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Lyme disease, also known as Lyme borreliosis, is the most
common tick-transmitted disease in the Northern Hemisphere.
The disease is caused by the bacterial spirochete Borrelia burg-
dorferi and other related Borrelia species. One of the many fas-
cinating features of this unique pathogen is an elaborate system
for antigenic variation, whereby the sequence of the surface-
bound lipoprotein VlsE is continually modified through seg-
mental gene conversion events. This perpetual changing of the
guard allows the pathogen to remain one step ahead of the
acquired immune response, enabling persistent infection.
Accordingly, the vls locus is the most evolutionarily diverse
genetic element in Lyme disease– causing borreliae. Small
stretches of information are transferred from a series of silent
cassettes in the vls locus to generate an expressed mosaic vlsE
gene version that contains genetic information from several
different silent cassettes, resulting in �1040 possible vlsE
sequences. Yet, despite its extreme evolutionary flexibility, the
locus has rigidly conserved structural features. These include a
telomeric location of the vlsE gene, an inverse orientation of vlsE
and the silent cassettes, the presence of nearly perfect inverted
repeats of �100 bp near the 5� end of vlsE, and an exceedingly
high concentration of G runs in vlsE and the silent cassettes. We
discuss the possible roles of these evolutionarily conserved fea-
tures, highlight recent findings from several studies that have
used next-generation DNA sequencing to unravel the switching
process, and review advances in the development of a mini-vls
system for genetic manipulation of the locus.

Antigenic variation is a common pathogenic ruse employed
by several bacterial, protozoan, and fungal pathogens (1–14).
This process involves changes in a prominent surface antigen
such that it is no longer recognized by the host acquired
immune response (Fig. 1). By the time the host has assembled
and produced antibodies to clear an infecting organism, new
variants have appeared, which fly under the radar in terms of
immune surveillance. By the time a new generation of antibody
molecules has been fashioned to clear the variant pathogens,

yet another collection of organisms with prominent but unrec-
ognizable surface antigens has appeared. This cat-and-mouse
game can often continue for the long haul, resulting in persis-
tent infection by pathogenic organisms, and provides an effi-
cient mechanism whereby they can avoid clearance by the host
immune system.

Antigenic variation is commonly found in evolutionarily
diverse obligate parasites as persistent infection imparts a dis-
tinct advantage for transmission of these organisms. A few
examples are Plasmodium falciparum (malaria), Trypanosoma
brucei (African sleeping sickness), Giardia lamblia (giardiasis
or beaver fever), Neisseria gonorrheae (gonorrhea), Treponema
pallidum (syphilis), Pneumocystis carinii (diffuse pneumonia),
relapsing fever Borrelia (relapsing fever), and Lyme Borrelia
(Lyme disease or Lyme borreliosis). Variable surface antigens
are generated by recombination events spawning altered pro-
teins or by changes in the allele that is expressed or both. This
review will focus on the antigenic variation locus (vls) of the
Lyme disease spirochete Borrelia burgdorferi and related Lyme
borreliae. In particular, our primary emphases will be on new
information and insights since the appearance of an excellent
review on the subject by Steven Norris in 2014 (8). An increase
in Borrelia genomes sequenced and recent analysis of recombi-
national switching at the vlsE expression locus by next-genera-
tion sequencing have taken us a step forward in understanding
this complex process in Lyme Borrelia species.

Lyme disease, or Lyme borreliosis (15, 16), is a tick-transmit-
ted infectious disease caused by several species of spirochetes or
spiral-shaped bacteria (although we now know that borreliae
display a flat-wave morphology rather than a corkscrew shape
(17)). The disease reservoir is usually a small vertebrate, com-
monly the white-footed mouse. When acquiring a blood meal,
larval or nymphal ticks can acquire the infection, which can
then be transmitted in a subsequent blood meal. Inoculation of
humans with B. burgdorferi through a tick bite first results in a
localized infection in the skin, in the area surrounding the bite,
often resulting in an erythema migrans (expanding bullseye)
rash. Subsequently, the spirochetes invade the vasculature and
traffic throughout the body to finally extravasate (escape from
the vasculature) into a wide variety of potential locations. In
persistent infections, they can promote a constellation of symp-
toms and pathologies by inducing inflammatory processes (18);
these include Lyme arthritis, carditis, central and peripheral
neurological manifestations, and acrodermatitis. The disease
state depends upon persistence of the spirochetes, which
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requires antigenic variation. Lyme disease is usually effectively
treated by several weeks of treatment with doxycycline or other
antibiotics, although a small percentage of those infected may
develop post-treatment Lyme disease syndrome (19).

B. burgdorferi, the first characterized Lyme disease agent,
was discovered in 1982 (20). Since that time, about 20 related
Lyme Borrelia species have been characterized, with B. burg-
dorferi and Borrelia mayonii being the predominant North
American species and Borrelia garinii, Borrelia afzelii, B. burg-
dorferi, and Borrelia spielmanii being common European spe-
cies. Apart from their importance as pathogens, Lyme borreliae
are truly fascinating in their unusual properties. One of the
most interesting is their segmented genomes (21–24). Not only
are the genomes segmented (many pieces as opposed to a single
chromosome), but most of the replicons, including the chro-
mosome, are linear, a very unusual feature for bacterial
genomes. The prototype strain B. burgdorferi B31 carries a lin-
ear chromosome, 10 circular and 12 linear plasmids (see Ref. 25
for a review), many of which carry essential information for the
enzootic cycle (natural transmission between wild animals and
vector) (26). Moreover, the linear replicons are terminated by
covalently closed hairpins (27–30), an exceedingly infrequent
structure in any type of DNA. These structures require a spe-
cialized enzyme, a telomere resolvase, for replication of the
DNA and maintenance of the hairpin telomeres (25, 31–33).
B. burgdorferi is also unusual in its lack of a role for iron (34), a
unique but very useful feature for a pathogen that is an obligate
parasite that must survive in mammalian hosts where iron is
limiting. B. burgdorferi has lost iron-requiring proteins and
uses manganese instead of iron as a component of the few met-
alloproteins that it encodes. Finally, Borrelia species encode an
efficient antigenic variation system that is essential for persis-
tence and has a number of distinctive features described below.

