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Abstract

Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of 

recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to 

death. Immunohistochemical and autoradiographic data demonstrate a constellation of 

serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death 

Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive 

responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators 

that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of 

serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and 

arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body 

chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and 

bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. 

Serotonin has a unique ability to touch on each of the processes that may be required to recover 

from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of 

apneas and, eventually, stimulation of eupnea and arousal are all modulated by serotonin. 

Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and 

restore eupnea are observed in animals harboring defects in the caudal serotonergic system models 

– all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings 

made in infants who subsequently died of SIDS. The caudal serotonergic system provides an 

organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that 

accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal 

serotonergic function will increase the propensity for sudden unexplained infant death.
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1 Introduction

Sudden Infant Death Syndrome (SIDS) and asphyxial deaths represent the single largest 

causes of deaths in infancy (age 1–12 months ) (2016). Occasionally, whether by design or 

by accident, the events leading up to the deaths of infants attributed to SIDS have been 

recorded with a variety of accompanying physiological data. The data among a diverse set of 

studies and recording methods are consistent: before death, these infants experience a series 

of apneas and associated bradycardias from which they initially recover, albeit sometimes 

only partially, until they succumb to final a period of severe apnea and bradycardia when 

gasping fails to restore heart rate and eupnea (Meny et al., 1994; Poets et al., 1999; Poets et 

al., 1993; Sridhar et al., 2003) (Fig. 1). Therefore, any hypothesis about the pathogenesis of 

SIDS must explain the two key features of these recordings before death: the origin of the 

apneas and the failure of recovery from these apneas. We believe that the designation 

Sudden Unexpected Infant Death (SUID), which includes SIDS, asphyxial deaths, and other 

poorly defined causes of death in infants less than one year of age, better captures the 

population of infants at risk for prolonged apneas, failed gasping, and a failure to restore 

eupnea and arouse that may lead to the death of an infant (Carlin and Moon, 2017; Hunt et 

al., 2015). Therefore, we have been pursuing studies to understand how the risk factors for 

SUID (and the risk factors for SIDS and asphyxial deaths within SUID are remarkably 

similar) either promote reflex apneas, regardless of sleep position, or inhibit or suppress 

effective gasping, restoration of eupnea and arousal after apneas (Leiter and Böhm, 2007).

Reflex apnea: The gateway to SUID

The main focus of this review is the multifaceted role of 5-HT in the processes that prevent 

or shorten prolonged apneas and promote gasping, restoration of eupnea, and arousal. 

However, the control of apnea initiation and duration intersects with the serotonergic system 

in the brainstem, and so a discussion of the putative origin of apneas in the context of SUID 

is a necessary prologue to further discussion of the important and protean actions of 5-HT in 

babies responding to hypoxic reflex apnea during sleep.

Fetal Responses to hypoxia

Apnea is elicited by hypoxia in young animals when a ventilatory response to hypoxia 

cannot be sustained (Mortola, 2004). The physiological adjustments to conserve oxygen as 

part of the response to hypoxia are best understood as a spectrum of adaptations appropriate 

to each particular environment and developmental state as animals pass from fetal life to 

adulthood.

The apneic response to hypoxia originates in utero where a ventilatory response to hypoxia 

provides no benefit; the fetus is completely dependent on oxygen delivery from uterine 

blood flow and its own conservative reflex responses to hypoxia. When neonatal animals are 
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first exposed to hypoxia, minute ventilation may increase, a response that originates from the 

carotid body (Blanco et al., 1984) (Bureau et al., 1985). The large surface area to body mass 

ratio of small or young animals makes the maintenance of body temperature energetically 

costly, and a hyperventilatory response to hypoxia sufficient to maintain oxygen delivery to 

support a constant body temperature is prohibitively expensive energetically (Mortola, 

1996). Thus, for many neonatal mammals, including humans (Cross and Oppe, 1952; Cross 

and Warner, 1951), a hyperventilatory response to hypoxia cannot be maintained, and 

ventilation declines as an oxygen conserving strategy (Bissonnette, 2000). Moreover, 

thermogenesis is blunted in the neonate and body temperature falls (i.e. hypoxic 

hypometabolism (Mortola, 1999, 2004)). Oxygen consumption in infants is correlated with 

the availability of oxygen - the neonate behaves like a ‘regulated oxygen conformer,’ and 

part of the response to hypoxia in neonates is inhibition of metabolism (Asakura et al., 1990; 

Mortola, 2004). Breathing is also inhibited, sometimes to the point of apnea. If primary 

hypoxic apnea develops, bradycardia, redistribution of blood flow, reduced 

thermoregulation, and depressed cerebral oxygen consumption ensue to provide a 

comprehensive and integrated mechanism of oxygen conservation (all of which recapitulate 

the fetal response to hypoxia). The persistence of a hypometabolic response, while initially 

adaptive, may compromise the re-establishment of normal cardiovascular function and body 

temperature control between apneic events. The repetitive, incomplete recoveries of heart 

rate and breathing evident in physiological records from babies who died of SIDS may 

reflect incomplete recovery of central cardiorespiratory and thermoregulatory control 

between apneic events (Meny et al., 1994; Poets et al., 1999; Poets et al., 1993; Sridhar et 

al., 2003).

Since the work of J.D. Wood in the 1960s, it has also been realized that a flood of GABA 

(Wood et al., 1968), possibly involving reduced GABA reuptake (Hagberg et al., 1985), 

contributes directly to inhibitory neuromodulation in the hypoxic mammalian brain. 

Increased GABAergic drive specifically within respiratory circuits contributes to hypoxic 

respiratory depression (Melton et al., 1990). Adenosine is also released in abundance during 

severe hypoxia and, acting through excitatory A2A receptors, may activate GABAergic 

neurons (Abu-Shaweesh, 2007; Mayer et al., 2006; Wilson et al., 2004; Zaidi et al., 2006). 

