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Abstract

Background: Seed and accessibility constraints are core features to enable highly accurate sSRNA target screens
based on RNA-RNA interaction prediction. Currently, available tools provide different (sets of) constraints and default
parameter sets. Thus, it is hard to impossible for users to estimate the influence of individual restrictions on the
prediction results.

Results: Here, we present a systematic assessment of the impact of established and new constraints on sRNA target
prediction both on a qualitative as well as computational level. This is done exemplarily based on the performance of
IntaRNA, one of the most exact sRNA target prediction tools. IntaRNA provides various ways to constrain considered

and their combinations.

upcoming sRNA target prediction approaches.

interaction constraints for SRNA target prediction.

seed interactions, e.g. based on seed length, its accessibility, minimal unpaired probabilities, or energy thresholds,
beside analogous constraints for the overall interaction. Thus, our results reveal the impact of individual constraints

Conclusions: This provides both a guide for users what is important and recommendations for existing and

We show on a large sRNA target screen benchmark data set that only by altering the parameter set, IntaRNA recovers
30% more verified interactions while becoming 5-times faster. This exemplifies the potential of seed, accessibility and
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Background

Prediction of RNA-RNA interactions is a versatile
approach to detect putative targets of non-coding
RNAs [1]. Accessibility-based approaches combine the
prediction of a most stable interaction duplex with an
energy penalty for making the interaction regions acces-
sible, i.e. free of intra-molecular structure. They are very
good compromise between the computational complex
prediction of joint structures and a simple detection of
stable duplexes. While accessibility-based approaches that
further incorporate seed constraints are best suited for
in silico target screens of prokaryotic sRNAs [2], avail-
able programs implement different (sets of) constraints
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and respective thresholds to increase the prediction accu-
racy. Although there are various studies that compare
tools (based on their default parameters) [2—4], so far no
study investigated the impact and potential of the differ-
ent constraints in a systematic way. This is needed to both
provide users with an intuition how the constraints influ-
ence the prediction results and to guide the development
and improvement of current and future tools.
Accessibility-based approaches can be split into two
classes based on the applied accessibility model. The
site-based approaches, like RNAup [5], IntaRNA [6, 7]
or RIsearch2 [8], compute and use explicit unpaired
probabilities for the interacting subregions. While this is
exact, the precomputation time and space consumption
grows with the maximal length of considered interactions.
Therefore, position-based approaches, like RNAplex
[9], AccessFold [10] or RIblast [11], estimate the
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regions’ accessibility based on unpaired probabilities of
enclosed single positions. This requires less precomputa-
tion but provides only approximate accessibility profiles
and thus energy values.

Methods that incorporate seed constraints can also be
grouped into approaches that use dynamic programming
schemes operating on whole sequences, like IntaRNA,
or two-step approaches, like RIblast, RIsearch2 or
sTarPicker [12], that first identify putative seed inter-
actions and subsequently find the optimal interaction
among low energy seed extensions. Due to the low num-
ber of putative seeds, seed-extension approaches consider
only a sparse subset of all potential interactions and are as
such much faster than exhaustive dynamic programming
schemes.

Within this study, we do a systematic evaluation of
established and new constraints for RNA-RNA interac-
tion prediction for their potential to improve sRNA target
prediction. Beside a qualitative assessment, we also inves-
tigate respective runtime effects since target screens are
typically done on a genomic level [13—15] and therefore
time intensive. In detail, we are investigating the following
constraints and combinations:

Seed constraints:

seed vs. no seed

number of seed base pairs

prohibition of GU base pairs in seeds
maximal overall energy of seeds

maximal hybridization energy of seeds
minimal accessibility (unpaired probability) of
seed regions

Interaction constraints:

maximal energy of an interaction

minimal accessibility (unpaired probability) of
interacting regions

maximal interaction length (region per RNA)
maximal interior loop size

impact of in silico SHAPE data from ShaKer
energy parameter model

Results and discussion

Within this study, we report as a quality assessment the
relative number of recovered verified SRNA-target pairs
among the top-100 predictions for each tested sRNA.
Furthermore, relative overall runtime of each parame-
ter benchmark is depicted. The runtime normalization
is done using the default parameter setup of IntaRNA
v2.3.1, which we extended with additional constraints
tested here. If not set explicitly, IntaRNA’s default values
for version 2 are: 7 (canonical) base pairs in seed, allowing
for GU base pairs in seed, maximal overall energy of seed
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or interaction of 0 kcal/mol, minimal unpaired probability
of seed or interaction site of 0, maximal interaction length
of 150, maximal interior/bulge loop size of 16. To reduce
the parameter space, we consider only canonical seeds,
i.e. seed interactions that show consecutive stackings only.
For each tested parameter setting, we report the recov-
ery for each reference target within the Additional file 1.
Abbreviations in figures and text are based on respective
IntaRNA parameter names.

Seed constraint - length of the seed

The length of considered seed interactions, i.e. the num-
ber of consecutively stacked base pairs, is one of the first
and most central feature of most sRNA target prediction
tools as it has a strong impact on the size of the search
space and prediction quality.

While tools like IntaRNA [6, 7] or TargetRNA (2)
[16, 17] require 7 base pairs, other approaches as
RIsearch?2 [8],RIblast [11] or sTarPicker [12] are
less restrictive and require only 6, 5 or at least 5 (with
additional constraints), respectively. Similar constraints
are also applied in the context of eukaryotic microRNAs
(8, 18].