The vls locus

The vls locus is akin to a perpetual motion machine for anti-
genic variation in Lyme Borrelia species. It was discovered by
the pioneering work of the Norris laboratory in the B. burgdor-
feri type strain B31 (8, 35). The name vls (VMP-like sequence)

originates from the sequence relatedness between the vls locus
in B. burgdorferi and the variable major protein paralogues in
relapsing fever (a tick– or body louse–transmitted disease char-
acterized by recurring febrile episodes) spirochetes (36). The vls
locus in B31 is carried on linear plasmid 28-1 (lp28-1). vlsE is
the expression locus (35), which encodes the outer surface–
localized VlsE lipoprotein (Fig. 2A). In addition to playing a role
in antigenic variation, the VlsE protein may also function as a
vascular adhesin, which facilitates interaction of the spirochete
with the vascular endothelium (37). In strain B31, the vlsE gene
is localized near a hairpin telomere with the 15 silent cassettes
located adjacent to and upstream of vlsE, but in the opposite
orientation (35). A similar arrangement of vls components has
been found in a variety of other Borrelia strains and species (8).
The reasons for the conserved location of vlsE (�100 bp or less
from the hairpin telomere on the linear plasmid where the vls
locus resides) and its orientation (always opposite to the silent
cassettes) remain unknown at this time.

An intact vlsE gene is absent from most Borrelia genomes
sequenced using shotgun cloning in the sequencing proto-
col. Cloning, PCR amplification, and genetic manipulation of
the region have been fraught with difficulties, making anal-
ysis of the vlsE locus difficult (see “A mini-vls system”). In
addition, analysis of the recombinational switching process
has been difficult and time-consuming because switching
does not occur in culture and requires mouse infections to
study (8). Factor(s) that activate the recombinational switch-
ing process in the mouse remain elusive and an important
unanswered question.

In the absence of lp28-1, which carries the vlsE locus in B31,
low infectivity was noted (38, 39). Targeted deletion of the vls
locus or expression of an unswitchable vlsE gene resulted in
spirochetes that were competent for infection but were cleared
by 3 weeks post-infection (40 –43). The ability to vary informa-
tion in vlsE has also been recently shown to be required for
reinfection and is advantageous for the enzootic cycle of
B. burgdorferi (44, 45).

A number of interesting features characterize the vls locus.

Figure 1. Cartoon of antigenic variation. Some pathogens will thwart their recognition by the host immune system by continually changing a prominent
surface antigen through changes in allele expression or gene conversion events to modify the expressed allele. In the schematic, the changing surface antigen
from the surface of a pathogen is depicted by the red and blue ovals.
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Segmental gene conversion underlies the antigenic variation
process

The diversity-generating power of recombinational switching
at vlsE (Fig. 2C) results from the segmental gene conversion events
that promote diversity. In this article we define a switch as an
inferred recombination tract that is generated by segmental gene
conversionthatcontainsoneormoreSNPs.Switching(thetransferof
genetic information) is unidirectional from the silent cassettes to the
vlsEgene.AsfirstdescribedbyZhangetal. (35), thevlsEgene instrain
B31 is a mosaic of pieces derived from the 15 silent cassettes. The
random mixing of genetic information from the silent cassettes into
the expression locus gives rise to a theoretical possibility exceeding
1040 distinct vlsE sequence variants (46). In addition, vlsE variability
can also occur through nontemplated sequence changes, as will be
discussed below. The three-dimensional structure of the VlsE protein
has been determined (47), revealing that the amino acid changes
resulting from switching at vlsE are found in surface-exposed regions
of the protein that would be accessible to antibody molecules.

Nearly perfect inverted repeats in the vlsE promoter region
play an unknown role

B. burgdorferi strain B31 has a long inverted repeat (IR)2 (Fig.
2, B and D) of 100 bp, just upstream of vlsE (48). This was not

observed in the original sequencing (35) of the locus, due to
instability in Escherichia coli. The IR was sequenced using DNA
cycle sequencing at high temperature. The IR overlaps the �35
box of the promoter region (Fig. S1). Recently, more IRs have
been uncovered by targeted sequencing of several vlsE pro-
moter regions using cycle sequencing, which does not require
cloning in E. coli and by the use of next-generation sequencing
technology for the second wave of sequencing of Borrelia
genomes (see Ref. 49 and Table S1). At this time, the sequence
of a total of nine IRs has been documented, including several
new sequences reported here (Fig. S1). They comprise five
unique IR sequences ranging in size from 93 to 122 bp and have
thus far been found in strains from three Lyme Borrelia species:
B. burgdorferi, B. garinii, and B. mayonii. The five unique
inverted repeats display an average pairwise identity of 49%
with a range of 40 –72% compared with a pairwise identity of
44% for randomly scrambled sequences of the same base com-
position (49). The five distinct IRs therefore show little related-
ness at the sequence level. They are, however, all found in the
vlsE promoter region. Under conditions that generate negative
supercoiling (transcription or replication), these IRs can be
extruded as cruciform structures (50), where the inverted
repeat is unwound and the bases in each repeat on a given
strand hydrogen-bond with each other because of their com-
plementarity (Fig. 2D). A role for these distinct IRs with highly2 The abbreviations used are: IR, inverted repeat; DR, direct repeat.