Adenosine, acting through adenosine A1 receptors, inhibits excitatory neurotransmitter 

systems (Cunha, 2001) and may permit prolonged apneas by decreasing CO2 sensitivity 

(James et al., 2018). Thus, adenosine and GABA inhibit neuronal activity and cause 

profound suppression of cerebral metabolic activity. We believe that the reduction in cerebral 

metabolism, like the centrally-mediated inhibition of respiration and thermogenesis 

(Bissonnette, 2000; Mortola, 2004), is a controlled and regulated process that enhances 

survival and is neuroprotective under severe hypoxic conditions (Hochachka, 1986). 

Hypoxia suppresses active sleep (AS) in the fetus (a REM-like state with a relatively high 

cerebral metabolic rate), and the suppression of cerebral metabolism in the fetus, neonates 

and infants generates a state analogous to NREM sleep in adults (though infants lack the 

cortical maturity to manifest the EEG characteristics of NREM sleep). The analogy is apt, 

however, in that NREM sleep is the sleep state associated with the lowest metabolic rate, and 

hypothermic responses to hypoxic stress are likely entered through NREM sleep in adult 

animals as well (Berger, 1975; Berger and Phillips, 1993; Heller, 1988). Moreover, 
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adenosine is a sleep-promoting substance that fosters the appearance of slow-wave sleep 

(Radulovacki, 1985; Strecker et al., 2000). NREM and REM sleep are associated with active 

suppression of sensory afferent information; NREM REM sleep isolate the brain from 

outside stimuli and disruptions. In the same way, the structured, hypometabolic brain state 

caused by hypoxia during prolonged apneas actively isolates the infants from external 

stimuli. This may be one reason infants in the midst of prolonged hypoxic apneas fail to 

respond to resuscitation efforts, even when resuscitation is started promptly after the apneic 

and bradycardic events are first observed (Meny et al., 1994; Poets et al., 1999).

How do apneic responses leading to hypoxia begin?

Many investigators have recognized that the dive reflex, primary hypoxic apnea, and the 

laryngeal chemoreflex (LCR) have features in common with the events recorded in infants 

who died of SIDS. All three reflexes may be associated with apnea and bradycardia, 

redistribution of blood flow to vital organs, and often suppression of consciousness 

depending on the severity and duration of hypoxia accompanying the apnea (Li et al., 2018). 

These reflex apneas are also much more potent in young, immature animals and small 

mammals. Each of these reflexes has been thought to contribute to SIDS (Downing and Lee, 

1975; Guntheroth and Kawabori, 1975; Kovar et al., 1979; Lanier et al., 1983; Page and 

Jeffery, 1998; Perkett and Vaughan, 1982; Thach, 1997; Wolf, 1966). The dive reflex is 

elicited by circumstances that seem far removed from SIDS, but primary hypoxic apnea and 

the LCR seem like strong candidates to initiate a process that may end in sudden death if 

apnea terminating and eupnea restoring processes are ineffective (Li et al., 2018).

The LCR is a protective reflex elicited by water, low chloride concentration solutions, or 

acid in the larynx (Boggs and Bartlett, 1982; St. Hilaire et al., 2005) and consists of a 

complex set of behaviors, apnea (sometimes profound), swallowing, coughing, sometimes 

bradycardia and redistribution of blood flow to vital organs. Many investigators have 

proposed that the respiratory inhibition and bradycardia associated with the LCR may result 

in the death of infants if they are not reversed before severe hypoxemia ensues (Downing 

and Lee, 1975; Page and Jeffery, 2000; Thach, 2001). Apneas can only exist if eupnea is 

inhibited, and this digital, reflex - on or off – switch between apnea and eupnea seems to 

originate in the NTS (where afferent fibers from the carotid body and larynx terminate) and 

requires an amplification process and likely reciprocal inhibitory mechanisms so that the 

animal can switch rapidly between apnea and eupnea. The rapid switching is achieved 

within the NTS by presynaptic modulation of glutamate release by the A- and C-fiber 

afferents mediating reflex apneas (Doyle et al., 2002; Fawley et al., 2014; Hermes et al., 

2016; Jin et al., 2004). If the LCR is a gateway to SUID, then the physiological effects of 

many risk factors for SUID, such as thermal stress, maternal nicotine, fetal tobacco smoke 

exposure and inflammation, ought to increase the sensitivity or severity of the LCR in 

animals; which has been confirmed in multiple studies (Xia et al., 2011, 2016; Xia et al., 

2009; Xia et al., 2010). Presynaptic transient receptor potential vanilloid 1 (TRPV1) 

receptors, which are abundant on C-fibers in the NTS and also participate in central 

sensitization of pain, provide a mechanism through which many risk factors for SUID may 

modulate presynaptic signaling in the NTS (Xia et al., 2011, 2016). Thus, risk factors for 

SUID may sensitize the LCR (Li et al., 2018), analogous to central sensitization of pain 
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fibers, and produce reflex allodynia in infants (potentiation of the LCR by stimuli that would 

otherwise be innocuous) and increase the likelihood of severe apneic events leading to 

sudden infant death.

