference signals, obtained using, e.g., horizontal-vertical eye movement (EOG),
ECG or electromyography (EMG) sensors. The use of these additional electrodes can be acceptable in
strictly controlled laboratory situations, but they can be problematic in clinical settings due to patient
discomfort or movement. Hence, much work has been done to develop artifact removal methods
that work without external electrodes and can be performed without manual inspection. The most
successful such approaches are based on the application of independent component analysis (ICA) [2]
that can separate a signal mixture into its original sources (a.k.a. independent components), based
on the condition of statistical independence. Assuming that the underlying sources of EOG, ECG
and EMG artifacts are independent from other cerebral sources, ICA can separate these artifacts
from EEG components. This paper focuses on the automatic removal of EOG artifacts only, using
ICA as the underlying method. The traditional approach is to reject an independent component
entirely if it contains EOG artifacts. This, however, may lead to loosing important EEG data present
in the component [3–5]. The wavelet-enhanced ICA method (wICA) proposed by Castellanos and
Makarov [6] was shown to reduce information loss and outperform the component rejection-based
EOG removal method. The method proposed in this paper improves the wICA method to further
reduce neural data loss and signal distortion by performing artifact removal only within the EOG
contaminated sections of the ICA components, keeping as much of the relevant EEG information intact
as possible. The new method does not require visual inspection and manual intervention, which
results in significantly faster pre-processing steps and lays the foundation of high-quality automatic
artifact removal.

The structure of the paper is as follows. Section 2 provides an overview of the most influential
EOG removal methods. Section 3 describes the proposed new EOG removal method algorithm and
its key steps in detail, as well as the performance metrics that will be used in the validation of the
method. Section 4 presents the evaluation results obtained using three different types of EEG datasets.
The paper ends with discussions and conclusion.

2. Related Work

Eye movements and blinks are transient activities that occur relatively infrequently, but
unfortunately generate very high amplitude peaks. These artifacts can be easily identified visually
in frontal lobe signals waveforms. Since the spectrum of the EOG artifact overlaps the spectrum of
the underlying EEG signal, simple filtering methods are unable to remove artifact effects entirely [7].
Adaptive filtering methods based on autoregressive models and reference EOG signals [8] have been
used for removing EOG artifacts but these methods do not take into consideration that the reference
EOG channels are also contaminated with EEG data, which presents difficulties in obtaining an accurate
estimate of the EOG effect [9]. For these reasons, independent component analysis [10] is the method
of choice today for EOG artifact removal.

Originally developed for solving the blind source separation (BSS) problem, ICA is a robust method
for detecting artifacts by decomposing the EEG signals into their independent source components.
Since Makeig et al. [11] suggested the use of ICA for artifact removal, many alternative ICA-based
artifact cleaning methods have been proposed. The major differences among the methods are in (i)
how artifact components are identified (manual, reference electrode and statistical methods) and
(ii) how artifact removal is performed (rejection of entire artifact component and artifact correction
within component). Joyce et al. [4] proposed the use of ICA for automatic EOG artifact removal
using reference EOG channels for correlation-based artifact component identification followed by
full component rejection. The auto-regressive exogenous method (ICA-ARX) [5] also removes ocular
artifacts using EOG reference signals. Here input and output signal pairs are required to build the
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auto-regressive model. A similar approach is used in the popular FASTER [12] and DETECT [13]
Matlab-based artifact removal toolboxes. The also widely used ADJUST [14] toolbox, however, does
not rely on reference electrodes, it uses spatial and temporal component features to identify EOG
components [15]. An example of ICA followed by adaptive filtering based EOG removal is [16].

While ICA-based methods showed encouraging results for EOG artifact removal, it has been
also pointed out that ocular sources are not entirely separated from neural sources [4], which makes
the full component rejection method a non-ideal solution. Zeroing out the weights of an artifact
component before the inverse ICA is performed will also remove all neural data present in that
component. To overcome this problem, more sophisticated ICA-based methods were proposed for
removing artifacts while retaining the original neural information present in the data.

The discrete wavelet transform (DWT) can be used to decompose a measured signal or its ICA
derived independent components into wavelet components using basis functions from wavelet families
such as Symlets, Coifs, Haar, etc. [17]. Examples for wavelet-based artifact removal from raw measured
data are [15] and [16], in which the wavelet decomposition was combined with statistical approaches
to extract artifact features from the decomposed raw EEG signal using the Symlet basis function. Here
the assumption is similar to ICA that one wavelet component describes the artifact, which, when
removed, removes the artifact from the signal. The most successful approach for artifact removal is
the combination of wavelet decomposition and ICA [18–21]. One approach is to apply ICA to the
wavelet decomposed signal components (AWICA) [22]. In the AWICA method, artifacts are detected
using statistical measures, such as kurtosis or Renyi’s entropy [23]. The drawback of this approach,
however, is that in higher dimensions, Renyi’s entropy incurs high computational cost due to the
kernel density needed for the component [24], and the two statistical metrics could not differentiate
clearly between EOG and ECG peaks. The same approach was proposed by Kelly et al. [24] where the
artifactual coefficients above a threshold were replaced by the median of a set of coefficients outside the
artifacts, but they only tested the method on a measured dataset without evaluating the performance
on a standard dataset containing EOG artifact annotations.

Another approach is to apply the wavelet transform after ICA decomposition to the artifact
independent components (ICs) such as wavelet-enhanced ICA and wICA [6]. In the wICA method, the
wavelet transform was used in combination with ICA, relying on the fact that wavelet coefficients of
the artifact component typically have higher amplitudes than that of the cerebral activity components,
and by zeroing out the coefficients that are larger than a certain threshold, EOG artifacts can be
removed from the signal. For successful wavelet-based removal, the threshold selection is crucial. An
adaptive threshold method based on DWT was introduced to identify and remove EOG artifacts [25]
without losing the related EEG information. However, these methods are not as effective if applied
to the raw signal and not ICA components. This approach was modified by Nguyen et al., [26] who
introduced the wavelet neural network (WNN; clean and contaminated EEG data is used to train
the network) and achieved 9.07 µV root mean square error (RMSE) between the cleaned and the
artifact-free data. This method works without a reference EOG signal that is normally required in
the linear regression based methods [8]. Burger and van den Heever [3] improved upon this method
but their solution can only remove eye blinks; it does not work for eye movement artifacts. Besides
wavelet transformation, other decomposition methods have been recommended, such as ensemble
empirical mode decomposition for single channel EEG followed by ICA for artifact removal [27].