Figure 2. Schematic of the vls antigenic variation locus of B. burgdorferi strain B31. A, the vls expression locus (vlsE) with its promoter (P) is located 82 bp
from the right covalently closed hairpin end of the linear plasmid lp28-1. To the left of the promoter and intergenic region (gray) are 15 silent cassettes carrying
information corresponding to the variable region of vlsE and situated in the opposite orientation. B, the vlsE region is shown in greater detail, with the constant
regions (CR) shown in yellow and the variable region, which corresponds to the information carried in the vls cassettes, shown in blue. The variable region is
flanked by 17-bp DRs. To the left of vlsE is its promoter, with the �10 and �35 sequences shown as green bars. Also shown by the bidirectional arrow is a 100-bp
perfect IR that partially overlaps the promoter. C, an enlargement of the vlsE gene shows the product of multiple recombinational switching events that result
in the copying of genetic information from the silent cassettes into the expression locus, producing a mosaic vlsE carrying information from a number of the
silent cassettes. D, an inverted repeat found in the promoter region of the vlsE gene is shown in its normal linear configuration and as an extruded cruciform
promoted by negative supercoiling or DNA unwinding from replication or transcription. Modified from Ref. 93. This research was originally published in
Molecular Microbiology. Castellanos, M., Verhey, T. B., and Chaconas, G. A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice:
investigation of the role of plasmid topology and the long inverted repeat. Mol. Microbiol. 2018; 109:710 –721. © John Wiley & Sons, Inc.
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variable sequences but which are capable of forming similar
structures has not been conclusively demonstrated. Their con-
served location in vlsE promoters and near the start of the vlsE
gene positions them to play a possible role in either vlsE tran-
scription or recombinational switching, or both. Studies on vlsE
transcription when B. burgdorferi is grown in culture have
shown that removal of half of the inverted repeat, precluding
cruciform formation, has no effect on the level of transcription
in culture (51); however, transcriptional patterns change in an
animal, and the results from spirochetes grown in culture are
not necessarily reflective of mouse infections. Finally, a vexing
evolutionary question is how the inverted repeats are gener-
ated, given that they are found in different strains and are struc-
turally related but have little sequence homology. All would
appear to be capable of cruciform formation driven by negative
supercoiling. But their lack of sequence homology would seem
to indicate a mutational rate for the IRs that far surpasses any
other region in the vls locus, yet this occurs through some mys-
terious process within the confines of maintaining nearly per-
fect inverted repeats.

vlsE and the silent cassettes are flanked by 17-bp direct
repeats in strain B31

In addition to the IRs, direct repeats (DRs) may also be pres-
ent. The original sequencing of the vls locus in strain B31 estab-
lished the existence of well-conserved 17-bp direct repeats
flanking the cassettes, and the variable region of vlsE (35). The
direct repeats in vlsE (Fig. 1, B and C) as well as most of the
repeats present between the cassettes are identical; however,
the repeats at the junctions of cassettes 6 –7, 8 –9, 14 –15, and
15–16 vary by one mismatch. The least identical repeat is
between cassettes 9 and 10, with five differences found along
the sequence. As discussed below, the B31 direct repeats con-
tain G-runs that were shown to form intermolecular G-quad-
ruplex structures in vitro (52). Such structures might possibly
play a role in the gene conversion events at vlsE. Other B. burg-
dorferi strains like PAbe, PBoe, PBre, PKa2, and PRef1 have
direct repeats closely related to those in B31. Different Lyme
Borrelia species like B. garinii IP90 and B. afzelii ACAI also
have the cassettes flanked by 17-bp direct repeats (53). How-
ever, these are less conserved than B31 repeats. Moreover, it has
been reported that other B. burgdorferi strains like JD1 (49) do
not have these flanking direct repeats at all.

The vls locus is peppered with G-runs on the coding strand

The vls locus is a relatively G-C–rich island (48% G-C) in an
A-T–rich genome (29.75% G-C). In addition to the very high
G-C content of the vls locus, there is a much higher than
expected frequency of G-runs. Previous analysis has noted �20
runs/1,000 bp of G3–5 (3–5 consecutive guanine bases) on the
vls coding strand in contrast to low numbers on the noncoding
strand or on either strand of non-vls DNA on lp28-1 in B. burg-
dorferi B31, N40, and JD1 (52). This property has also been
observed in a dozen different B. burgdorferi strains.3 In Fig. 3
(A–C), we now report a similar analysis for three different Lyme
Borrelia species, Borrelia garinii Far04, Borrelia spielmanii

A14S, and Borrelia mayonii MN14-1529. They also do not dis-
play many G-runs on either the coding or noncoding strands of
non-vls DNA on the plasmids that carry the vls locus. In con-
trast, high numbers of G-runs are observed on the coding
strand of the vls cassettes, but not on the noncoding strand.
This same preference for G-runs on the coding but not noncod-
ing strand of the adjacent expression locus vlsE is also present.

The significance of the large number of G-runs on the coding
strand of the vls cassettes and in vlsE in the A-T–rich Borrelia
genomes is underscored by the number of G-runs that are
found in vlsE when it is codon-optimized using the most com-
monly used B. burgdorferi codons (Fig. 3, A–C). Not a single
G-run was observed in the codon-optimized vlsE genes from
B. garinii Far04 or B. mayonii MN14-1539, and only one was
found in B. spielmanii A14S vlsE. In contrast, �40 G-runs were
found in the native vlsE genes, despite the dramatic disfavor of
the resulting codons. The maintenance of the G-C content of
the vls locus in general and the maintenance of the G-runs,
which clearly contravene codon bias in borreliae, is perplexing,
especially in a genomic region that undergoes exceedingly high
mutagenic drift. This strongly argues for an essential function
of the high G-C content and the G-runs based upon the pres-
ervation of these features against the strong mutagenic and
translational tides.