Parallels exist between the cellular mechanisms underlying the LCR and those underlying 

peripheral chemoreflex response to hypoxia. Stimulation of the LCR and the hypoxic 

chemoreflex may cause apnea and bradycardia, both reflexes originate from cranial nerves, 

and the initially processing of both reflexes occurs in the caudal NTS. In addition to 

sensitizing the LCR, TRPV1 activation also increases the sensitivity of the carotid body to 

hypoxia (Roy et al., 2018). Central apneas are more frequent in infants at risk for SIDS 

(Kahn et al., 1988; Kahn et al., 1992; Kato et al., 2001), and increased carotid body 

sensitivity increases the loop gain of the respiratory control system and therefore decreases 

respiratory stability (Alvaro et al., 2012; Boros and Reynolds, 1976; Khoo et al., 1991; 

Nakayama et al., 2003; Smith et al., 2007; Zhao et al., 2011). Thus, risk factors for SIDS 

that sensitize the LCR may also sensitize carotid body function and increase respiratory 

instability, especially during sleep when other influences that stabilize breathing are absent 

(Horner, 2017; Phillipson, 1978), thereby exposing infants to a greater risk of prolonged 

apneas and the subsequent severe hypoxia during sleep.

Apnea during sleep: Serotonin rides in wearing a white hat

The recordings from infants who died of SIDS reveal a sequence of events in which apnea 

was followed by ineffective gasping, failed restoration of eupnea and failed arousal (Meny et 

al., 1994; Poets et al., 1999; Poets et al., 1993; Sridhar et al., 2003). Most infants experience 

repetitive apneas during neonatal life that diminish in frequency as infants mature (Kahn et 

al., 1992; Kato et al., 2001). Termination of severe apneas relies on autoresuscitation 

(Guntheroth and Kawabori, 1975), and autoresuscitation from apneas involves gasping, 

termination of apnea, restoration of eupnea, and often, arousal from sleep. It is our 

hypothesis that in this stereotypical train of events, each step is dependent on the preceding 

event; the process of successful autoresuscitation starts with gasping and reversal of 

bradycardia. Oxygenation must improve to allow the next processes to emerge: apnea 

cessation and restoration of eupnea, after which arousal from sleep may occur. Serotonin 

contributes to each process in a way that promotes eupnea and arousal. Figure 2 shows a 

schematic of the processes and sequencing of recovery from hypoxic reflex apnea and the 

role of serotonin in each process.

Multiple abnormalities in caudal serotonergic neurons have been described in infants who 

died of SIDS, and the core neuropathological lesions of SIDS are found among the 

serotonergic neurons in the paragigantocellularis lateralis, gigantocellularis, intermediate 

reticular zone, caudal raphe, and arcuate nucleus (Kinney and Haynes, 2019). These neurons 

send projections rostrally to a variety of respiratory-related and arousal-related nuclei, and 

the 5-HT derived from these nuclei has important effects on each element of the 

autoresuscitation process whereby apneas are terminated and regular breathing is restored. 

Moreover, each of the elements of autoresuscitation originates in a different part of the 

brainstem and seems to receive serotonergic inputs from the caudal raphe that act through 

different sets of 5-HT receptors (Fig. 3).
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Gasping requires disinhibition and serotonergic facilitation

Active inhibition originating from the pons and possibly higher brain centers inhibit 

respiratory circuits responsible for the generation of gasping (e.g. pre-BotC), thereby 

preventing gasping behavior during eupnea (Lumsden, 1923; St John et al., 1984; St John, 

1985; St John and Knuth, 1981). However, there is likely a decrease in this inhibition during 

severe hypoxia, which permits gasping to emerge. Glycinergic mechanisms are perhaps 

paramount inhibiting gasping; in situ experiments utilizing phrenic nerve recordings have 

shown that, when coupled with an increase in extracellular K+ (a situation that is known to 

occur naturally under anoxic conditions) and glycinergic blockade (Blank and Kirshner, 

1977), the eupneic pattern of breathing switches to a gasping pattern (St. John et al., 2002). 

In addition to the removal of this glycinergic braking, there is an increase in both 

glutamatergic and serotonergic drive within the local Pre-BotC microcircuitry during 

hypoxia that expedites or facilitates gasping (but is perhaps is not necessary for its initiation) 

(Solomon, 2004). Astrocytes are an additional key source of excitatory drive during hypoxia 

that counteracts GABA/glycinergic inhibition – this includes the release of gasotransmitters 

such as H2S as well as ATP that binds P2Y receptors within the inspiratory pre-BotC 

network (da Silva et al., 2017; Rajani et al., 2018).

Serotonergic facilitation of the gasp

In reduced preparations, serotonergic neurons provide excitatory drive to the Pre-BotC to 

facilitate gasping. For example, 5-HT, acting on 5-HT2A receptors, differentially affected 

pacemaker neurons; cadmium-insensitive pacemaker neurons – i.e. those that rely on 

persistent sodium currents necessary for gasping but not eupnea – require endogenous 5-

HT2A receptor activation for bursting (Pena and Ramirez, 2002; St. John and Leiter, 2008; 

Tryba et al., 2006). Pharmacological activation of PKC blocks the effect of 5-HT2A receptor 

antagonism on fictive respiratory activity, suggesting that PKC activation is a key step in the 

signaling transduction pathways leading from 5-HT2A receptors to the downstream effector 

molecules (Pena and Ramirez, 2002). In addition to 5-HT, Substance P is also released from 

serotonergic neurons in the raphe obscurus, modulating background cation leak currents to 

increase the excitability of pre-BotC neurons (Pena and Ramirez, 2004; Ptak et al., 2009). 

These effects are mediated by 5-HT2A, 5-HT2C and NK-1 receptors. One can reasonably 

conclude from the above findings that during prolonged or severe hypoxia, there is a shift 

away from inhibition of the gasping centers (via glycinergic disinhibition) that, when 

combined with 5-HT2A and 5-HT2C activation and increased extracellular K+, releases the 

constraint on the Pre-BotC and allows gasping to emerge.