Figure 1 summarizes the results for various seed lengths
using IntaRNA. A seed length of 8 shows the best pre-
diction results while further increasing the required base
pairs results in a rapid performance loss. These results
are in line with [16]. Lower values provide similar results
but require, due to the increased search space, more run-
time. Overall, we observe no tremendous impact of the
seed length (below the critical length of 9) on the predic-
tion accuracy when compared to predictions that do not
require a seed interaction. Note, the increased runtime
when enforcing seed constraints is a result of the two-
step recursions implemented by IntaRNA version 1 and
version 2 and can be drastically reduced when applying
a seed-extension strategy e.g. implemented in RIblast,
RIsearch2 or the recent IntaRNA version 3. Still, the
same trends caused by seed length constraints apply due
to the inverse relation of seed length and the number of
respective seeds to be processed.

Seed constraint - avoiding weak GU base pairs in seeds

GU base pairings are the weakest among the considered
base pairings in secondary structure energy models. Since
a seed interaction is considered to provide a strong initial
binding platform for interaction formation, reducing [12]
or even completely forbidding GU base pairs in seeds is
used by some approaches [19].

In Fig. 1 we show that forbidding GU base pairs in seeds
indeed has a strong impact on both prediction accuracy
and runtime. While the same trends apply (increase to
maximum at 8 base pairs with a subsequent rapid drop for
> 9), significantly more verified interactions are recovered
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Fig. 1 Seed length and GU base pairs. (left) Relative number of recovered verified targets among the top-100 predictions of each sRNA for different
seed lengths (seedBP) with and without GU base pairs, i.e. blue = [seed] and green = [seedNoGU], resp., where red = [no seed] refers to results
without seed constraints. (right) Relative overall runtime to process each parameter set. The dotted gray lines mark respective values of IntaRNA

when compared to respective parameter sets that allow
for GU base pairs. Furthermore, we observe a strong run-
time reduction since many putative seeds are filtered by
this constraint.

Seed constraint - enforcing stable (low energy) seeds

Reducing the number of GU base pairs in seeds, as inves-
tigated above, is an indirect constraint on the stability of
seeds to be considered for interaction prediction. Thus,
some approaches introduced constraints on the seeds
energy [7, 12], which is a measure of its thermodynamic
stability. The rational here is that a stable seed interaction
should provide a good platform for a subsequent inter-
action formation that is also kinetically favoured. Both
restrictions on the overall seed energy [7] or the seeds’
hybridization energy [8, 11] are known from the literature.

When restricting the overall energy of seeds, we con-
strain a mixture of hybridization energy terms and the
accessibility penalties of the seeds’ interaction site. Both
are connected with the seed length (longer seeds pro-
vide lower hybridization energies and higher accessibility
penalties) and thus energy constraints are seed-length
specific. Here, we exemplarily investigate the effect of
(hybridization) energy bounds on seeds of length 7. Inves-
tigations of seed accessibility constraints are discussed in
a dedicated subsequent section.

Our results, depicted in Fig. 2, show that constrain-
ing the overall energy enables higher prediction accuracy
(maximum at about —5 kcal/mol for 7 seed base pairs)
while offering significant runtime reductions. In contrast,
constraining only the seeds” hybridization energy provides
no significant prediction gain and the recovery drops for
thresholds below —7 kcal/mol.

Given the superior results for seeds without GU base
pairs from the last section, we also investigated the impact
of energy thresholds for predictions confined to such
seeds. Disallowing GU base pairs should directly relate
to more stable seeds within the underlying energy model.

In contrast to the discussed results for seeds includ-
ing GU base pairs, a (non-significant) maximal recov-
ery is observed for —2 kcal/mol both for overall and
hybridization-only energy thresholds for no-GU-base-
pair seeds. For both constraints, the recovery rate drops
with decreasing maximal energy values. Also in contrast
to the GU-including results, thresholds on overall seed
energies are not superior to constraints on hybridization-
only energies of seeds without GU base pairs. Overall, we
conclude that forbidding GU base pairs has similar max-
imal effects than restricting the overall energy of seeds
including GU base pairs.

Seed constraint - accessibility of seed regions

Given our results concerning seed stability, we next inves-
tigated the impact of the accessibility of the seed regions,
i.e. constraining considered seeds to sequence regions that
are likely unpaired using increasing thresholds. Such a
constraint follows the hypothesis that the initial interac-
tions are formed between highly accessible (unstructured)
regions of the two RNAs, which subsequently expand into
the full interaction. This should again result in interac-
tions that are kinetically favoured.

Figure 3 (top) visualizes the effect of seed accessibility
constraints for different seed lengths (when allowing GU
base pairs in seeds). For all seed lengths, a maximum is
observed when enforcing a minimal unpaired probability
between 0.001 and 0.1. Too restrictive values result in the
expected drop in the recovery rate since few to no putative
seeds are left for prediction, while too soft thresholds (<
0.01) show no significant effect.

For longer seeds (> 7 bp), we observe a runtime reduc-
tion for minimal unpaired probabilities of at least 0.001,
which results from the reduced seed set considered for
prediction.