A possible role for the G-runs is that they may be involved in
the formation of G-quadruplex DNA (G4 or 4-stranded DNA
stabilized by Hoogsteen hydrogen bonding of the bases) (54 –
58). The ability of the 17-bp DRs in B31, which carry a stretch of
five G residues, to form G4 DNA in vitro has been reported (52).
Although these regions can certainly form intermolecular
G-quadruplex in vitro, whether such structures form in vivo
and whether they influence recombinational switching or other
functions is not currently known. Although G4 DNA is an
important feature in recombinational switching at Neisseria
pilE (5), that situation involves the formation of a specific intra-
molecular G-quadruplex that serves as a site for DNA nicking.
The G4 structure is believed to be processed by the RecQ heli-
case (59), which is absent from B. burgdorferi. Nor does B. burg-
dorferi encode a DinG helicase, which resolves G4 structures in
Mycobacterium tuberculosis (60). Quadruplex-resolving activ-
ity has not been characterized in other Borrelia helicases; how-
ever, formation of G4 DNA in Borrelia would necessitate its
unwinding for DNA replication (61).

Whether there is formation of intramolecular or intermolec-
ular G-quadruplex (54 –57) in vivo is not known. G-runs them-
selves have not been reported to display any unusual biological
properties. However, G4 DNA is a known potent inhibitor of
DNA replication and may function thus with specificity for the
leading or lagging strand, depending upon other factors (62,
63). The G-runs in vlsE and the silent cassettes are numerous,
opening the possibility for promiscuous G4 formation between
DNA at a wide variety of locations. This might act as a molec-
ular Velcro, facilitating interaction and synapsis of DNA from
distant locations. Alternatively, the nonspecific formation of
G4 DNA at multiple sites may provide multiple sites for stalling
of DNA replication. Paused replication sites are known to be
hotspots of recombinational activity (64, 65). Pause sites might
set the stage for one of a variety of replication restart activities3 G. Chaconas, M. Castellanos, and T. B. Verhey, unpublished results.
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that might provide a target for strand exchange by acting as a
site for DNA cleavage or by the binding of recombination
proteins.

The vls locus is characterized by framework heterogeneity and
hypermutability

Lyme Borrelia species generally show a high degree of
sequence conservation. As an example, 25 RecA proteins (one
of the most conserved proteins in most bacterial species) from
nine Borrelia species show 95% sequence identity (Fig. 3D). In
contrast, the most highly variable non-VlsE protein, OspC (66),
displays only about 76% sequence identity. Yet a comparison of
VlsE in B. burgdorferi B31 versus B. burgdorferi 297 exhibited
only 46% identity, and a similar comparison of B31 against three
other Lyme species showed sequence identity levels of 35– 49%
(8). Norris has referred to this as “framework heterogeneity” (8)
because one can infer from the data a high degree of variability
outside the variable regions of VlsE and, therefore, in frame-
work regions of the gene and protein. With more complete or
nearly complete VlsE sequences now available in sequence

databases, we present here an analysis of the degree of conser-
vation of VlsE in the same 15 Borrelia strains where OspC was
compared (Fig. 3D). Moreover, the VlsE N-terminal constant
and variable regions were analyzed separately. The degree of
divergence of each of these regions was far greater than
the most variable B. burgdorferi protein OspC, with protein
sequence identity values of 58 and 54% in the constant and
variable regions, respectively. It is very intriguing that the VlsE
constant region, which comprises the structural underpinning
of VlsE (47) and most of which is not antibody-exposed, shows
such a high degree of instability. It is not subject to immune
selection and would not be expected to display such dramatic
variability. Whatever mutagenic forces are involved in shaping
the vls locus apparently act upon the entire locus and not just
the region of the protein that is surface-accessible and reach-
able by antibody molecules.

It is tempting to speculate that the multitude of G-runs found
throughout the locus that are conserved despite their lack of
correspondence with optimal codon usage may play a role in

Figure 3. Distribution of G3�-runs on the linear plasmids carrying the vls loci in Borrelia garinii Far04, Borrelia spielmanii A14S, and Borrelia mayonii
MN14-1539 and levels of amino acid sequence identity in RecA, OspC, VlsE constant and VlsE variable regions in Lyme borreliae. A–C, G-runs of 3
nucleotides or more were counted in lp28 –9 (CP001316.1), lp28 – 8 (CP001465.1) and lp28 –10 (NZ_CP015805.1) in the three above species, respectively. The
distribution of G-runs on both strands of non-vls DNA, in the vls silent cassettes and in the vlsE gene are plotted. The number of G-runs in a codon-optimized
vlsE gene generated by reverse translation of the amino acid sequence (https://www.bioinformatics.org/sms2/rev_trans.html) using B. burgdorferi B31 codons
(https://www.kazusa.or.jp/codon, species ID: 224326) is also shown. D, Sequence alignments were performed for the 25 available full length RecA sequences
that were recovered in a BLAST search (see Table S1 for accession numbers) using DNASTAR MegAlign Pro. The percent identity was determined as the mean
of the complete set of pairwise alignments and is shown � the standard deviation. For OspC and the VlsE variable and N-terminal constant regions the same
analysis was performed using sequences from a set of 15 Borrelia strains where both OspC and full-length or near full-length VlsE sequences were available in
each strain (see Table S1 for accession numbers). (Please note that the JBC is not responsible for the long term archiving and maintenance of this site or any
other third pary hosted site.)
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directing hypermutability. Neither G-runs themselves, nor
G-quadruplex DNA, nor stalling of replication forks from
G-quadruplex structures has been reported to be associated
with hypermutability. Nonetheless, G-runs pepper the locus
and provide a series of flags that identify vls from the remainder
of the A-T–rich genome and could provide a target for factors
involved in hypermutation. Promiscuous quadruplex forma-
tion involving G-runs throughout the locus might result in
DNA breaks and general recombination between similar but
nonidentical silent cassettes and, in general, destabilize the
entire locus at the nucleotide level.