The findings from slice preparations have largely been recapitulated in whole animals, but 

with an important caveat: the role of 5-HT is highly dependent on stage of postnatal 

development. For example, studies on Pet-1−/− mice lacking about two-thirds of the usual 

number of serotonergic neurons demonstrated that 5-HT has little role in the genesis of 

gasping once the animals are beyond about 2 weeks of age (Chen et al., 2013; Cummings et 

al., 2011; Erikson and Sposato, 2009; St. John et al., 2009). Serotonin appears to be most 

efficacious terminating hypoxic apnea and initiating gasping in ~P7–10 mice; Pet-1−/− mice 

have profoundly delayed gasping only at this age (Chen et al., 2013; Cummings et al., 2011). 

This is of particular relevance to SIDS because this age is arguably comparable to human 
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infancy (Clancy et al., 2001). The neurophysiological basis for the relatively narrow 

developmental window in which 5-HT facilitates gasping has not been elucidated. It is not a 

function of “immature” respiratory neuronal networks; in the first few days of life (postnatal 

day 4–5), 5-HT-deficient Pet-1−/− mice are completely normal in terms of gasping and 

autoresuscitation (Cummings et al., 2011). Two subsequent studies addressed whether 5-HT 

exerts a physiological or developmental role within gasping centers of the brainstem. Like 

Pet-1−/− mice, rat pups in which 5-HT neurons were chemically lesioned postnatally a few 

days before testing have delayed gasping and decreased survival during severely hypoxic 

conditions. This suggests a physiological, rather than developmental, role for serotonin as a 

facilitator of gasping. Perhaps more convincing evidence that serotonin exerts a 

physiological role comes from mice in which 5-HT neurons were acutely “silenced” using 

Designer Receptor Exclusively Activated by Designer Drug (DREADD) in mice. During 

activation of DREADD receptors, the mice demonstrated delayed and less effective gasping 

(Dosumu-Johnson et al., 2018). These findings strongly support an acute facilitation of the 

gasping by 5-HT in neonatal animals, likely through 5-HT2A and 5-HT2C receptors (Pena 

and Ramirez, 2002).

Effective autoresuscitation depends on gasping, but there is a cardiovascular component as 

well. During each gasp, there is a dramatic increase in heart rate that increases cardiac 

output and, coupled with the dramatic increase in pulmonary ventilation, helps reverse 

systemic hypoxia. The primary effect of carotid body stimulation is bradycardia when there 

are no respiratory efforts; when vagally-mediated information associated with successful 

respiratory efforts is present, hypoxia is associated with a tachycardia (Angell-James and 

Daly, 1969, 1975; Daly et al., 1979). Therefore, the tachycardia seen with each gasp is part 

of a coordinated reversal of the inhibitory, apneic-bradycardic response to hypoxia to an 

excitatory cardiorespiratory response more appropriate for air breathing. Successful 

autoresuscitation cannot occur if gasping and tachycardia do not improve systemic 

oxygenation (Guntheroth and Kawabori, 1975). In this respect, it is interesting that in 5-HT 

deficient mice and rats, whether they were Pet1−/− or rat pups treated with 5–7 DHT, a 

reduction in 5-HT was associated with both reduced effectiveness of gasping and a less 

effective reversal of the bradycardic response to hypoxia. Moreover, compared to rats replete 

with 5-HT, rat pups lacking 5-HT experience a more profound decrease in arterial blood 

pressure that compromises survival during severely hypoxic conditions. Along with reduced 

cardiac output, reduced blood pressure during apnea and bradycardia undoubtedly leads to 

brain hypoperfusion and more profound tissue hypoxia that cannot be mitigated by gasping 

alone (Yang and Cummings, 2013). While the mechanisms for the support of blood pressure 

by 5-HT have not been revealed, it may be that 5-HT facilitates the carotid body-mediated 

sympatho-excitation that occurs during apnea and/or hypoxia, possibly at the level of the 

NTS. It is clear from these animal studies that 5-HT contributes to each component of the 

coordinated cardiorespiratory response to severe hypoxia; i.e. conversion of apnea to gasping 

and the recovery of normal heart rate and blood pressure (Fig. 2).

Serotonergic inhibition of apnea

Apnea and eupnea are mutually exclusive. Activation of the LCR and primary hypoxic 

apnea hold the respiratory pattern generator in a post-inspiratory apneusis, which precludes 
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progress through the usual three phases of eupnea: inspiration, post-inspiration, and 

expiration. Therefore, a necessary step in the restoration of eupnea is either the waning of 

the apnogenic influence arising from within the NTS, or active inhibition of that apnogenic 

process, so that the post-inspiratory apneusis may be terminated and eupnea may be 

resumed. Termination of apnea during the LCR was facilitated by activation of 5-HT3 

receptor activation in the NTS (Donnelly et al., 2016). Serotonin 3 receptors are expressed 

on C-fibers within the superior laryngeal nerve, and they are densely expressed within the 

NTS where the axons of these fibers terminate in the area postrema (AP) and NTS (Barnes 

et al., 2009; Pratt and Bowery, 1989; Waeber et al., 1989). We speculated that the 5-HT3 

receptors were on presynaptic terminals of GABAergic neurons, which when activated, 

inhibit (as yet electrophysiologically unidentified) apnogenic neurons in the NTS, which are 

presumably glutamatergic (Czyzyk-Krzeska and Lawson, 1991; Kubin and Davies, 1995; 

Remmers et al., 1986). The 5-HT that interacts with the 5-HT3 receptors in the NTS 

originates from the caudal raphe (mainly the raphe obscurus) (Donnelly et al., 2017). 