3. Materials and Methods

The goal of the proposed new ICA-based artifact removal method is to keep as much neural
information from the original signal as possible. Instead of rejecting an entire EOG independent
component, the component is kept but the EOG peaks are first removed from, then the cleaned
component is used to reconstruct the EOG-free measurement data.
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3.1. Independent Component Analysis

Independent component analysis (ICA) was originally developed to solve the blind source
separation (BSS) problem [28] and normally refers to a class of algorithms that can recover statistically
independent signals (components) from a linear mixture, based on higher-order statistics as a measure
of independence. ICA is considered a robust method for identifying and removing artifacts normally
found in EEG signals.

A brief formal introduction is as follows. Assume N statistically independent sources, si(t),
i = 1, . . . , N. Suppose that the sources cannot be observed directly, only via N sensors that obtain N
observation signals, x(t). The observed signals are mixtures of the original sources. Sensors must
be spatially separated (e.g., as the electrodes on the scalp), as each sensor must measure a mixture
different from the others. The mixing process than can be described as

xt = Ast, (1)

where A is the square mixing matrix (spatial weight matrix, channels × components) and W = A−1

is the “unmixing matrix” that must be obtained in order to calculate an estimate Ŝt of the original
sources as

Ŝt = Wxt. (2)

The following restrictions apply to ICA in order to produce a solution: (i) sources must be
statistically independent, (ii) sources cannot have Gaussian distribution and (iii) the mixing matrix
must be invertible. The estimation of Ŝt requires pre-processing steps (dimensionality reduction,
centering and uncorrelation). Various ICA variants exist due to differences in the statistical measures
used in the separation step [29,30] One of the most popular ICA variants in the EEG community is the
Infomax ICA algorithm [31]. Infomax ICA uses a contrast function based on neural network theory
and maximizes the output entropy of the neural network. Assuming x as the input to the neural
network with outputs φi

(
wT

i x
)
, where φi is some non-linear function, the goal is to maximize the

entropy of the output L2 = H
(
φ1

(
wT

1 x
)
, . . . ,φn

(
wT

n x
))

using a stochastic gradient ascend algorithm.
For a more detailed description of the theoretical foundations of ICA and ICA algorithm variants, their
convergence properties, the quality of source separation or their runtime complexity, the interested
reader is referred to the literature [2,3,28,32–35].

3.2. EEG Datasets

Three different sets of EEG measurement data have been selected for the evaluation of our
proposed method. These include publicly available datasets as well as data recorded in our laboratory.

Semi-simulated dataset: The publicly available Klados EEG dataset [36] was created for the
purpose of EOG artifact removal validations; to serve as a reference dataset that can be used for
comparison purposes. Data were recorded from 27 subjects (males and females), using the standard
19 electrode 10–20 layout EEG system, with sampling frequency of 200 Hz, resulting in 54 datasets.
Simulated EOG artifacts were then added to the pure, artifact-free data using the following expression:

Contaminated_EEGi, j = Pure_EEGi, j + a jVEOG + b jHEOG, (3)

where Pure_EEGi, j is the signal obtained with eyes closed (no EOG artifacts), and the VEOG and HEOG
terms are the additive vertical and horizontal EOG activities.

PhysioNet EEG datasets: The PhysioNet database contains brain–computer interface
datasets [37,38] that were recorded during Brain Computer Interface (BCI) experiments to measure the
event-related potential (ERP) of the P300 waves in a spelling experiment. Data were collected using
the BioSemi Active Two EEG system, with 64 EEG electrodes and additional vertical and horizontal
(VEOG, HEOG) ocular electrodes at 2048 Hz sampling rate.
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Laboratory resting-state dataset: We have recorded 2–3 min closed and open eye resting state EEG
in our laboratory from 22 adult volunteers (males, age from 16 to 21 years). During the experiment,
subjects had to sit and relax in a silent room. Data were recorded using a Biosemi ActiveTwo EEG system
(fs = 2048 Hz) using 128 active electrodes arranged in the ABC radial electrode layout. The volunteers
gave their written consent for participating in the experiments.

3.3. EOG Artifact Removal Algorithm

In this section, the key steps of our proposed EOG artifact removal method are shown in algorithmic
form and as a flowchart in Figure 1, followed by a detailed description of each step.

Algorithm: EOG removal:

Step 1 Each measured dataset is bandpass filtered (1–47 Hz, zero phase 4th order Butterworth), then
re-referenced to the average reference.

Step 2 Infomax ICA is applied to the signal to estimate the source independent components.
Step 3 Automatic identification of the EOG component: the EOG component is identified based on the

correlation between each component and data of each frontal EEG channel. The component
with the highest correlation and above a threshold weight is selected as an EOG component.

Step 4 The identified EOG components are searched for EOG peaks.
Step 5 One-second windows are placed around the detected EOG peaks.

(a) If the windows cover more than 60 percent of the given component, the entire component
is marked for rejection. Continue at Step 7.

(b) Otherwise, the EOG windows in the component are set as the target of artifact removal.

Step 6 Wavelet decomposition using Symlet sym4 [17,39,40] wavelets of five levels is applied
to decompose signals in each target window to different wavelet components, and only
the high frequency components are retained for the signal reconstruction process. These
retained components are used in the inverse wavelet transform to reconstruct the cleaned
independent component.