Switching at vlsE is unidirectional

The unidirectionality of the gene conversion events that
underpin antigenic variation remains a mystery (35). Why is
genetic information always transferred only from the silent cas-
settes to vlsE? There are several structural features of the vls
locus that might be involved in imparting such a polarity to the
direction of information transfer, albeit by unknown mecha-
nisms. One is the IRs, which vary in sequence in different
strains but are structurally conserved and always located in the
vlsE promoter region. Under conditions of negative supercoil-
ing, the �100-bp regions can be extruded as a cruciform and
provide a flag for recognition of proteins involved in the reac-
tion and function as a distinct marker for vlsE that is not found
in the silent cassettes. A number of replication, recombination,
and repair proteins are known to specifically recognize cruci-
form structures, and cruciforms can be sites for the introduc-
tion of single- or double-stranded breaks (67, 68).

Alternatively, transcription of vlsE might provide a distin-
guishing feature for the expressed gene from the silent cassettes
that might be involved in conferring directionality. Transcrip-
tion results in DNA unwinding, which could facilitate strand
invasion into the expression locus or cruciform extrusion of the
IR. Moreover, the IR, when extruded as a cruciform, would
reduce the level of DNA supercoiling in the promoter region,
which can influence the level of transcription at B. burgdorferi
promoters (69 –71).

Finally, the reverse orientation of vlsE versus the silent cas-
settes results in a reversal of the location of the coding informa-
tion from the leading strand template for the silent cassettes to
the lagging strand template for the vlsE gene, resulting in Oka-
zaki fragments originating from opposite strands and a prefer-
ence for serving as a DNA donor versus recipient. Replication
origins in B. burgdorferi are located near the center of the linear
replicons with replication proceeding bidirectionally toward
each hairpin telomere (72–74). An alternative explanation for
vlsE and the silent cassettes having opposite orientations is sim-
ply that this arrangement results in entropically favored synap-
sis of the silent cassettes and vlsE.

There is a paucity of identified protein factors

Another enigmatic feature of recombinational switching at
vlsE is the protein complement required to promote the reac-
tion, which remains largely obscure. Perhaps most surprising is
the lack of a requirement for the RecA protein (75, 76) and
other proteins involved in homologous recombination, which
appear to be required for gene conversion in other character-

ized antigenic variation systems (1, 5, 10, 77). A comparison of
the protein factors required for antigenic variation of PilE in
N. gonorrheae (3) and B. burgdorferi VlsE (75, 76, 78) is shown
in Table 1. Of the 11 genes known to play a role in switching at
pilE, only three are common to both organisms: ruvA and ruvB,
which encode the subunits of the RuvAB branch migrase are
required in both cases, and the recJ gene encoding a 5� to 3�
single strand–specific exonuclease is partially required in both
organisms. mutL, a mismatch repair protein that is not required
in Neisseria appears to be important in B. burgdorferi.3 The
sparsity of identified proteins that promote switching at vlsE
leaves a large gap in our understanding of this recombination
process at the molecular level, especially the dispensability of
RecA.

How a homology-driven process occurs in the absence of the
RecA protein remains a puzzle. A possible solution to this issue
may exist in the telomere resolvase, ResT (32, 33). This protein
is required for the resolution of replicated telomeres (also
referred to as dimer junctions) to generate the covalently closed
hairpin telomeres on the linear replicons in Borrelia. In addi-
tion to its telomere resolution activity, ResT has been recently
reported to have DNA single-strand annealing and strand
exchange activity and ATP-dependent DNA unwinding activ-
ity (79 –81). It has also been implicated in DNA replication
activities other than telomere resolution (82). It is tempting to
consider ResT as a possible player in switching at vlsE for the
following reasons: it is a participant in DNA replication in gen-
eral in B. burgdorferi, it has the types of activities involved in
recombination events, its site of action (the hairpin telomeres)
is less than 100 bp from vlsE, and it promotes the formation of
transient double-strand DNA breaks, which might promote
recombination at vlsE. Double-strand breaks have been shown
to promote gene conversion events in T. brucei (83). Because of
its essential nature (82, 84), a mutagenic approach to study a
possible role of ResT in switching at vlsE is fraught with
complexity.

Table 1
Recombination/replication/repair genes required for recombinational
switching of pilE (3, 97) and vlsE (T.B Verhey, M. Castellanos, and G. Cha-
conas, unpublished results) (75, 78)
Genes highlighted in blue are required or partially required for pilE but not vlsE
(absent indicates that the gene is not present in B. burgdorferi). Those highlighted in
pink are common to both systems, and mutL, highlighted in yellow is required for
vlsE but not pilE.
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It is also worthy of note that a link between switching at vlsE
and the DNA replication process is certainly a feasible possibil-
ity, although no direct evidence in support of this exists at pres-
ent. Related to this idea is the point that the genetic approach to
identifying factors involved in switching at vlsE does suffer
from the inability to identify essential proteins, such as those
involved in DNA replication. Therefore, factors essential for
viability, such as DNA polymerases, and other replication pro-
teins may have thus far escaped identification. Related to the
replication issue is that of plasmid copy number for lp28-1,
which has not been directly determined. With a copy number
greater than one, intermolecular rather than intramolecular
recombination would be a possibility.

New insights, unanswered questions, and speculations

The last 2 years have seen some important technical ad-
vances in the study of the vls locus, which have resulted in an
increased understanding of the antigenic variation process.
These include the development of a next-generation sequenc-
ing (NGS) approach to analyze recombinational switching at
vlsE and a fully automated sequencing pipeline to analyze
sequencing data. They also include the development of a mini-
vls system, allowing, for the first time, genetic manipulation of
the component parts of the vls locus.