Serotonin originating from the raphe obscurus also blunts the bradycardic response to 

carotid body stimulation by activating 5-HT3 receptors in the commissural nucleus of the 

NTS (Weissheimer and Machado, 2007). Thus, both apnea termination and the termination 

of the bradycardic response to hypoxic apnea are associated with activation of 5-HT3 

receptors in the NTS, and inhibition of apnea and bradycardia set the stage for a sustained, 

excitatory cardiorespiratory response to hypoxia and restoration of eupnea. A deficiency of 

either 5-HT3 receptors in the NTS or a deficiency of activation and release of 5-HT from 

caudal raphe neurons could be associated with prolonged and difficult to reverse apneas and 

bradycardia, and SUID may be associated with a hyposerotonergic state associated with or 

derived from numerous neuropathological abnormalities in the caudal raphe of babies who 

died of SIDS (Kinney and Haynes, 2019). Moreover, intermittent hypoxia administered to 

pregnant rat dams resulted in sensitization of the LCR, reduced ability of 5-HT to shorten 

the LCR (which as noted above depends on 5-HT3 receptors), and a marked reduction in 5-

HT3 receptor binding in the rat pups at the same postnatal age when the LCR was prolonged 

(cite paper in this journal).

Thus, prenatal hypoxia appears to alter brain development in a way that sensitizes apnogenic 

reflexes, like the LCR, and reduces the capacity of 5-HT, which originates at least in part 

from the caudal raphe, to shorten and terminate reflex apnea. There are no similar studies of 

regulation of apnea duration following primary hypoxic apnea, but given the convergence of 

apnea control processes within the NTS, an effect of 5-HT3 receptor activation on the 

duration of primary hypoxic apnea seems plausible. In summary, serotonergic mechanisms 

exist within the caudal raphe and NTS that may terminate reflex apneas and clear the way 

for restoration of eupnea. Should any of these processes be deficient, as we believe they are 

in SUID, apneas will be more difficult to terminate, and eupnea and arousal, the essential 

process to protect infants against prolonged hypoxic apneas, will be more difficult to initiate 

and maintain (Fig. 2).

Serotonergic support of eupnea

In general, 5-HT has a stabilizing effect on respiration (Lalley, 1994; Richter et al., 2003), 

although activation of the 5-HT1A receptor can inhibit elements of the respiratory controller 
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(Lalley et al., 1997; Lalley et al., 1994). This stabilizing effect is most clearly seen in 

animals in which 5-HT is deficient. In Lmx1bf/f/p mice, which lack serotoninergic neurons, 

younger animals had repeated, long spontaneous apneas. When these animals were treated 

with 5-HT or 5-HT agonists, the respiratory pattern was regularized and the frequency of 

breaths increased. This serotonergic effect was achieved through 5-HT2A and/or neurokinin 

1 (NK-1) receptors, presumably in the ventral medullary regions controlling the respiratory 

pattern (Hodges et al., 2009). The stabilizing effect of 5-HT on neonatal breathing has also 

been demonstrated in neonatal Pet-1−/− mice (Cummings et al., 2010) and tryptophan 

hydroxylase 2-deficient rat pups (Kaplan et al., 2016; Young et al., 2017). The latter 

specifically lack 5-HT, retaining other co-released neuromodulators like substance P and 

thyrotropin releasing factor that have excitatory effects on breathing. In reduced 

preparations, 5-HT, arising from the caudal raphe, also acts to increase respiratory frequency 

and stabilize breathing by stimulation 5-HT2A/2C, 5-HT4, substance P and/or NK-1 receptors 

in the respiratory network (Ptak et al., 2009).

Other aspects of serotonergic activity coordinate the regular transition between inspiration 

and expiration, and through these processes reduce the occurrence or duration of apnea. For 

example, 5-HT signaling through 5-HT1A receptors inhibits the Kolliker Fuse (KF) nucleus, 

a region in the dorsolateral pons that facilitates the transition from inspiration to expiration 

(Dutschmann and Dick, 2012). Disinhibition of the KF after blockade of inhibitory 5-HT1A 

receptors increased the frequency of apneas (Dhingra et al., 2016). In addition to stimulating 

eupnea, 5-HT facilitates regular cycling between inspiration and expiration, which is 

essential for the restoration of eupnea following hypoxic apnea.

It is beyond the scope of this review, but caudally projecting serotonergic neurons provide 

important inputs to thermogenesis (Morrison, 2016), and it may be that the serotonergic 

inputs to thermogenesis are important in re-establishing respiratory stability and thermal 

homeostasis following the hypometabolic, oxygen conforming state that occurs during 

hypoxic, reflex apneas in neonates and infants (Mortola, 1999, 2004). Moreover, lack of 

serotonin in Lmx1bf/f/p mice was associated both with apneas, respiratory instability, and 

reduced thermogenic capacity (Hodges et al., 2009). Carotid bodies also contribute to the 

regulation of thermogenesis during hypoxia, albeit mostly during the recovery phase once 

oxygen becomes available after the apnea has been terminated (Hemelrijk et al., 2019; 

Mortola, 2004). This suggests that the most immature mammals, including human infants - 

those that perhaps have the lowest carotid body sensitivity to hypoxia (Bissonnette, 2000), 

experience a more prolonged blunting of thermogenesis that persists even after cessation of 

the hypoxic stimulus, perhaps in keeping with the adaptive nature of the oxygen-conserving 

response. It is interesting that the recordings of infants who subsequently died of SIDS often 

demonstrate incomplete recovery of eupnea or full arousal from sleep. Hence, it appears that 

failure to restore thermal homeostasis, possibly as a result of deficient serotonergic function, 

may contribute to the lack of respiratory stability following repeated hypoxic apneic events.

Sudden infant death invariably occurs during sleep, but there is no clear indication whether 

SUID occurs preferentially in NREM sleep or REM sleep (analogous to AS in infants). 