When comparing the results for seed length 7 (seedBP7
in Fig. 3) with the seedMaxE results from Fig. 2, a sim-
ilar (x-reversed) curve shape is observed. This supports
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Fig. 2 Seed stability. (left) Relative number of recovered verified targets among the top-100 predictions of each sRNA for different thresholds on a
seed's overall energy and hybridization energy, i.e. ball = [seedMaxE] and diamond = [seedMaxEhybrid], respectively. Results including GU base pairs
are in blue while values for seeds without GU base pairs are in green. (right) Relative overall runtime to process each parameter set. The dotted gray

lines mark respective values of IntaRNA with default parameters

our hypothesis that the effects caused by constraining the
seed’s overall energy are mainly resulting from the seed’s
accessibility, since unpaired probabilities P* are incorpo-
rated as accessibility penalties via —RT log(P¥).

Figure 3 (bottom) shows respective results for seeds
without GU base pairs. While the overall recovery rates
are higher, similar trends are observed. This plot also
shows that disallowing GU base pairs has stronger effects

Since the maximal effect of seed accessibility con-
straints is less independent of the seed length compared
to energy constraints, we conclude that constraining the
seeds’ accessibility is to be preferred over using energy
thresholds on the seed.

Interaction constraint - maximal interaction length
Next we investigated how constraints on the overall inter-

for longer seeds. action influence sRNA target prediction results. The most
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Fig. 3 Seed accessibility. (left) Relative number of recovered verified targets among the top-100 predictions of each sRNA for different thresholds on
a seed's accessibility in terms of minimal unpaired probability of both seed regions [seedMinPul] for different seed lengths [seedBP]. (right) Relative
overall runtime to process each parameter set. The (top) and (bottom) graphs show results when GU base pairs are allowed or forbidden in seeds,
respectively. The dotted gray lines mark respective values of IntaRNA with default parameters
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stringent restriction limits the interaction’s length, here in
terms of the maximal lengths of the subsequences covered
by the interaction. This constraints stems from the obser-
vation that most known interactions are relatively short,
probably due to steric hindrances [20]. Also concerning
maximal interaction length, defaults from the available
tools differ in their constraints. While IntaRNA uses
very soft bounds enabling interactions of up to 150 nt,
RNAup predicts only interactions up to 25 nt (due to the
vast computational cost of its algorithm) and RIsearch?2
restricts the maximal length to 30 nt. Since RNAup and
IntaRNA provide similar prediction results [2], it seems
sufficient to consider only short interactions for SRNA
target prediction.

Figure 4 supports this hypothesis. If the maximal inter-
action size exceeds 50 nt, no significant changes of the
recovery rate are observed (60 provides the best results).
Shorter interactions result in a reduced number of recov-
ered interactions, which is in accordance with the lower
precision (PPV) results of RNAup reported in [2].

As expected, restricting the overall interaction length
has a strong impact on the prediction runtime. Thus, we
conclude that using a maximal interaction length thresh-
old of about 60 provides a good trade-off between target
prediction quality and runtime.

Interaction constraint - stability (energy) of interactions
Next, as done for seeds, we restricted the minimal stability
of the overall interaction, i.e. we set an upper bound on the
overall energy of the interaction (covering both hybridiza-
tion and accessibility terms). This puts a constraint on the
minimal (thermodynamic) stability assumed to be needed
for regulatory effects of SRNA-target interactions.

We observe (exemplarily for seed length 7) no effect
for energy thresholds above —10 kcal/mol, as shown in
Fig. 5. Below, the recovery rate drops significantly. Fur-
thermore, no impact on the prediction runtime is found.
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Thus, we conclude that restricting the interaction stabil-
ity (via energy thresholds) does not improve sSRNA target
screens.

This result is surprising on the first sight. There is, how-
ever, a possible explanation why constraining interaction
energy might have low or no effect. The components of
the overall interaction energy, namely hybridization and
accessibility terms, are negatively correlated with interac-
tion length. Thus, while expanding interactions typically
results in lower hybridization terms, it directly results in
increased accessibility penalties. The latter results from
the fact that the unpaired probability of a sequence is
always lower than or equal to the probability of any of its
subsequences. Thus, interactions of very different lengths
can show the same overall energy. Therefore, constraining
the overall energy shows no effect.

Interaction constraint - accessibility of interacting regions
Given the results and insights from our interaction stabil-
ity investigation, we subsequently evaluated the impact of
accessibility constraints. This reflects the assumption that
fast regulatory effects are due to interactions of accessible
regions. Interactions formed by the latter do not require
extensive intra-molecular restructuring of the involved
RNAs, which might enable even more stable interactions
in thermodynamic equilibrium but take much more time
to form. Thus, we restrict the minimal unpaired probabil-
ity of interacting sites.

The comparison of Fig. 6 with Fig. 3 (seedBP7) reveals
that the effects of restricting the interaction site’s acces-
sibility are similar to constraining the seed interaction
site only. That is, a maximal recovery is observed for a
minimal unpaired probability of about 0.01 and higher
thresholds result in decreasing prediction performance. In
contrast to the seed site results, a much higher runtime
reduction is observed, which results from the exclusion of
many interaction site combinations.
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Fig. 5 Interaction stability. (left) Relative number of recovered verified targets among the top-100 predictions of each sRNA for different thresholds
on the overall interaction energy. (right) Relative overall runtime to process each parameter set. The dotted gray lines mark respective values of

Interaction constraint - maximal loop/bulge size
RNA-RNA interaction prediction tools typically restrict
the size of interior and bulge loops within the interaction,
i.e. the number of unpaired bases between inter-molecular
base pairs, to reduce the computational complexity of
the prediction. This is done under the hypothesis that a
loop’s energy relates to the loop size, i.e. the larger loops
show higher energies due to increased structural flexibil-
ity. Thus, it is unlikely that very large loops are part of
the optimal interaction and thus excluded from the search
space.