NGS analysis of recombinational switching

An impediment to analyzing recombinational switching at
the vlsE locus has been the very high level of sequence conser-
vation between switched vls variants and the very short length
of the sequence reads generated by most NGS methods. Accu-
rate contig assembly of the short sequence reads was therefore
an impossible task. To overcome this obstacle, PacBio long read
sequencing technology was used to sequence 776-bp amplicons
of switched vlsE variants (46, 85). The high error frequency
typical of PacBio sequencing was greatly reduced using a circu-
lar-consensus approach and filtering for base calls of high accu-
racy. Filtering resulted in a loss of a substantial portion of the
sequencing data, but the high-stringency sequence remaining
contained less than one error per 10 vlsE amplicons, a level of
accuracy sufficient for a variety of analyses.

Software developments to analyze NGS switching data

To analyze the large number of switch events sequenced
(45,000) with nucleotide sensitivity and to answer the unique
questions associated with the recovered segmental gene con-
version events, a unique fully automated sequencing pipeline
was developed (46, 85). VAST (variable antigen sequence
tracer) is a command-line tool for custom analysis of full-length
vlsE sequences. VAST runs on a Linux platform and acts as a
database manager for large libraries of sample-tagged full-
length vlsE sequences. It has also been designed to consistently
align ambiguous polymorphisms found in vlsE and can perform
a constellation of analyses on directed groupings and data sub-
sets. A particular strength is that VAST was designed to opti-
mize the assignment of switched bases in vlsE genes to the silent
cassettes from which they were derived. With multiple redun-
dancies between silent cassettes and multiple gene conversion
events occurring in vlsE, this is not a trivial undertaking. To be

properly executed, this requires an automated and systematic
analysis that is free from bias and able to analyze large data sets
at nucleotide resolution, something that a manual analysis (86)
cannot do.

Analysis of the switching process using long read sequencing
and VAST software has revealed a variety of important new
information (46, 49, 85). Analyses were performed using
B. burgdorferi B31 to infect both WT and SCID (severe com-
bined immunodeficient) mice. The SCID mice allow analysis of
recombination events in the absence of immune selection,
which perturbs the survival of older switch variants. The system
was validated by a general agreement of findings with those
reported earlier using a classical sequencing approach, a
smaller data set, and manual data analysis. Those findings,
including cassette usage and recombination tract length, are
not discussed here, and for details, see Refs. 85 and 86.

Although switching at the vlsE locus of strain B31 has been
known to exist for 2 decades, an in-depth analysis of this phe-
nomenon in other strains has not been undertaken. A recent
NGS/VAST analysis of switching at vlsE in B. burgdorferi strain
JD1 was also undertaken (49). Despite differences in genetic
background, a less structured vls locus, a completely different
IR, and the lack of DRs, the properties of switching in this strain
were found to be quite similar to those observed for B31.

New insights from the NGS sequencing of switching in strain
B31 coupled with analysis by VAST are described in the sec-
tions below.

A mutational heat map and spirochete dissemination as a
one-way street

A heat map showing the frequency of mutation at each posi-
tion on the three-dimensional structure was derived, providing
quantitative data on the most highly variable positions (Fig. 4A
and Video S1). These positions (changed up to 74% of the time)
are those on the surface of the molecule (46), farthest from the
N terminus, which is lipidated and tethered to the outer mem-
brane. In contrast, the N-terminal region that is juxtaposed to
the membrane shows little or no variability. These results are in
agreement with previous analyses (47, 86) but provide a much
more detailed data set from the large number of switch events
analyzed by NGS.

Interestingly, of the thousands of vlsE switch variants ana-
lyzed, 99.6% were uniquely found in each tissue in a given SCID
mouse. Therefore, spirochetes trafficking between tissues are
extremely rare, and vascular dissemination from the site of the
tick bite to different tissues appears to be overwhelmingly uni-
directional (46). The NGS data set has allowed a clear answer to
this issue, which was not previously possible to investigate.

Dimerization of VlsE is important for function

An analysis of residues undergoing purifying versus diversi-
fying selection was performed by comparing the frequency of
mutations at each position in VlsE in WT versus SCID (no
immune selection) mice (46, 49). Purifying selection results in
maintenance or enrichment of amino acids at given positions,
whereas diversifying selection results in diversification of the
amino acids at given positions. The residues undergoing diver-
sifying selection were located primarily in the surface loops,
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where changes would facilitate an escape from immune surveil-
lance (Fig. 4B and Video S2). Conversely, amino acids undergo-
ing purifying selection were localized internally or at the dimer
interface, as might be expected for conserved structural resi-
dues. The presence of several positions undergoing purifying
selection at the dimer interface strongly argues that the func-
tional unit of VlsE is at least a dimer and not a monomer, a new
piece of information not available from other analyses.

Determination of the rate of recombinational switching

It has not been previously possible to determine a rate of
recombinational switching at vlsE in B. burgdorferi. Using the
NGS/VAST tools, that rate (Fig. 5A) has been reported to be 0.7
switches per week per vlsE sequence (85). Assuming a copy
number of one for lp28-1 (almost certainly an underestimate
(69, 87)) and a doubling time of 8 h (likely also an underesti-
mate), this translates to a switching rate of about 3.3 � 10�2 per
spirochete per generation. At this rate, an infection with only 30
spirochetes would generate one new variant every 8 h at the
onset of infection, with higher numbers resulting from a dou-
bling in the number of variants generated every 8 h with each
new round of DNA replication.

A role for the DRs and for G-runs in switching?