Step 7 Using the inverse ICA process, the artifact free signals are estimated from the
corrected components.
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Figure 1. The data processing flowchart of the proposed EOG removal method.
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3.4. Method Details

In this section, the key steps of the proposed method were described in detail. Once the
input signal is filtered and the ICA process was executed, the first key task was to identify which
component represents EOG artifacts (Algorithm, Step 3). The Pearson correlation RX,Y between a
given independent component Y and each of the frontal channels X (shown in Figure 2) was computed
based on the underlying assumption that EOG artifacts appear primarily in the frontal channels and
the component describing EOG activity should have high correlation with some of these channels.
The Pearson-correlation between the frontal channels and the components was computed as

RX,Y =
Cov(X, Y)
σXσY

, (4)

where σX and σY are the standard deviations of channel X and component Y, respectively. Components
with the highest R value are identified as candidate EOG components to be examined further. Naturally,
a different set of frontal electrodes must be selected for different electrode layouts. The number of
frontal channels does not affect the accuracy of the proposed method as long as there are at least two
frontal channels on the forehead, one close to the left and one to the right eye. This ensures that high
correlation between ocular artifacts and EOG components can be found.
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Figure 2. An example for frontal channels (marked by red circles) used for correlation calculation in EOG
independent component identification. Top view of scalp with nose pointing upwards, 128-channel
Biosemi ABC electrode layout.

The candidate components were further examined for weight value distribution and only those
with weights greater than a threshold were kept as EOG components. Elements of the weight vector w
are defined as:

w j =
1
K

K∑
i=1

|wi j|, j = 1, 2, . . . , N, (5)

where w j is the average weight of component j over the frontal channels, wi j is the weight element of
the mixing matrix A, K is the number of the frontal channels and N is the number of components. The
distribution of values in the weight vectors was used to calculate a statistical threshold. The distributions
are shown for all three datasets in Figures 3–5 as boxplots. Red crosses represent weights for the
EOG components. Note that the maximum value of each distribution acts as a reliable threshold for
detecting the EOG component (outliers).
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(HEOG and VEOG) components.

Brain Sci. 2019, 9, x FOR PEER REVIEW 7 of 22 

  

Figure 4. Distribution of the normalized independent component analysis (ICA) component weights 

of 10 selected PhysioNet datasets. 

 

Figure 5. Distribution of the normalized ICA component weights of the 22 datasets obtained in our 

laboratory. 

The threshold was computed from the distribution of weights and each weight vector element 

was tested against it to decide whether the component is in fact an EOG component:  

Yi is EOG, if �̅�𝑖 > 𝑄3(𝐰) + 1.5 ∗ 𝐼𝑄𝑅(𝐰) , 𝑖 = 1. . 𝑁, (6) 

where �̅�𝑖 is the weight of component Yi, w is the averaged weight vector and 𝑄3 and 𝐼𝑄𝑅 are the 

upper quartile and interquartile range, respectively [41]. The result of this step is illustrated in Figures 

6 and 7. Figure 6 shows the independent components of a selected dataset. Components 1 and 2 

contained EOG artifacts (blinks and eye movements, respectively). Figure 7 shows the result of the 

component selection and threshold application that identified the EOG components for the sample 

datasets 1–4. 

The next step in the algorithm (Step 4) was the detection of EOG peaks within the components. 

First a normal peak detection was performed on the component values (finding local maxima [42]), 

then the peaks were further examined whether they were, in fact, EOG peaks. The decision whether 

a local maximum 𝑚𝑘  belongs to the set of EOG peaks P was made using the following rule 

containing amplitude and duration constraints.  

𝑃 = {𝑚𝑘 | |𝑌𝑖(𝑚𝑘)| > 3 ∙ 𝐸{|𝑌𝑖|} and 𝑡(𝑌𝑖(𝑚𝑘)) − 𝑡(𝑌𝑖(𝑚𝑘−1)) ≥ 0.5 sec }, (7) 

where 𝑚𝑘 is the kth peak in component 𝑌𝑖 and 𝐸{|𝑌𝑖|} is the expected value of the component vector 

𝑌𝑖 and 𝑡 refers to the timestamp of peak 𝑚𝑘. Each two consecutive selected peaks must satisfy the 

peak amplitude condition and the between-peak time distance of 0.5 seconds to correctly classify 

peaks as EOG artifacts. 

Figure 4. Distribution of the normalized independent component analysis (ICA) component weights
of 10 selected PhysioNet datasets.

Brain Sci. 2019, 9, x FOR PEER REVIEW 7 of 22 

  

Figure 4. Distribution of the normalized independent component analysis (ICA) component weights 

of 10 selected PhysioNet datasets. 

 

Figure 5. Distribution of the normalized ICA component weights of the 22 datasets obtained in our 

laboratory. 

The threshold was computed from the distribution of weights and each weight vector element 

was tested against it to decide whether the component is in fact an EOG component:  

Yi is EOG, if �̅�𝑖 > 𝑄3(𝐰) + 1.5 ∗ 𝐼𝑄𝑅(𝐰) , 𝑖 = 1. . 𝑁, (6) 

where �̅�𝑖 is the weight of component Yi, w is the averaged weight vector and 𝑄3 and 𝐼𝑄𝑅 are the 

upper quartile and interquartile range, respectively [41]. The result of this step is illustrated in Figures 

6 and 7. Figure 6 shows the independent components of a selected dataset. Components 1 and 2 

contained EOG artifacts (blinks and eye movements, respectively). Figure 7 shows the result of the 

component selection and threshold application that identified the EOG components for the sample 

datasets 1–4. 

The next step in the algorithm (Step 4) was the detection of EOG peaks within the components. 

First a normal peak detection was performed on the component values (finding local maxima [42]), 

then the peaks were further examined whether they were, in fact, EOG peaks. The decision whether 

a local maximum 𝑚𝑘  belongs to the set of EOG peaks P was made using the following rule 

containing amplitude and duration constraints.  