Respiratory activity is more variable during REM or active sleep (Horner, 2017), and it 

seems likely that apneic and bradycardic events leading to sudden death occur 
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predominantly in REM or AS, which is also the sleep state associated with the least 

serotonergic activity. Young and colleagues asked whether the apneas displayed by neonatal 

serotonin-deficient rodents showed any dependency on state; i.e. were they more frequent in 

quiet sleep (analogous to NREM in adults) or active sleep? Compared to wild-type 

littermates, TPH2−/− pups displayed increased spontaneous apneas, specifically during 

prolonged periods of AS (Young et al., 2017). The increased apnea of TPH2−/− rat pups was 

ameliorated by central administration of atropine, suggesting that elevated cholinergic drive 

to respiratory centers - probably originating from the pontine tegmentum, a key “REM 

driver” – contributed to apneic phenotype (Davis et al., 2019). Even in normal infants and 

neonates, AS may be considered a “risky” state, given the destabilized respiratory, heart rate 

and arterial blood pressure that characterize this state (Horner, 2012; Horner, 2017). A loss 

of 5-HT may put an infant at greater risk for apnea and the initiation of events that may lead 

to SUID specifically in AS. In addition to more apnea (Kahn et al., 1988; Kahn et al., 1992; 

Kato et al., 2001), there is evidence that infants who subsequently died of SIDS cases had 

more AS than quiet sleep (Schechtman et al., 1992). Serotonergic dysfunction may have a 

role in both of increasing the amount of AS and decreasing respiratory stability during that 

stage of sleep in infants at risk for SIDS/SUID.

Serotonergic support of arousal

Arousal from sleep is associate with set of physiological responses, usually in a stereotypical 

sequence, including an increase in heart rate, blood pressure and muscle tone (reversing the 

relatively low heart rate and blood pressure and laxity of muscle tone associated with sleep), 

a sustained respiratory effort (though there may be a brief pause in breathing), and activation 

of the EEG. In human infants, arousal begins with an augmented breath (sometimes 

followed by a brief apnea) or a startle, increased heart rate and a change in the EEG activity 

reflecting the arousal (usually low voltage faster activity) (McNamara et al., 2002; 

McNamara et al., 1998). This stereotypical sequence has been described in piglets and rat 

pups and may occur spontaneously or may be elicited by exposure to hypoxia and/or 

hypercapnia (BuSha et al., 2001; Darnall et al., 2010; Dauger et al., 2001). Based on the 

timing and pattern of the events within the arousal response, the arousals in infants seem to 

begin with autonomic changes originating from the brainstem (respiratory and heart rate 

changes) and then ascend, partially or completely, to the cortex. Hence, arousals originate in 

the brainstem (BuSha et al., 2001; McNamara et al., 2002; McNamara et al., 1998).

SIDS is associated with serotonergic defects in the caudal raphe (Kinney and Haynes, 2019), 

and arousal responses appear to be inadequate in babies who died of SIDS (Harper and 

Bandler, 1998; Hunt, 1981; Kahn et al., 2002; McCulloch et al., 1982). Numerous studies 

have linked deficient serotonergic activity in the caudal raphe to failed or deficit arousal 

responses. Toxigenic lesion studies using 5,7-DHT, a toxin that specifically kills 

serotoninergic neurons, injected into the medullary raphe in P2 rat pups resulted in an 80% 

reduction in medullary 5-HT neurons. When these animals were studied at P5, P15, and P25, 

pups injected with 5,7-DHT had longer arousal latencies and a reduced respiratory 

frequency response to hypoxia at all three ages tested compared to control rat pups (Darnall 

et al., 2016). Similar results were obtained in Pet-1−/− knock-out mice, which have 
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dramatically reduced numbers of serotonergic neurons. Pups between the ages P6-P10 were 

exposed to four episodes of hypoxia during sleep.

After the onset of hypoxia, the latencies to arousal in Pet-1−/− pups were significantly longer 

than in wild-type control animals. The arousal latency tends to habituate (get longer) after 

repeated exposure to hypoxia, and arousal habituation was also greater in Pet-1−/− knock-out 

mice compared to wild-type control animals (Darnall et al., 2011). Moreover, TPH2−/− pups 

have delayed arousal responses to increasing CO2 in both QS and AS, while arousal 

responses to hypoxia were unaffected (Young et al., 2017). Hypercapnia appears to be a 

more potent arousing stimulus than hypoxia (Kaur et al., 2013), as discussed below, even 

though both stimuli are present during hypoxic reflex apnea.

Serotonergic facilitation of arousal: central and peripheral mechanisms

As noted above, arousals seem to begin caudally and project rostrally. The cortical 

component of arousals are generated by an ascending arousal system that originates in the 

rostral pons and includes the parabrachial nucleus, which projects to the basal forebrain and 

then to the cortex (Fuller et al., 2011). The parabrachial nucleus integrates arousing stimuli 

related to hypercapnia (Kaur et al., 2013), hypoxia (Darnall, 2013), and vagally-mediated 

mechanoreceptor information from the airways (Kaur and Saper, 2019). Serotonergic 

neurons in the caudal raphe send projections to the parabrachial nucleus (Bang et al., 2012; 

Miller et al., 2011), where 5-HT may enhance arousals to hypercapnic stimuli by acting 

through 5-HT2A receptors (Buchanan and Richerson, 2010; Buchanan et al., 2015). The 5-

HT mediating these arousal enhancing effects may originate in part from the raphe magnus 

(Darnall et al., 2016), but possibly other caudal raphe nuclei. In addition, hypoxia-sensitive 

neurons in the rostral ventrolateral medulla may also contribute to arousal response, though 

whether this depends on serotonergic mechanisms is less clear (Guyenet and Abbott, 2013). 

Serotonin may amplify the arousing effects of carotid body and vagal stimuli at the level of 

the parabrachial nucleus, but the role of amplification of hypercapnic inputs to arousal at the 

level of the parabrachial nucleus has been more fully elaborated (Kaur and Saper, 2019).