A possible role for the DRs was hypothesized when the B31
vlsE was first discovered (35). They were later thought to be of
questionable importance based upon their nonexistence in
some strains and the fact that they are not well-conserved

among many strains even when present (53). However, NGS
sequencing data suggest that they may in fact have a stimulatory
role in gene conversion. Fig. 5B shows the frequency of silent
cassette usage plotted against the number of fully conserved
DRs flanking the cassette. A clear correlation was found
between the number of intact cassettes and the usage of a cas-
sette as a donor for gene conversion in B31. In contrast, an NGS
analysis of switching at vlsE of B. burgdorferi strain JD1, a strain
that lacks DRs, revealed switching properties similar to those
found for strain B31. The possible role and mechanism of DR
switching stimulation in B31 remain enigmatic at this time.

NGS analysis of switching at vlsE was also carried out to
probe a possible role for G-runs and switching. The data did not
reveal a correlation between the location of G-runs and the
initiation of recombination (85), leaving the function of their
highly elevated conserved presence a mystery. Although there
was no correlation between gene conversion junctions and
G-runs, this does not preclude a more subtle role for G-runs in
recombinational switching.

Clustering of switching in the population and along the DNA

As noted earlier, the mechanism and factors responsible for
turning on switching at vlsE after infection remain unknown.
However, the recent NGS analysis has revealed two important
new pieces of information related to this issue. The first is that
at early time points when the dispersal of vlsE switch events in
different copies of vlsE can be analyzed, there is not a stochastic
distribution. Instead, there is a propensity for a second switch

Figure 4. Heat map of mutational frequencies in B31 VlsE and switching at vlsE in SCID versus WT mice. A, variant vlsE sequences were mapped onto the
crystal structure of VlsE (47) (Protein Data Bank entry 1L8W) onto both protomers of the dimer structure. The frequency of mutation was depicted using a
continuum of color with 0% change indicated by dark blue, �37% by green, �55% by yellow, and �74% by red. For a 360° rotation of the structure, see Video
S1. B, the positions of purifying (red) and diversifying (green) mutations are shown on the crystal structure of B31 VlsE. Purifying residues are those with the
highest SCID/WT ratios, and diversifying residues are those with the highest WT/SCID ratios. The dotted line is the axis of 180° rotational symmetry. For a 360°
rotation of the structure, see Video S2. A and B are from Ref. 46. This research was originally published in Molecular Microbiology. Verhey, T. B., Castellanos, M.,
and Chaconas, G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol.
Microbiol. 2018; 107:104 –115. © John Wiley & Sons, Inc.
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event in a spirochete where switching has already occurred (85).
Moreover, there is a physical clustering of switch events along
the DNA. In other words, second switch events occur closer to
existing switch events than expected if they were to occur at
random (Fig. 6A). These results suggest that switch events are
clustered in space and time and preferentially occur in the same
cell and in physical proximity to the last switch event, perhaps
due to physical constraints, such as the position of a replication
fork or the local concentration of protein factors that play a role
in the reaction.

Switching is promoted by sequence homology

Although switching at vlsE is RecA-independent, the posi-
tions at which switching occurs are nonetheless correlated with
the level of sequence homology (85). Moreover, switch events
located 30 bp or less from the edge of a cassette boundary
were frequently underrepresented, suggesting a requirement of
20 –30 bp of homology for recombination to occur, despite the
expendability of the RecA protein. A role for annealing of ho-
mologous sequences in switching at vlsE is apparent from
these results; however, the molecular mechanism remains
uncharacterized.

Nontemplated SNPs are generated by error-prone repair

Nontemplated SNPs are defined as changes in vlsE that do
not correspond to the sequence found in any of the silent cas-
settes. These changes have been observed previously (86, 88),
but their origin has remained mysterious. Analysis using the
NGS/VAST system (85) has revealed some interesting proper-
ties of nontemplated SNPs. A variety of controls indicate that
these SNPs are not sequencing errors and that the number of
nontemplated SNPs correlates well with the number of switch
events (Fig. 6B) (85). Nontemplated SNPs accumulate over time
at a rate that is about 10% of the rate of templated switch events
but more than 5,000-fold faster than the background mutation
rate of B. burgdorferi. Analysis of about 1,000 nontemplated
SNPs indicated a dramatic preference for these mutations on
the 5� side (coding strand) of switch events. Therefore, nontem-
plated switches appear to be the result of error-prone repair
associated with recombinational switching and provide a sec-
ond layer of variability to facilitate antibody avoidance. Error-
prone repair can occur in regions undergoing recombination or

Figure 5. Rate of recombinational switching at vlsE and correlation of
cassette usage and intact DR repeats. A, inferred switch event accumula-
tion per read is shown from 0 to 5 weeks post-infection. Linear regression by
least squares is shown, with the gray area indicating the region of 95% confi-
dence. The switching rate was measured in SCID mice, where the variants
generated are stable and not cleared by immune selection. B, the use of each
cassette as a donor of genetic information to vlsE was determined and plotted
against the number of completely conserved flanking 17-bp direct repeats.
Error bars, S.D. A and B are from Ref. 85. This research was originally published
in Cell Reports. Verhey, T. B., Castellanos, M., and Chaconas, G. Antigenic var-
iation in the Lyme disease spirochete: new insights into the mechanism of
recombinational switching with a suggested role for error-prone repair. Cell
Reports. 2018; 23:2595–2605. © Elsevier Inc.