In Fig. 7 the quadratic runtime effect of the maxi-
mal loop length becomes visible. Surprisingly, we do not
observe a significant effect of the loop length on the pre-
diction quality. Even for extremely small loop sizes of 2,
the recovery rate does not drop.

These findings imply, that most of the top ranked inter-
actions of the target screen are mainly composed of nearly
perfect stackings. Thus, disallowing large loops has no
effect. Nevertheless, these findings are not considering
other constraints beside that the seed has to show 7 base
pairs. When combined with other restrictive constraints,

we observe a drop in the recovery rate when the interior
loop length falls below 8 (data not shown).

General settings - ShaKer-enhanced accessibility prediction
IntaRNA can integrate data from structure probing pro-
tocols such as dms [21] or SHAPE [22], which can improve
the assumed accessibility profiles and eventually the pre-
dicted interactions [23]. Since this data is unavailable in
the general case, especially in the context of target predic-
tion on a genome wide level, we investigated the impact
of SHAPE data predicted by the recent machine learning
approach ShaKer [24]. It was shown that SHAPE data
predicted by ShaKer improves the accessibility profile
prediction of individual RNAs. Since the latter is a key fea-
ture of RNA-RNA interaction prediction, using ShaKer
should eventually improve sRNA target prediction. We
investigated three scenarios how SHAPE data predicted
by ShaKer is used: (a) for SRNA sequences only, (b) for
target sequences only, and (c) using predicted SHAPE data
for both sequence sets.

When using ShaKer with the original prediction model
that was trained on a small data set of 16 RNAs with
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Fig. 6 Interaction accessibility. (left) Relative number of recovered verified targets among the top-100 predictions of each sRNA for different
thresholds on the minimal unpaired probability (accessibility) of the interacting regions. (right) Relative overall runtime to process each parameter
set. The dotted gray lines mark respective values of IntaRNA with default parameters
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known SHAPE data and confirmed structures [24], we
observe (a) a reduced recovery when applied to sRNAs
only (4 verified sSRNA-target pairs less recovered), (b) an
improvement of +4 pairs when used on targets only, and
(c) no change when applied to both.

Recently, a larger SHAPE data set has been published
by A. Mustoe [25] covering 194 RNAs for which no
confirmed structure is available. We predicted putative
structures via RNAfold [26] using the SHAPE data and
trained a new ShaKer model for SHAPE prediction.
Using this model, we observe (a) one less recovered pair
when applied to sSRNAs only, (b) the same improvement
(+4) as for the old model when used on targets only, and
(c) one additional verified SRNA-target pair was recovered
when applied to both.

These results suggest that especially the accessibility
profiles of target sequences, which are genomic sub-
sequences around the start codons, can be improved
with in silico SHAPE data. Already, the ShaKer mod-
els show promising results even though both were
trained on tentative data sets; one containing only 16
sequences, the other without reliable structure informa-
tion. With better training data we expect even better
results.

General settings - energy parameter set

So far, all predictions were based on the energy parame-
ters introduced by the Turner lab in 2004 [27], since most
RNA structure or RNA-RNA interaction prediction tools
are using these parameters.

Here, we tested the performance of other energy param-
eter sets (that are supported and shipped with the Vienna
RNA package [28]). This covers beside (i) the Turner-
2004 parameters [27] (ii) the old Turner-1999 model
[29], (iii) the Andronescu-2007 model [30], and (iv)
Langdon-2018 [31]. While the latter two are in silico mod-
els based on parameter optimization for a large RNA
data set, both Turner lab models are also incorporating
experimental data.

Eventually, all models provided a better recovery than
the Turner-2004 model. In detail, we we observe an
increase in the number of recovered sRNA-target pairs
(ii) of +3 for Turner-1999, (iii) of +5 for Andronescu-
2007, and (iv) of +4 when using the Langdon-2018 energy
parameters.

These results show that— in accordance with expecta-
tion —target prediction results are sensitive to the used
energy parameter set. Surprisingly, both in silico models
(iii + iv) provide similar performance, i.e. the improved
RNA structure prediction accuracy of Langdon-2018 over
Andronescu-2007 does not translate to SRNA target pre-
diction.

Overall recommendations
Finally, we tested a final parameter combination that was
compiled based on the individual benchmarks, which pro-
vides (limited) insights concerning the interplay of the
different constraints tested. These results provide recom-
mendations for users on how to constrain the RNA-RNA
interaction prediction tool at hand for most efficient
sRNA target prediction. Furthermore, this is useful for
algorithm and software developers to further improve the
available programs.

Given our results, we recommend the following con-
straints:

e canonical seeds of 7 base pairs
no GU base pairs in seed
minimal unpaired probability of 0.001 of both seed
sites
maximal interaction length of 60
maximal interior/bulge loop size of 8
minimal unpaired probability of 0.001 of both
interaction sites

Figure 8 summarizes the results for increasing sets
of the listed constraints for two energy parameter
sets, namely Turner-2004 and Andronescu-2007. For the
Turner model, the overall constraint set provides 30%
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more verified targets within 20% of the runtime. Con-
straints on the seed only provide already a recovery
improvement of 26% in half the computation time. Further
constraints on the overall interaction mainly reduce run-
time with the exception of the minimal accessibility of the
interaction site, which finally improves the recovery rate
to its maximum.