The foregoing survey of studies makes it clear that 5-HT originating from the caudal raphe 

participates in multiple processes that are important in reversing hypoxic apnea and 

bradycardia, but this leaves unanswered the question, what stimulates serotonergic neurons 

as the apnea progresses so that they can overcome the inhibition that is central to the 

hypometabolic apneic response to hypoxia? The simplest answer is that the duration of the 

apnea leads to progressive hypercapnia and hypoxia. Carotid body chemoreceptors detect 

hypoxia and to a lesser extent, hypercapnia and increase ventilation when activated. Central 

chemoreceptors detect hypercapnia, and there are oxygen sensitive neurons in the ventral 

medulla that may participate in the restoration of eupnea following apneas in infants 

(Bamford and Carroll, 1999; Carroll and Fitzgerald, 1993; Gauda et al., 2009; Guyenet and 

Abbott, 2013; Kholwadwala and Donnelly, 1992). Activity from the carotid bodies also 

contributes to behavioral arousal in response to hypoxia, and denervation of the carotid 

bodies reduced arousal in response to hypoxia and airway obstruction (Fewell et al., 1989; 

Fewell et al., 1990). The involvement of serotonergic neurons in carotid body-mediated 

arousal is supported by the observation that stimulation of the carotid sinus nerves induces 
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FOS-like protein (a marker of neuronal activation) in regions of the medullary raphe 

(Erickson and Millhorn, 1991). Hypercapnia appears to be a potent activator of arousal 

through the parabrachial nucleus, which is enhanced by serotonergic inputs (Kaur and Saper, 

2019). In a similar way, the hypercapnic response generated within the retrotrapezoid 

nucleus (RTN) may also be amplified by serotonergic inputs. There are also projections from 

midline serotonergic neurons to the RTN (Brust et al., 2014; Rosin et al., 2006), and 

serotonergic projections from the medullary raphe to the RTN amplify the neuronal and 

ventilatory responses to hypercapnia originating within the RTN (Dias et al., 2008; Mulkey 

et al., 2007; Wu et al., 2019). The amplification of CO2 sensitivity within the RTN depends 

on 5-HT2 and 5-HT7 receptors acting on two different ph-sensitive channels mediating CO2 

sensitivity of RTN neurons: HCN channels are modulated by 5-HT2 receptors (Hawkins et 

al., 2015) and KCNQ channels were modulated by 5-HT7 receptors (Mulkey et al., 2007). 

Any amplification of CO2 sensitivity within the RTN will further enhance the arousing 

potential of hypercapnia, which may be further amplified by serotonergic inputs to the 

parabrachial nucleus discussed above. Thus, the projections from the RTN to arousal-

promoting neurons in the parabrachial nucleus (Rosin et al., 2006) and carotid body 

afferents to the parabrachial nucleus likely concurrently stimulate ventilation and promote 

arousal as a dual-pronged approach to overcome the inhibition of breathing associated with 

hypoxic reflex apnea.

Serotonin and the risk of SUID

Serotonergic defects are common in babies who died of SIDS (Duncan et al., 2010; Paterson 

et al., 2006) and also in babies who died of under circumstances that were consistent with 

asphyxia (Randall et al., 2013). We think it is likely that even though there has been 

diagnostic drift (Hunt et al., 2015), deaths of infants that are labeled as asphyxial, may still 

reflect disorders of the serotonergic system. First, the risk factors for SUID, which reflect 

SIDS and asphyxial deaths, encompass many of the factors that were previously associated 

with SIDS and may contribute to the serotonergic defects identified in infants who died in 

circumstances consistent with asphyxia (Randall et al., 2013). It is our belief that 

deficiencies of gasping, termination of apneas due to hypoxia, restoration of eupnea and 

arousal are likely also deficient in infants whose deaths are labeled asphyxia. Hence, 

difficulty terminating apnea, restoring eupnea and arousing from sleep likely contribute to 

deaths in infants that were attributed to both to asphyxia and to SIDS. Based on the 

hypotheses presented above, the severity of serotonergic defects, whether the cause of death 

is listed as SIDS or as asphyxia, will dictate the extent to which infants can overcome 

hypoxic apneic events. In addition to the benefit of reoxygenation associated with gasping, 

serotonin is the primary neurotransmitter organizing the recovery from reflex apneas and 

hypoxia.

Summary

Surviving episodic hypoxia is essential, and neonates and infants are in a difficult 

transitional stage in which they do not have sufficient body mass or energy reserves to 

mount an effective and sustained euthermic response to hypoxia. Therefore, an oxygen 

conserving and hypothermic response to that permits oxygen consumption to decline during 

hypoxia is essential to prolong survival, but there must be a mechanism of reevaluation of 
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this strategy, a way to reassess, and a way to reverse the hypometabolic, apneic and 

bradycardic response to hypoxia. The intrinsic hypoxic sensitivity of the gasping mechanism 

provides this opportunity to reevaluate the hypometabolic strategy and begins the process 

whereby infants may re-establish eupnea. If gasping restores oxygenation, the apnea may be 

terminated, the cardiorespiratory response may be converted from an inhibitory pattern to an 

excitatory pattern and the respiratory rate and heart rate may increase, and the infant may 

arouse as the final step in complete restoration of a vigorous waking response to hypoxia. In 

our analysis, hypoxia, adenosine and GABA are part of a centrally controlled and structured 

pattern of responses to survive hypoxia, and oxygen and 5-HT are arrayed against these 

inhibitory influences to reduce the impact of adenosine (reoxygenation) and provide 

excitatory inputs to the key events necessary to restore normal breathing. There are surely 

more excitatory neurotransmitters brought into play during the recovery from apnea, but 5-