𝑃 = {𝑚𝑘 | |𝑌𝑖(𝑚𝑘)| > 3 ∙ 𝐸{|𝑌𝑖|} and 𝑡(𝑌𝑖(𝑚𝑘)) − 𝑡(𝑌𝑖(𝑚𝑘−1)) ≥ 0.5 sec }, (7) 

where 𝑚𝑘 is the kth peak in component 𝑌𝑖 and 𝐸{|𝑌𝑖|} is the expected value of the component vector 

𝑌𝑖 and 𝑡 refers to the timestamp of peak 𝑚𝑘. Each two consecutive selected peaks must satisfy the 

peak amplitude condition and the between-peak time distance of 0.5 seconds to correctly classify 

peaks as EOG artifacts. 

Figure 5. Distribution of the normalized ICA component weights of the 22 datasets obtained in
our laboratory.

The threshold was computed from the distribution of weights and each weight vector element
was tested against it to decide whether the component is in fact an EOG component:

Yi is EOG, if wi > Q3(w) + 1.5 ∗ IQR(w), i = 1 . . .N, (6)

where wi is the weight of component Yi, w is the averaged weight vector and Q3 and IQR are the upper
quartile and interquartile range, respectively [41]. The result of this step is illustrated in Figures 6 and 7.
Figure 6 shows the independent components of a selected dataset. Components 1 and 2 contained
EOG artifacts (blinks and eye movements, respectively). Figure 7 shows the result of the component
selection and threshold application that identified the EOG components for the sample datasets 1–4.
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The next step in the algorithm (Step 4) was the detection of EOG peaks within the components.
First a normal peak detection was performed on the component values (finding local maxima [42]),
then the peaks were further examined whether they were, in fact, EOG peaks. The decision whether a
local maximum mk belongs to the set of EOG peaks P was made using the following rule containing
amplitude and duration constraints.

P = {mk |
∣∣∣Yi(mk)

∣∣∣> 3·E{|Yi|} and t(Yi(mk)) − t(Yi(mk−1)) ≥ 0.5 sec}, (7)

where mk is the kth peak in component Yi and E{|Yi|}. is the expected value of the component vector
Yi and t refers to the timestamp of peak mk. Each two consecutive selected peaks must satisfy the
peak amplitude condition and the between-peak time distance of 0.5 s to correctly classify peaks as
EOG artifacts.
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After locating the EOG peaks, target windows were placed around the peaks for EOG artifact
removal (Algorithm: Step 5). A window size of 1 s duration was used, as this spans the length of the
EOG artifact waveforms [43,44]). These windows would equally designate vertical-EOG (VEOG) and
horizontal-EOG (HEOG) sections. Figure 8 illustrates the results of this step showing the windows
marking blink and eye movement EOGs, respectively.Brain Sci. 2019, 9, x FOR PEER REVIEW 9 of 22 
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Figure 8. Correction target windows around the detected VEOG blink (a) and HEOG eye movement
(b) peaks in the EOG ICA components.

Artifact removal was performed on the EOG components selectively, only within the target
windows, using wavelet decomposition (Algorithm: Step 6). The discrete wavelet transform (DWT) of
a signal f (t) is defined as

FW(j, k) =
1
√

2 j

∑N

t=0
f (t)ϕ

(
t− k2 j

2 j

)
, (8)

where ϕ is the wavelet basis function, j is the scale parameter and k is the shift parameter. The success
of EOG detection in a component is dependent on the choice of wavelet basis function [17] and the
level of decomposition [45]. Several wavelet basis functions, e.g., Haar, Daubechies, coiflet and Symlet,
can be used to detect and correct EOG waveforms [39,46,47]. It has been shown [47] that the Symlet
wavelet family (sym2 to sym20) is the most suitable for EOG peaks and has been used successfully
in several artifact removal applications. The sym-4 wavelet was selected as final basis function due
to its smallest error (RMSE) between the corrected and artifact-free signals [47]. Our tests with the
Symlet wavelets confirmed the same results (mean RMSE—Haar: 9.85, db4: 7.42, sym3: 7.37, sym4:
6.29, sym5: 6.54, sym6: 6.96).

The ICA component signal was decomposed into wavelet components by passing through a
quadrature mirror filter performing low-pass and high-pass filtering followed by downsampling the
input signal at each level of decomposition and generating the output coefficients related to lower and
higher frequencies [48]. The details of this process are shown in Figure 9.
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Figure 9. The wavelet decomposition process and calculation of coefficients. Letters F and G represent
the output signals of the low-pass and high-pass filters, respectively.

Different levels of wavelet decomposition were tested to find the optimal parameters. Five levels
of DWT were used to decompose the component into detail (D1:D5) and approximation coefficients
(A), as illustrated in Figure 10. Coefficients D1:D3 represent the higher frequency components while
coefficients D4:D5 while A represent low frequency components. Since the spectrum of the EOG
artifacts is concentrated in the frequencies below 7 Hz [49], the signals were reconstructed only from
coefficients D1:D3, which represent the high frequencies related to the EEG signal; the other components
were discarded. The reconstructed signals were then projected back to the EOG components, and
inverted to obtain the artifact free data. The proposed method was able to automatically detect and
correct both the vertical EOG activity (blinks) and horizontal EOG artifacts (eyes movements), which
made it suitable for unsupervised artifact removal applications.
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Figure 10. Wavelet decomposition of a target EOG peak signal window within an
independent component.

3.5. Performance Metrics

The quality of artifact removal methods can be quantified by two basic types of metrics; metrics
that describe the amount of artifact removed by a given cleaning method, and metrics that measure
the distortion introduced in the signal by the cleaning process [50]. Two metrics of the first type
are the artifact removal percentage λ and the signal-to-noise ratio difference [51]. When the true,
uncontaminated EEG and the added artifact signals are known, the artifact removal percentage can be
calculated as

λ = 100
(
1−

Rre f −Rcleaned

Rre f −Rcontam

)
, (9)
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where Rre f is the autocorrelation of the true EEG signal with time lag 1, Rcleaned is correlation between
the true EEG and the cleaned signals, while Rcontam is the correlation between the true EEG and the
artifactual signals. When Rcleaned is close to the reference Rre f , the negative term tends to 0, hence a
high lambda value indicates high efficacy in artifact removal.