We observe the same runtime behaviour for
Andronescu-2007 as for the Turner-2004 model but
the impact on the recovery is much less. While seed
constraints still provide improvements, interaction con-
straints do not increase the recovery rate. This shows
that (parts of) our recommendation are restricted to the
Turner model. It remains open whether the Andronescu-
2007 model provides less potential for improving SRNA
target prediction results or if our recommended val-
ues are not suited for this model and need a dedicated
investigation and optimization.

Comparison to alternative tools

To test whether the observations for IntaRNA trans-
late to other sRNA target prediction tools, we applied
TargetRNA2 [17] and RIsearch?2 version 2.1 [8], since
both tools support seed constraints. Other approaches
like RNAup or RNAplex with high prediction accuracy
[2] allow only for the restriction of interaction length, for
which we did not observe significant impact on predic-
tion quality (see above), such that they were omitted from
comparison.

For TargetRNA2, only a webserver is available, which
supports the restriction of seed and overall interaction
length. Since the webserver does not support direct tar-
get sequence upload, we selected the respective organisms
and set target sequence extraction to the values used
for our data set. Due to time-outs and thus no results
for many parameter setups tested within this study, only
limited results can be reported. RIsearch2 allows to

constrain the number of seed base pairs and whether
or not GU base pairs are allowed within the seed. The
overall interaction length cannot be confined, only the
maximal seed extension (per side). Since RIsearch2
implements a very simplified energy model, constraints
on the overall interaction energy cannot be well related to
IntaRNA results. Given these observations, comparison
was restricted to seed length and seed stability in terms of
prohibition of GU base pairs within seeds.

The results are provided in Fig. 9. The plot shows
the overall superiority of IntaRNA and validates that
prohibiting GU base pairs within seeds can significantly
improve prediction accuracy. The latter is in accordance
with the sensitivity analysis for TargetRNA (1) [19].
Since we see a high correlation of the seedNoGU recovery
results of IntaRNA and RIsearch2 with the values of
TargetRNA2, we assume that the latter also applies per
default a 'seed-no-GU’ constraint, which is neither docu-
mented within the respective literature or webserver nor
available as webserver option. In contrast to IntaRNA,
both competitors yield highest recoveries for seed lengths
of 9-10. Since both tools apply simplified energy models to
speedup predictions, these results suggest that such mod-
els benefit from stronger seed constraints to reduce false
positive predictions.

Conclusions

The identification of putative SRNA targets based on
RNA-RNA interaction prediction tools is often compli-
cated due to the false positives (non-targets). Thus, differ-
ent constraints have been proposed to improve the pre-
diction results. Most successful was the incorporation of
the interaction sites’ accessibility and the requirement for
stable seed subinteraction [2]. While available tools imple-
ment different (combinations of) constraints and default
thresholds, it remains unclear which constraints and val-
ues are most effective and which are less important.
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using a similar constraint for IntaRNA are shown by IntaRNA intLenMax20. The dotted gray line marks the recovery of IntaRNA with
default parameters

Thus, we focus on accessibility-based RNA-RNA inter-
action approaches with seed constraints like IntaRNA,
RIsearch2, or RIblast.

Here, we investigated the impact of various constraints
on seed, interaction and accessibility features to tackle
this problem. The benchmark is exemplarily done using
IntaRNA, which provides a flexible framework to test and
combine different constraints. Using a single tool enables
a comparability of the results and thus an abstraction from
the absolute IntaRNA-specific performance to general
trends induced by the respective constraints.

Thus, the benchmark is based on an sSRNA target screen
pipeline for two organisms. While this limits the general-
ity of the study, it allows for a thorough investigation of
the effects caused by the different parameter sets. Since
most interaction details from the literature are based on
single, arbitrary RNA-RNA interaction prediction tools, it
is currently hard to impossible to evaluate the correctness
of reported interaction details on a large scale. The pre-
diction quality is assessed in terms of recovery of verified
sRNA-target pairs from the literature rather than evalua-
tion on an inter-molecular base pair level following [6, 19,
20]. That way, a lower bound on the true positives within
the top-ranked predictions is measured.

In our study, we observed that seeds of length 7-8 pro-
vide the best results, which can be significantly improved
when disallowing GU base pairs. These results are in line
with but much simpler than the complicated seed-length-
dependent GU/GC-content handling of sTarPicker
[12]. Furthermore, our results suggest that the efforts
done in RIsearch?2 [8], to allow for GU base pairs within
seeds, might be not needed and thus even better runtime
and prediction performance might be possible. We con-
clude that disallowing GU base pairs in seeds provide a
powerful constraint on the seed stability that is much less
dependent on the seed length when compared to seed

energy constraints. Thus, no GU seed base pairs’ is more
general and its application is less likely to cause an over-
fitting of the used threshold value. Furthermore, we could
show that the accessibility of the seed site is also important
for the precision of the target prediction. This supports
the hypothesis that seed interactions indeed relate to an
initial stable subinteraction that subsequently grows into
the final overall interaction. Finally, we have shown that
low bounds on the maximal interaction length as well
as the size of inter-molecular loops still allow high qual-
ity predictions while providing strong runtime reductions.
The latter outcome is restricted to approaches without
early stop criteria as implemented e.g. in RIblast. Even-
tually, we could show that sSRNA target prediction can be
significantly improved just by changing the parameter set.
That is for IntaRNA we can recover 30% more verified
sRNA-target pairs within only 20% of the runtime with
appropriate parameters.