HT is a major factor. Infants who died of SIDS have an array of defects that mainly involve 

the caudal raphe (Kinney and Haynes, 2019); it is our hypothesis that these defects 

compromise the ability of infants at risk for SIDS to mount an effect and timely defense 

against the potent evolutionary adaptations fostering apneic and hypometabolic responses to 

hypoxia. In summary, we believe that infants at risk for SIDS (and SUID) have both an 

increased propensity for apneas derived from sensitization of the LCR and/or carotid body 

activity, which increases the strength of the apneic, hypometabolic response to hypoxia, and 

defects in serotonergic function that limit the effectiveness of those behaviors that are meant 

to reverse hypoxia. This sequence of events, an increased frequency and/or severity of 

apneic events and bradycardia and a reduced capacity to generate effective gasping, 

terminate apneas, restore eupnea and arouse, is compatible with the cardiorespiratory 

recordings made in infants who subsequently died of SIDS (Kelly et al., 1986).
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1 Abbreviations go here

AS Active sleep

GABA gamma-amino butyric acid

LCR laryngeal chemoreflex

NREM non-rapid eye movement

NTS nucleus of the solitary tract

REM rapid eye movement

SIDS Sudden Infant Death Syndrome

SUID Sudden Unexpected Infant Death

TRPV transient receptor potential vanilloid
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Highlights

• Apnea and bradycardia can be an appropriate response to hypoxia in infants 

when a ventilatory response cannot be maintained

• Autoresuscitation, inhibition of apnea, restoration of eupnea and arousal are 

essential to terminate apnea and bradycardia in infants

• Infants at risk for SIDS may have heightened sensitivity of the reflex 

mechanisms precipitating apneas and bradycardias

• The caudal serotonergic system supports all the processes necessary to 

terminate apnea and bradycardia: serotonin facilitates gasping and 

autoresuscitation, shortens or terminates reflex apneas, stimulates eupnea and 

drives arousal from the caudal brainstem rostrally to the cortex

• Each of these processes is associated with activation of a different set of 

serotonergic receptors in specific regions of the brainstem targeted by 

serotonergic neurons in the caudal raphe.
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Figure 1. 
Recordings of heart rate (H.R.) by ECG and respiratory activity by thoracic impedance in an 

infant classified as a SIDS case. (a) Breaths (B) 1 through 7 show a slowing of respiratory 

rate (i.e. progressively longer apnea) in a background of severe bradycardia (Normal HR = 

~150 bpm). As hypoxia becomes more severe respiratory activity ceases altogether (primary 

hypoxic apnea). Three gasps (G1–3) then emerge, the respiratory component of 

“autoresuscitation”. (b) Terminal gasps (6 through 8) in the same record are shown – note 

that gasping has not succeeded in elevating H.R. or re-establishing eupnea; i.e. failed 

autoresuscitation. Reproduced from Sridhar et al., 2003.
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Figure 2. 
The critical role of central serotonin (5-HT) on cardiorespiratory homeostasis and arousal 

following spontaneous, reflex- or hypoxia-induced apnea. Shown are specific functions of 5-

HT on: 1. the prevention or mitigation of spontaneous (see Erickson et al.,2007, Hodges et 
al., 2009, Ptak et al., 2009, Cummings et al., 2010, Kaplan et al. 2016, Young et al., 2017) or 

reflex-induced apneas (i.e. those initiated by the laryngeal chemoreflex (LCR) (see Donnelly 

et al., 2016, 2017); 2. the promotion of gasping during severe hypoxia (see Pena and 

Ramirez, 2002, Tribe et al., 2006, Erickson and Sposato, 2009, Cummings et al., 2011, Chen 

et al., 2013, Dosumu-Johnson et al., 2018), 3. the restoration of cardiovascular function 

during the gasping phase (see Cummings et al., 2011, Chen et al., 2013, Yang and 

Cummings, 2013, Dosumu-Johnson et al., 2018), 4. the eventual restoration of eupneic 

breathing (see St. John and Leiter, 2007, Erickson and Sposato, 2009, Cummings et al., 
2011, Chen et al. 2013, Dosumu-Johnson et al., 2018), and finally, 5. arousal (see Buchanan 
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and Richerson, 2010, Buchanan et al., 2015, Darnall et al., 2011, Darnall et al. 2016, Kaur et 
al., 2013, Kaur and Saper, 2019). Gasp: high-amplitude, low frequency respiratory motor 

output in response to severe hypoxia; eupnea: normal breathing; apnea: no breathing; CV: 

cardiovascular; HR: heart rate; ABP: arterial blood pressure; EMG: electromyograph; EEG: 

electroencephalograph. Colored regions represent normoxic (Nx, red), hypoxic (Hx, orange), 

and severely hypoxic (sHx, blue) conditions.
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Figure 3. 
The schematic representation of brainstem nuclei portrays the important role of serotonin 

originating from the caudal raphe interacting with different nuclei within the brainstem to 

organize the sequential processes that are essential to restore normal breathing following 

reflex, hypoxic apneas and bradycardia. Within each target nucleus, a different set of 

serotonin receptors seems to mediate the action of serotonin, but ultimately, the serotonergic 

neurons within the caudal raphe drive these processes. Moreover, the processes of recovery 

from hypoxic, reflex apnea seem to proceed from the caudal brainstem rostrally to the cortex 

through the brainstem nuclei and following the numbered sequence shown above. 

Autoresuscitation appears first (if the hypoxic apnea is sufficiently severe), termination of 

apnea follows, eupnea is restored next, and finally arousal is facilitated by enhanced 

hypercapnic sensitivity and amplification of arousing inputs to the parabrachial nucleus. 

Failure or deficiency of any one of these processes may increase the likelihood that a 

sleeping infant does not recovery successfully from hypoxic, reflex apnea.
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