The difference in signal-to-noise ratio ∆SNR [51] is a similar measure characterizing the amount
of artifact removed from the signals. It is defined as

∆SNR = 10log10

 σ2
x

σ2
ecleaned

− 10log10

 σ2
x

σ2
econtam

, (10)

where σ2
x is the variance of the true EEG signal, and σ2

econtam and σ2
ecleaned

are the variances of the error
signals econtam(n) = r(n)− x(n) and ecleaned(n) = r′(n)− x(n) with x(n), r(n) and r′(n) representing the
true EEG, contaminated and the artifact cleaned signals, respectively.

Distortion in the time domain can be quantified using the root mean square error calculated
between the true EEG x(n) and the cleaned signals r′(n).

RMSE =

√
1
N

∑N

n=1
(r′(n) − x(n))2. (11)

Spectral distortion can be measured by the magnitude squared coherence (MSC) [52] that computes
the frequency-domain correlation between the pure and the cleaned EEG signals:

MSC = Cxy( f ) =

∣∣∣Rxy( f )
∣∣∣2

Rxx( f )Ryy( f )
, (12)

where Rxy( f ) is the cross spectral density between the two signals x and y at frequency f , and
Rxx( f ) and Ryy( f ) are the autospectral density of x and y, respectively. MSC is a frequently used metric
for evaluating frequency-related distortions after artifact removal [6,53–57].

4. Results

This section presents the performance evaluation of the proposed EOG removal method. Three
datasets mentioned in Section 3 were used; the Klados, the PhysioNet and the laboratory resting-state
datasets. For each dataset, the proposed method (PM) is compared to the traditional full component
rejection method (ICArej) [58] and the wavelet-enhanced ICA (wICA) [6] component correction
methods using the performance metrics specified in Section 3.4. wICA is also compared to rejection
ICA to confirm its claimed higher performance.

4.1. Semi-Simulated EEG Dataset

The performance of the proposed method was first evaluated on the Klados datasets [36]. These
measurements contain semi-simulated signals, containing resting-state measured signals with and
without added simulated EOG contamination. Access to the pure EEG signal allows for calculating
accurate performance metrics. For illustrative purposes, Figure 11 shows the contaminated and pure
EEG signals, as well as the absolute difference between the wICA-cleaned signal and the pure EEG, and
the difference of the signal cleaned with the proposed method and the pure EEG signal. Note that the
amplitude scales are different in order to make the difference signals visible. The contaminated segment
shows three strong blink (ch 1–4, 17–19) and two eye movement (ch 11–12) artifacts. Note the difference
between the difference signals (wICA–EEGtrue, PM–EEGtrue) obtained after cleaning with the wICA
and the proposed method. The high-frequency content in the wICA difference signal indicates the
removal of non-EOG signal components. Figure 12 shows a zoomed-in section of dataset12 (channel
Fp1) illustrating how the PM cleaning method leaves the EEG signal intact outside the EOG zones, and
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how it follows the true EEG within the zones. The figures qualitatively indicate the improved removal
quality of the proposed method.
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A quantitative statistical comparison was performed on the entire dataset (54 measurements),
in which the λ, ∆SNR, RMSE and MSC metrics were computed for each channel in each dataset with
the three removal methods (rejection ICA, wICA and the proposed method) under study. After the
performing channel, the distributions of the metrics for the dataset population are shown in Figure 13.
Each metric value set was checked for normality and equal variance (F-test). A two-sample t-test
(α = 0.05) was performed to decide whether there is a significant difference in performance between the
PM and the wICA/ICArej methods for any metric. Performance of the wICA with respect to the rejection
ICA method was also examined to verify claims that wICA outperforms rejection-based removal.

The λ value showed no significant difference (average improvement: 11.34%, p = 0.102) between
the wICA and the reject ICA methods. The proposed method on the other hand was significantly better
(19.1%, p = 0.00236) than the wICA and 32.6% better (p = 1.43 × 10−5) than the reject ICA methods.
With respect to the ∆SNR metric, the wICA method was significantly better than the reject ICA method
(50.05%, p = 2.08 × 10−5). The proposed method, however, resulted in significantly increased SNR
compared to wICA (79.5%, p = 7.78 × 10−15) and reject ICA better (169.34%, p = 7.96 × 10−36). The RMSE
results were similarly positive; wICA improved upon reject ICA by 39.1% (p = 3.89 × 10−18), while the
proposed method showed 36.32% improvement (p = 5.84 × 10−33) over the wICA and 61.22% over the
reject ICA (p = 5.80 × 10−9) methods, reducing the average RMSE from 5.579 (wICA) to 3.553 µV.
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In addition to the statistical analysis, for enabling side-by-side comparison with the wICA method,
Table 1 lists the RMSE values for the exact same datasets and channels that were reported in [6].
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Table 1. RMSE values of the different artifact removal methods for the Klados dataset.

Dataset, Channel Contaminated EEG
Cleaned EEG

Rejection ICA wICA Proposed Method

Dataset 1, FP1 34.9 16.3 12.6 7.9
Dataset 1, F8 13.7 9.4 7.3 3.2

Dataset 2, FP1 37.8 14.6 8.7 4.6
Dataset 2, F8 15.9 8.4 5.4 1.5

Dataset 9, FP1 30.8 18.9 9.2 3.2
Dataset 9, F8 15.5 12.7 6.4 2.6

Dataset 12, FP1 38.4 14.9 9.8 7.2
Dataset 12, F8 18.8 11.3 7.2 3.5

While the RMSE result indicates improved removal quality in the time domain, a key question
remained as to how the spectral characteristics of the signal change after cleaning. Figure 14 illustrates
the effect of artifact removal on the power spectral density of the EEG signals. The frontal channel
Fp1 of dataset12 was used to show the difference among the difference methods. Note how the
contaminated signal introduces strong δ − θ frequency band distortions. The reject ICA and wICA
methods decreased this low frequency distortion but introduced higher α and β band frequency power
increase. The proposed method, on the other hand, removed low frequency artifact-related distortions
and followed the power density distribution of the pure EEG signal for higher frequencies with very
little error.