Methods

Formal preliminaries

We are focusing on accessibility-based RNA-RNA inter-
action prediction. To this end, an accessibility profile
for each RNA S has to be computed, which is typically
based on unpaired probabilities P*(i..j) [32, 33] for respec-
tive subsequences S; ;. These translate into accessibility
penalty terms ED = —RT log(P*) (with gas constant
R and temperature T') that encode how much energy is
needed to free the respective subsequence from intra-
molecular base pairing to enable interaction formation.

The stability of an RNA-RNA interaction I,L(/ ; is then eval-

uated based on the sum of its hybridization energy Ej, (I]l(‘;’ )
defined by its inter-molecular base pairs and two accessi-
bility penalties ED} j and ED,%“ ; for each RNA, respectively.
Both energy and unpaired probability computation are
based on the same nearest-neighbor energy model for
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non-crossing secondary structures using a given set of
energy parameters (e.g. Turner-2004 [27]). Within this
study, we consider only interactions I that contain a seed
subinteraction I;, which is here defined as a canonical
helix formed by a defined number of base pairs (named
the seed length). For further formal details on the energy
model, probability computation, and technical details of
the approaches we refer to [6, 34, 35].

Data set

Within this study, we use the benchmark data set and
pipeline that we introduced in [20], which enables sSRNA
target screens for both Echericha coli (GenBank acces-
sion number NC_000913) and Salmonella typhimurium
(NC_003197). The data set consists of homologous
sequences of 15 sRNAs expressed in both organisms.
As all these sSRNAs have been shown to regulate trans-
lation of their targets via RNA-RNA interaction near
the start codon [1, 15], we are mostly interested in
interactions for these regions. Thus, target sequences
are compiled by extracting the genomic region from
200 nt upstream up to 100 nt downstream of the start
codon of each protein-coding gene. The data set contains
4,319 and 4,552 targets for E.coli and S. typhimurium,
respectively. Furthermore, we extracted 149 experimen-
tally verified SRNA-target pairs from the literature (Addi-
tional file 1), which we want to recover within the
benchmark.

Benchmarking pipeline

To measure the prediction performance to compare dif-
ferent constraints and parameter sets, we follow the
pipeline used in [6, 19, 20]. That is, we run IntaRNA
for each sRNA-target combination and store the respec-
tive minimal free energy of the most stable interaction.
For each sRNA, we identify the 100 targets with the most
stable interaction (lowest energy) and accumulate how
many of the verified interactions are among these top-
100 predictions (detailed recovery information within the
Additional file 1). This number of recoveries provides a
lower bound on the number of true targets within the top-
100 predictions of all SRNAs. If a constraint or parameter
set reduces the recovery rate, this can either be based on
(i) an increase of false positive predictions, (ii) a decrease
of true positives (verified interactions) among the top
ranks or (iii) a combination of both, which can not be
distinguished.

Computational performance is measured via the over-
all runtime needed to run the benchmark once for all
sRNAs and organisms for a given parameter set. This
directly relates to the computational cost of in silico tar-
get screens. Runtimes exclude accessibility computation
(using precomputed unpaired probabilities) if not stated
differently.
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ShaKer-based precomputations

ShaKer trains a model on triplets of sequence, struc-
ture and SHAPE data. The sequence and structure form
a graph whose nodes are vectorized via a graph kernel
scheme [36]. Together with SHAPE reactivity values as
targets, a regression model is trained. For the prediction
multiple structures are sampled [28] and annotated by the
model. These annotations are weighted by the probabili-
ties of the structures to obtain the final reactivity values
for a sequence.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-019-3143-4.

Additional file 1: Supplementary material — table of verified sRNA-target
pairs and their recovery for tested parameter settings.

Acknowledgements
Thanks to Sebastian Will for fruitful discussions.

Authors’ contributions

MR designed and conducted the benchmark, which was evaluated by MR and
TM. RG compiled the benchmark data set and methods. SM investigated the
ShaKer SHAPE data effects. MR, TM, SM, RG and RB contributed to and
approved the manuscript.

Funding

Supported by the German Research Foundation (DFG) [BA2168/16-1,
BA2168/21-1 and BA2168/3-3] and under Germany's Excellence Strategy (CIBSS
- EXC-2189 - Project ID 390939984). The article processing charge was funded
by the DFG and the University of Freiburg in the funding program Open
Access Publishing. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript. Gefrdert
durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der
Exzellenzstrategie des Bundes und der Lander - EXC-2189 - Projektnummer
390939984.

Availability of data and materials

The datasets generated and/or analysed during the current study are available
in the github repository,
https://github.com/BackofenLab/IntaRNA-benchmark, initially published in
[20], and the Additional file 1.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Bioinformatics Group, Department of Computer Science, University of
Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany. 2Signalling
Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18,
79104 Freiburg, Germany.

Received: 3 June 2019 Accepted: 9 October 2019
Published online: 13 January 2020

References
1. Backofen R, Hess WR. Computational prediction of sSRNAs and their
targets in bacteria. RNA Biol. 2010;7(1):33-42.


https://doi.org/10.1186/s12859-019-3143-4
https://github.com/BackofenLab/IntaRNA-benchmark

Raden et al. BVIC Bioinformatics

20.

(2020) 21:15

Umu SU, Gardner PP. A comprehensive benchmark of RNA-RNA
interaction prediction tools for all domains of life. Bioinformatics.
2016;33(7):988-96. https://doi.org/10.1093/bicinformatics/btw728.
https://doi.org/10.4161/rna.7.1.10655.

Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D. An assessment
of bacterial small RNA target prediction programs. RNA Biol. 2015;12(5):
509-13. https://doi.org/10.1080/15476286.2015.1020269.