Performing the analysis for the entire dataset, the magnitude squared coherence after cleaning
with the proposed method was 13.69% better (p = 4.20 × 10−8) than the wICA results and 15.93% better
(p = 3.91 × 10−8) than the reject ICA values. No significant difference was found between the wICA
and reject ICA results (p = 0.335). Figure 15 shows the overall grand average MSC results for the three
methods. The performance advantage of our proposed method over the rejection ICA and wICA
methods was clearly demonstrated.

Figure 16 shows, for a selected single frontal channel (Fp1, dataset12), the magnitude squared
coherence in order to compare the spectral accuracy of the different EOG removal methods in a
non-averaged manner. The results indicate that the different EOG artifact cleaning methods produced
different spectral distortion in frequencies below 7 Hz. Coherence was the lowest for the uncleaned,
EOG contaminated signal. The rejection-based ICA and wICA methods both reduced this distortion,
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but it was our proposed method that produced coherence values closest to the ideal value of 1. Note that
wICA also introduced a slight distortion in the 7–17 Hz range as well, which might be the result of
unnecessary removal of higher frequency wavelet components.Brain Sci. 2019, 9, x FOR PEER REVIEW 14 of 22 
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4.2. Resting State EEG Dataset

To evaluate the performance of our method on real EEG data, 2–3 min long 128-channel resting
state EEG measurements of 10 subjects (obtained in our laboratory) were used. Since the true,
artifact-free EEG signals are unknown in this case, modified performance metrics were used. The true
EEG signal was estimated for each subject from a manually selected 5-s long artifact-free segment.
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The datasets were then cleaned with the three different methods, and partitioned into 5-s long segments.
The performance metrics were subsequently calculated by using the entire signal (all 5-s segments)
with respect to the reference segment in the corresponding formulae. The distribution of the results
for each method is shown in Figure 17. While the range of values are lower (λ and ∆SNR) or higher
(RMSE) than those obtained for the semi-simulated Klados dataset (due to the different estimation of
the true EEG), the trend in performance was the same.
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Performing the same statistical analysis as for the semi-simulated Klados datasets, the proposed
method achieved 154.61% (p = 6.86 × 10−9) improvement for λ over the wICA and 136.88% better
(p = 8.28 × 10−10) than the reject ICA methods. The wICA method achieved 6.97% (p = 2.06 × 10−5)
improvement over the reject ICA method. With respect to the ∆SNR metric, the proposed method
achieved 388.88% improvement (p = 7.83 × 10−7) over the reject ICA and 116.45% (p = 6.28 × 10−6)
over the wICA method. The wICA method performed better than reject ICA by 125.87% (p = 5.80 ×
10−5). The RMSE results showed the proposed method achieved 26.94% improvement (p = 0.039) over
the wICA and 30.37% over the reject ICA (p = 0.0165) methods. No significant difference was found
between the wICA and reject ICA methods (4.7%, p = 0.6887). For the spectral coherence MSC, the
proposed method improved over both the wICA (19.12%, p = 5.89 × 10−5) and the reject ICA (23.5%,
p = 6.73 × 10−6) methods. On the other hand, no significant difference was found between the reject
ICA and wICA methods (3.68%, p = 0.423479).

Similar results were obtained for the spectral distortion. As shown in Figure 18, the Magnitude
Squared Coherence (MSC) values for the proposed method were significantly higher than for the
ICArej and wICA methods.

As a qualitative illustration of the effect of our removal method on real measurement data,
Figure 19 shows a 20-s section of the contaminated resting state EEG before and after EOG removal
(proposed method). Figure 20 illustrates the same effect on a 2D scalp potential map at the peak of an
EOG artifact. The EOG artifact was clearly visible in the frontal area that disappeared after cleaning.
Note also the emerging parietal topography in the cleaned version, which was almost completely
hidden in the contaminated map.



Brain Sci. 2019, 9, 355 16 of 22
Brain Sci. 2019, 9, x FOR PEER REVIEW 16 of 22 

 

Figure 18. MSC values obtained with different cleaning methods for the resting state laboratory 

dataset (20 subjects). 

As a qualitative illustration of the effect of our removal method on real measurement data, 

Figure 19 shows a 20-second section of the contaminated resting state EEG before and after EOG 

removal (proposed method). Figure 20 illustrates the same effect on a 2D scalp potential map at the 

peak of an EOG artifact. The EOG artifact was clearly visible in the frontal area that disappeared after 

cleaning. Note also the emerging parietal topography in the cleaned version, which was almost 

completely hidden in the contaminated map.  

 

 

 (a)  (b) 

Figure 19. A 128-channel EOG contaminated EEG dataset before (a) and after (b) artifact removal. 

 

Figure 20. Topoplot potential map (µV) of a 128-channel EOG contaminated resting state 

measurement before (left) and after artifact removal (right). 

Figure 18. MSC values obtained with different cleaning methods for the resting state laboratory dataset
(20 subjects).Brain Sci. 2019, 9, 355 16 of 21 

 
 (a)  (b) 

Figure 19. A 128-channel EOG contaminated EEG dataset before (a) and after (b) artifact removal. 

 
Figure 20. Topoplot potential map (µV) of a 128-channel EOG contaminated resting state 
measurement before (left) and after artifact removal (right). 

4.3. PhysioNet P300 ERP Dataset 

4.3.1. Peak Detection Performance  

The accuracy of peak detection is crucial in the proposed method. Since the Klados and 
PhysioNet datasets contain annotations for EOG events, these were used to verify the performance 
of our EOG peak detection approach. Peak detection performance was characterized by the 
sensitivity measure, Se = TP/(TP + FN), where TP is the number of true positive (accurately detected) 
and FN is the number of false negative (missed) peaks. The results were as follows. Klados dataset 
(218 EOG peaks, TP = 217, FN = 1): Se = 99.54% and PhysioNet dataset (78 EOG peaks, TP = 78, FN = 
0): Se = 100%. 

4.3.2. Artifact Removal Performance  

The PhysioNet P300 dataset was originally created to detect and classify P300 peaks in the BCI 
speller experiment [37,38] and as such, can be used to examine the proposed method for cleaning 
task-oriented event related potential data. Two tests were conducted to verify whether or not the 
cleaning methods distort ERP waveforms and peaks. First, a statistical analysis was performed on the 
RMSE values to verify the presence of significant improvements; second, the distortion effects of the 
different cleaning methods were examined. 

For the statistical analysis, from among the target and non-target epochs, the target epochs were 
selected that elicit the P300 component. These resulted in 21 stimulus-locked epochs of length 500 ms 
extracted from the original contaminated 64-channel measurements for each subject (subjects s03, 
s04, s08 and recording rc02). From these 21 epochs, the artifact free epochs were selected and 
averaged for estimating the reference, pure P300 ERP signal 𝐸𝑅𝑃 (number of epochs varied from 
16 to 19) and averaged to generate a pure reference ERP signal. The contaminated P300 (𝐸𝑅𝑃௧) 

Figure 19. A 128-channel EOG contaminated EEG dataset before (a) and after (b) artifact removal.

Brain Sci. 2019, 9, x FOR PEER REVIEW 16 of 22 

 

Figure 18. MSC values obtained with different cleaning methods for the resting state laboratory 

dataset (20 subjects). 

As a qualitative illustration of the effect of our removal method on real measurement data, 

Figure 19 shows a 20-second section of the contaminated resting state EEG before and after EOG 

removal (proposed method). Figure 20 illustrates the same effect on a 2D scalp potential map at the 

peak of an EOG artifact. The EOG artifact was clearly visible in the frontal area that disappeared after 

cleaning. Note also the emerging parietal topography in the cleaned version, which was almost 

completely hidden in the contaminated map.  

 

 

 (a)  (b) 

Figure 19. A 128-channel EOG contaminated EEG dataset before (a) and after (b) artifact removal. 

 

Figure 20. Topoplot potential map (µV) of a 128-channel EOG contaminated resting state 

measurement before (left) and after artifact removal (right). 
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4.3. PhysioNet P300 ERP Dataset

4.3.1. Peak Detection Performance

The accuracy of peak detection is crucial in the proposed method. Since the Klados and PhysioNet
datasets contain annotations for EOG events, these were used to verify the performance of our EOG
peak detection approach. Peak detection performance was characterized by the sensitivity measure,
Se = TP/(TP + FN), where TP is the number of true positive (accurately detected) and FN is the number
of false negative (missed) peaks. The results were as follows. Klados dataset (218 EOG peaks, TP = 217,
FN = 1): Se = 99.54% and PhysioNet dataset (78 EOG peaks, TP = 78, FN = 0): Se = 100%.
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4.3.2. Artifact Removal Performance

The PhysioNet P300 dataset was originally created to detect and classify P300 peaks in the BCI
speller experiment [37,38] and as such, can be used to examine the proposed method for cleaning
task-oriented event related potential data. Two tests were conducted to verify whether or not the
cleaning methods distort ERP waveforms and peaks. First, a statistical analysis was performed on the
RMSE values to verify the presence of significant improvements; second, the distortion effects of the
different cleaning methods were examined.

For the statistical analysis, from among the target and non-target epochs, the target epochs were
selected that elicit the P300 component. These resulted in 21 stimulus-locked epochs of length 500 ms
extracted from the original contaminated 64-channel measurements for each subject (subjects s03, s04,
s08 and recording rc02). From these 21 epochs, the artifact free epochs were selected and averaged for
estimating the reference, pure P300 ERP signal ERPre f (number of epochs varied from 16 to 19) and
averaged to generate a pure reference ERP signal. The contaminated P300 (ERPcontam) was computed
by averaging the 21 uncleaned epochs. Then, the original recordings were cleaned with the three
removal methods in question (rejection ICA, wICA and PM), and an ERP signal for each method was
generated by averaging the 21 segments of the cleaned signals resulting in ERPrej

clean, ERPwICA
clean and

ERPPM
clean. Since the ERP waveforms differ from channel to channel, the channels were not averaged

to calculate group statistics. Instead, subjects were selected individually then a statistical test was
performed using the 64 channel-ERPs as sample population for pairwise comparison or the removal
methods. The two-sample t-tests for each subject produced the results shown in Table 2. The proposed
method performed significantly better than the wICA or rej ICA methods for each subject. Similar
outcome is obtained for the λ and ∆SNR performance metrics. The distribution of the results for each
method is shown in Figure 21.

Table 2. RMSE improvement between methods. Bold values mark significant differences.

Dataset
RMSE Improvement (%)

PM vs. rej ICA PM vs. wICA wICA vs. rej ICA

s03, rc02 17.16 (p = 4.74 × 10−4) 34.18 (p = 0.0286) 20.55 (p = 0.049)
s04, rc02 24.64 (p = 0.0018) 16.46 (p = 0.0264) 9.79 (p = 0.2062)
s08, rc02 25.62 (p = 0012) 14.43 (p = 0.0348) 13.08 (p = 0.0992)Brain Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 
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Figure 21. Distribution of the λ (a), ∆SNR (b) and RMSE (c) dataset average values for the PhysioNEt
P300 dataset by cleaning with the rejection ICA, wICA and PM methods. For λ and ∆SNR the higher,
while for RMSE, the lower values mean better performance.