Lai D, Meyer IM. A comprehensive comparison of general RNA-RNA
interaction prediction methods. Nucleic Acids Res. 2015;44(7):61. https://
doi.org/10.1093/nar/gkv1477.

Muckstein U, Tafer H, Hackermdller J, Bernhart SH, Stadler PF, Hofacker
IL. Thermodynamics of RNA-RNA binding. Bioinformatics. 2006;22(10):
1177. https;//doi.org/10.1093/bioinformatics/btl024.

Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial
SRNA targets incorporating target site accessibility and seed regions.
Bioinformatics. 2008;24(24):2849-56. https://doi.org/10.1093/
bioinformatics/btn544.

Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and
customizable prediction of RNA-RNA interactions. Nucleic Acids Res.
2017;45(W1):435-9. https://doi.org/10.1093/nar/gkx279.

Alkan F, Wenzel A, Palasca O, Kerpedjiev P, Rudebeck AF, Stadler PF,
Hofacker IL, Gorodkin J. Risearch2: suffix array-based large-scale
prediction of RNA-RNA interactions and siRNA off-targets. Nucleic Acids
Res. 2017,45(8):60. https://doi.org/10.1093/nar/gkw1325.

Tafer H, Hofacker IL. RNAplex: a fast tool for RNA-RNA interaction search.
Bioinformatics. 2008;24(22):2657-63. https://doi.org/10.1093/
bioinformatics/btn193.

DiChiacchio L, Sloma MF, Mathews DH. AccessFold: predicting RNA-RNA
interactions with consideration for competing self-structure.
Bioinformatics. 2015;32(7):1033-9. https://doi.org/10.1093/
bioinformatics/btv682.

Fukunaga T, Hamada M. Riblast: an ultrafast RNA-RNA interaction
prediction system based on a seed-and-extension approach.
Bioinformatics. 2017;33(17):2666-74. https://doi.org/10.1093/
bioinformatics/btx287.

Ying X, CaoY, WuJ, LiuQ, Chal, LiW.sTarPicker: A method for efficient
prediction of bacterial sSRNA targets based on a two-step model for
hybridization. PLOS ONE. 2011;6(7):1-12. https://doi.org/10.1371/journal.
pone.0022705.

Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, Kleinkauf R,
Hess WR, Backofen R. CopraRNA and IntaRNA: predicting small RNA
targets, networks and interaction domains. Nucleic Acids Res.
2014;42(Web Server issue):119-23. https://doi.org/10.1093/nar/gku359.
Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA,
Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, Kundu K,
Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS,
Will'S, Wolff J, Wright PR, Backofen R. Freiburg RNA tools: a central online
resource for RNA-focused research and teaching. Nucleic Acids Res.
2018;46(W1):25-9. https://doi.org/10.1093/nar/gky329.

Wright PR, Georg J. Workflow for a computational analysis of an sSRNA
candidate in bacteria. Methods Mol Biol. 2018;1737:3-30. https://doi.org/
10.1007/978-1-4939-7634-8_1.

Tjaden B. TargetRNA: a tool for predicting targets of small RNA action in
bacteria. Nucleic Acids Res. 2008;36(suppl_2):109-13. https://doi.org/10.
1093/nar/gkn264.

Kery MB, Feldman M, Livny J, Tjaden B. TargetRNA2: identifying targets
of small regulatory RNAs in bacteria. Nucleic Acids Res. 2014;42(W1):
124-9. https://doi.org/10.1093/nar/gku317.

Marin RM, Vanicek J. Efficient use of accessibility in microRNA target
prediction. Nucleic Acids Res. 2010;39(1):19-29. https://doi.org/10.1093/
nar/gkq768.

Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman 'S,
Storz G. Target prediction for small, noncoding RNAs in bacteria. Nucleic
Acids Res. 2006;34(9):2791-802. https://doi.org/10.1093/nar/gkl356.
Gelhausen R, Will S, Hofacker IL, Backofen R, Raden M. Constraint
maximal inter-molecular helix lengths within RNA-RNA interaction
prediction improves bacterial SRNA target prediction. In: Proceedings of
the 12th International Joint Conference on Biomedical Engineering
Systems and Technologies - Volume 3: BIOINFORMATICS. Setubal,
Portugal: SciTePress; 2019. p. 131-40. https://doi.org/10.5220/
0007689701310140. INSTICC.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

35.

36.

Page 11 of 11

Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and
RNA-protein complexes. Nat Protoc. 2007;2(10):2608-23. https://doi.org/
10.1038/nprot.2007.380.

Mortimer SA, Weeks KM. A fast-acting reagent for accurate analysis of
RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem
Soc. 2007;129(14):4144-5. https://doi.org/10.1021/ja0704028.

Miladi M, Montaseri S, Backofen R, Raden M. Integration of accessibility
data from structure probing into RNA-RNA interaction prediction.
Bioinformatics. 2018;35(16):2862-4. https://doi.org/10.1093/
bioinformatics/bty1029.

Mautner S, Montaseri S, Miladi M, Raden M, Costa F, Backofen R. ShaKer:
RNA SHAPE prediction using graph kernel. Bioinformatics. 2019;35(14):
354-9. https://doi.org/10.1093/bioinformatics/btz395.

Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM,
Kubica N, Nutiu R, Baryza JL, Weeks KM. Pervasive regulatory functions of
mMRNA structure revealed by high-resolution SHAPE probing. Cell.
2018;173(1):181-19518. https://doi.org/10.1016/j.cell.2018.02.034.