The distortion of the removal methods was tested by two ways. First, the pure ERP signal was
compared to the cleaned ERP signals averaged from the same epochs as the pure ERP (artifactual
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epochs excluded). This shows the distortion of each method operating on artifact-free data (Figure 22).
The rej ICA and wICA introduce larger distortions, since the entire signal is affected by EOG removal,
even if only artifact-free epochs are averaged afterwards. By using the proposed method, however,
artifact-free sections of the signal are unaffected and the averaged clean epochs are nearly identical to
the reference signal. See inset in Figure 22a.

Brain Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 

 
 (a)  (b) (c) 

Figure 21. Distribution of the 𝜆  (a), Δ 𝑆𝑁𝑅  (b) and 𝑅𝑀𝑆𝐸  (c) dataset average values for the 

PhysioNEt P300 dataset by cleaning with the rejection ICA, wICA and PM methods. For 𝜆 and Δ 𝑆𝑁𝑅 

the higher, while for 𝑅𝑀𝑆𝐸, the lower values mean better performance. 

In the second test, all epochs of the cleaned signals were used to compute the ERP signal and 

compared to the pure reference ERP. This shows the ability of the method to recreate the pure ERP 

waveforms after artifact removal. Figure 22.b shows the ERP distortion under real conditions, in 

presence of EOG artifacts. The solid blue line indicates the contaminated P300 signal. The proposed 

method follows the pure ERP curve with the smallest error, see inset in Figure 22.b. 

 

 
 (a)  (b)  

Figure 22. Event related potential (ERP) signals computed from artifact-free epochs only (a) and ERP 

signals computed from all cleaned epochs (b) showing the distorting effects of the cleaning methods 

on ERP curves. 𝐸𝑅𝑃𝑐𝑙𝑒𝑎𝑛
𝑃𝑀  produced the smallest difference in both cases (dataset, electrode Fpz). 

5. Discussion 

EOG artifacts are random, high-amplitude distortions in EEG recordings that, if appear 

frequently, can make entire measurements unusable. Due to the unpredictable nature of artifacts, 

traditional artifact removal is based on manually data inspection and rejection of contaminated data 

segments. This process is both time-consuming and prone to human errors. The introduction of 

independent component analysis for artifact removal [11] revolutionized the field, first by providing 

a theoretical framework for separating artifacts, then secondly, by paving the way to automatic, 

intervention-free implementations. Unfortunately, the strong statistical independence assumption of 

ICA does not always hold in practice, resulting in neural data leaking into artifact components. In 

these cases, independent component rejection based artifact removal methods lose valuable neural 

activity information. 

-4

-3

-2

-1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

A
m

p
lit

u
d

e 
(m

v)

Time (s)

rej ICA

wICA

PM

Pure ERP

-10

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

A
m

p
lit

u
d

e 
(m

v)

Time (s)

Contaminated ERP
rej ICA
wICA
PM
Pure ERP

Figure 22. Event related potential (ERP) signals computed from artifact-free epochs only (a) and ERP
signals computed from all cleaned epochs (b) showing the distorting effects of the cleaning methods on
ERP curves. ERPPM

clean produced the smallest difference in both cases (dataset, electrode Fpz).

In the second test, all epochs of the cleaned signals were used to compute the ERP signal and
compared to the pure reference ERP. This shows the ability of the method to recreate the pure
ERP waveforms after artifact removal. Figure 22b shows the ERP distortion under real conditions,
in presence of EOG artifacts. The solid blue line indicates the contaminated P300 signal. The proposed
method follows the pure ERP curve with the smallest error, see inset in Figure 22b.

5. Discussion

EOG artifacts are random, high-amplitude distortions in EEG recordings that, if appear frequently,
can make entire measurements unusable. Due to the unpredictable nature of artifacts, traditional
artifact removal is based on manually data inspection and rejection of contaminated data segments.
This process is both time-consuming and prone to human errors. The introduction of independent
component analysis for artifact removal [11] revolutionized the field, first by providing a theoretical
framework for separating artifacts, then secondly, by paving the way to automatic, intervention-free
implementations. Unfortunately, the strong statistical independence assumption of ICA does not always
hold in practice, resulting in neural data leaking into artifact components. In these cases, independent
component rejection based artifact removal methods lose valuable neural activity information.

The wavelet-enhanced ICA (wICA) [6] method showed that independent components can be
cleaned from artifacts if they are not rejected entirely. As shown in the Results section, correcting
components this way not only preserves information, but also reduces distortions that rejection ICA
methods introduce in the time and frequency domain. Distortions in the frequency domain, for instance,
can corrupt EEG-based connectivity analyses [6].

The novelty of the method proposed in this paper was that component artifact correction was only
performed in EOG contaminated sections of the component, ensuring that non-EOG contaminated
sections were left untouched. The statistical analysis of the artifact removal performance metrics
confirmed that while wICA outperformed rejection ICA methods in most performance parameters our
proposed method significantly outperformed the quality of both the wICA and the rejection ICA EOG
cleaning methods, both in the time and spectral domains, resulting in close-to-ideal pure EEG signals.
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6. Conclusions

This paper described an improved wavelet-based ICA method for removing EOG components from
EEG measurements. The method operated on independent components produced by an independent
component analysis, automatically selected EOG-contaminated components for subsequent wavelet
decomposition. EOG peaks were detected in the selected components, then the wavelet components
representing EOG artifact waveforms were removed in windows placed around the EOG peaks.
The component was then reconstructed from the remaining wavelet coefficients and used in signal
reconstruction using the inverse ICA process. This partial component cleaning approach significantly
outperformed the popular wICA and rejection ICA based artifact removal methods in all key artifact
removal performance metrics. In addition, our method was fully automatic; it did not require manual
component and artifact inspection, which could simplify and speed up high-quality artifact removal
processes. Our future research will focus on implementing this method using high-performance
computing techniques to support very fast and potentially online artifact cleaning.
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