Lorenz R, Luntzer D, Hofacker IL, Stadler PF, Wolfinger MT. SHAPE
directed RNA folding. Bioinformatics. 2016;32(1):145-7. https://doi.org/10.
1093/bioinformatics/btv523.

Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH.
Incorporating chemical modification constraints into a dynamic
programming algorithm for prediction of RNA secondary structure. Proc
Natl Acad Sci. 2004;101(19):7287-92. https://doi.org/10.1073/pnas.
0401799101.

Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algoritm Mol Biol. 2011;6:
26. https://doi.org/10.1186/1748-7188-6-26.

Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol. 1999;288(5):911-40. https://doi.org/10.
1006/jmbi.1999.2700.

Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Efficient
parameter estimation for RNA secondary structure prediction.
Bioinformatics. 2007,23(13):19-28. https://doi.org/10.1093/
bioinformatics/btm223.

Langdon WB, Petke J, Lorenz R. Evolving better RNAfold structure
prediction. In: Castelli M, Sekanina L, Zhang M, Cagnoni S,
Garcia-Sénchez P, editors. Genetic Programming. Cham: Springer; 2018.
p. 220-36.

McCaskill JS. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers. 1990;,29(6-7):
1105-19. https//doi.org/10.1002/bip.360290621.

Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities
in large sequences. Bioinformatics. 2006;22(5):614-15. https://doi.org/10.
1093/bioinformatics/btk014.

Raden M, Mohamed MM, Ali SM, Backofen R. Interactive
implementations of RNA structure and RNA-RNA interaction prediction
approaches for example-driven teaching. PLOS Comp Biol. 2018;14(8):
1006341. https://doi.org/10.1371/journal.pcbi.1006341.

Wright PR, Mann M, Backofen R. Structure and interaction prediction in
prokaryotic RNA biology. Microbiol Spectr. 2018;6(2):. https://doi.org/10.
1128/microbiolspec.RWR-0001-2017.

Costa F, Grave KD. Fast neighborhood subgraph pairwise distance kernel.
In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. Omnipress; 2010. p. 255-262.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1093/bioinformatics/btw728
https://doi.org/10.4161/rna.7.1.10655
https://doi.org/10.1080/15476286.2015.1020269
https://doi.org/10.1093/nar/gkv1477
https://doi.org/10.1093/nar/gkv1477
https://doi.org/10.1093/bioinformatics/btl024
https://doi.org/10.1093/bioinformatics/btn544
https://doi.org/10.1093/bioinformatics/btn544
https://doi.org/10.1093/nar/gkx279
https://doi.org/10.1093/nar/gkw1325
https://doi.org/10.1093/bioinformatics/btn193
https://doi.org/10.1093/bioinformatics/btn193
https://doi.org/10.1093/bioinformatics/btv682
https://doi.org/10.1093/bioinformatics/btv682
https://doi.org/10.1093/bioinformatics/btx287
https://doi.org/10.1093/bioinformatics/btx287
https://doi.org/10.1371/journal.pone.0022705
https://doi.org/10.1371/journal.pone.0022705
https://doi.org/10.1093/nar/gku359
https://doi.org/10.1093/nar/gky329
https://doi.org/10.1007/978-1-4939-7634-8_1
https://doi.org/10.1007/978-1-4939-7634-8_1
https://doi.org/10.1093/nar/gkn264
https://doi.org/10.1093/nar/gkn264
https://doi.org/10.1093/nar/gku317
https://doi.org/10.1093/nar/gkq768
https://doi.org/10.1093/nar/gkq768
https://doi.org/10.1093/nar/gkl356
https://doi.org/10.5220/0007689701310140
https://doi.org/10.5220/0007689701310140
https://doi.org/10.1038/nprot.2007.380
https://doi.org/10.1038/nprot.2007.380
https://doi.org/10.1021/ja0704028
https://doi.org/10.1093/bioinformatics/bty1029
https://doi.org/10.1093/bioinformatics/bty1029
https://doi.org/10.1093/bioinformatics/btz395
https://doi.org/10.1016/j.cell.2018.02.034
https://doi.org/10.1093/bioinformatics/btv523
https://doi.org/10.1093/bioinformatics/btv523
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1006/jmbi.1999.2700
https://doi.org/10.1006/jmbi.1999.2700
https://doi.org/10.1093/bioinformatics/btm223
https://doi.org/10.1093/bioinformatics/btm223
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1093/bioinformatics/btk014
https://doi.org/10.1093/bioinformatics/btk014
https://doi.org/10.1371/journal.pcbi.1006341
https://doi.org/10.1128/microbiolspec.RWR-0001-2017
https://doi.org/10.1128/microbiolspec.RWR-0001-2017

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results and discussion
	Seed constraint - length of the seed
	Seed constraint - avoiding weak GU base pairs in seeds
	Seed constraint - enforcing stable (low energy) seeds
	Seed constraint - accessibility of seed regions
	Interaction constraint - maximal interaction length
	Interaction constraint - stability (energy) of interactions
	Interaction constraint - accessibility of interacting regions
	Interaction constraint - maximal loop/bulge size
	General settings - ShaKer-enhanced accessibility prediction
	General settings - energy parameter set
	Overall recommendations
	Comparison to alternative tools

	Conclusions
	Methods
	Formal preliminaries
	Data set
	Benchmarking pipeline
	ShaKer-based precomputations

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3143-4.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