Figure 6. Distance between inferred switch events in spirochetes with
two switches at 1 week post-infection and correlation of nontemplated
SNPs with the number of switch events. A, the distance between inferred
switch events was determined and plotted three ways: using the minimal
possible switch lengths (which have the largest distance between switches),
the maximal possible switch lengths (which have the shortest distance
between the switches), or the midpoint between minimal and maximal. Each
value was compared with the distance between 106 randomly generated
switch variants. B, the number of nontemplated SNPs per read was enumer-
ated and plotted against the number of templated switch events in the same
read (reads with 1–10 switches were analyzed). The least-squares regression
line for the data is in red, and the 95% confidence limits are indicated by gray
shading. Error bars, S.E.M. A and B are from Ref. 85. This research was originally
published in Cell Reports. Verhey, T. B., Castellanos, M., and Chaconas, G. Anti-
genic variation in the Lyme disease spirochete: new insights into the mecha-
nism of recombinational switching with a suggested role for error-prone
repair. Cell Reports. 2018; 23:2595–2605. © Elsevier Inc.
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mismatch repair in bacteria (89, 90). The compact genomes of
Lyme borreliae encode a DNA polymerase III and a polymerase
I (BB0548), but an error-prone DNA polymerase such as DinB
is not known to exist in Lyme spirochetes. Hypermutation can
also occur at a variety of steps along the mismatch repair path-
way; however, this process has not been studied in any detail in
B. burgdorferi. The mechanism by which hypermutability is
specifically endowed to vlsE remains to be established. The
error-prone repair associated with gene conversion to generate
nontemplated variability is likely associated with the DNA
breaks involved in the recombinational switching process (90).
This would limit the mutations in time and space to regions
undergoing antigenic variation, as has been observed (85).

A mini-vls system

As noted earlier, cloning, PCR amplification, and genetic
manipulation of the vls locus have been difficult. The reasons
for this are as follows.

(i) The physical location of vlsE genes at the end of linear
plasmids makes cloning difficult due to a covalently closed
DNA hairpin about 75–100 bp away from the 3�-end of the
gene.

(ii) The presence of a perfect or nearly perfect inverted repeat
(Fig. 2B) of 93–120 bp located about 50 bp upstream of the
5�-end of vlsE genes imparts an instability in this region when
cloned in E. coli, even in sbc mutants (91) where the Sbc
nuclease that cleaves at inverted repeats is absent.3

(iii) Cloning of expressed vlsE is problematic unless pro-
moter mutations that reduce expression are present.3

(iv) The repetitive nature of the 15 silent cassettes arranged
as continuous direct repeats causes cloning difficulties from
recombination of directly repeated cassettes, generating dele-
tions. PCR amplification of the vls locus is also problematic,
with many false priming sites and difficulty obtaining the
desired products.

Genetic analysis of the native locus has not been possible and
has been limited to in vivo deletion of the entire locus (40). This
was accomplished by the insertion of a replicated B. burgdorferi
telomere, which is then processed by the telomere resolvase
ResT (32) to generate a double-stranded break with hairpin
telomeres on each side; the result is loss of the fragment lacking
the origin of replication and associated replication protein
genes (72, 92).

To circumvent the inability to genetically manipulate the
10-kb locus, a mini-vls system was developed by direct cloning
into a high-passage, highly transformable B. burgdorferi HB19
strain (93). Constructs unclonable in E. coli were recovered in
the high-passage B. burgdorferi recipient strain and subse-
quently transferred into a low-passage strain for mouse infec-
tions and NGS analysis of recombinational switching at vlsE.
The mini-vlsE system carries vlsE, the intergenic region
(between vlsE and cassette 2), and cassette 2 carried on an lp5-
derived shuttle vector. This system has allowed the first genetic
manipulation of several components of the vls locus, whose role
in gene conversion at vlsE was then assessed as described below.
One caveat on the use of the mini system is that it has a greatly
reduced level of switching compared with the full-length vls
locus, raising the question of whether data from the mini vls

faithfully mirrors that from the intact locus. Nonetheless, it is a
starting point for genetic analyses that have been stalled for 20
years.

The role of the IR and plasmid topology

The fact that the vls locus is always found on a linear plasmid
has suggested the possibility that the topology of the plasmid
that it is carried on is important. However, the inability to
genetically manipulate the locus made it impossible to investi-
gate this issue until now. Development of the mini-vls system
on both a circular and a linear form of the same plasmid has
allowed examination of this question (93). The finding from
NGS-switching analysis was that when the upstream IR was
present, switching frequency on the circular and linear plas-
mids was the same. However, removal of the IR resulted in a
decrease in switching to nearly background levels on the circu-
lar plasmid, but switching was unaffected on the otherwise
identical linear construct. The results point to an interrelated
role for the topological form of the plasmid and the upstream
IR; however, a cogent explanation for the results does not cur-
rently exist. The 100-bp IR can be spontaneously extruded as a
cruciform in vitro3 and is likely to do so in vivo during DNA
replication and transcription of vlsE on both topological forms
of the plasmid. But why this may be more important for recom-
binational switching on the circular plasmid form is currently a
mystery, as is the presence of perfect or nearly perfect IRs just
upstream of vlsE in a hypermutable region of DNA.

Perspective

In closing this review, it is worth noting how the study of
recombinational switching at the vls locus in Lyme spirochetes
may contribute new understandings and potential translational
information in general. As one of many pathogenic organisms
using antigenic variation to avoid immune surveillance, infor-
mation gained on the Lyme spirochetes may help to inform
mechanisms of antigenic variation employed by other patho-
gens. Moreover, antigenic variation makes an attractive target
for drug development for Lyme disease because switching at
vlsE is a requirement for persistence. Whereas antibiotic treat-
ment is generally effective for treatment of Lyme disease, an
increasing number of reports of spirochetes that survive anti-
biotics in treated animals have recently appeared (94 –96).
Although cultivatable disease-causing spirochetes have not
been recovered in these studies, these unexpected findings sug-
gest the ability of Borrelia spirochetes to survive long-term in
the presence of antibiotics. The relationship between such
long-term surviving spirochetes and the disease state or post-
treatment Lyme disease syndrome remains to be established. If
there is a link, then the development of a drug blocking recom-
binational switching at vlsE would offer a promising response to
drug-surviving spirochetes and would provide a direct block to
the development of long-term persistence.

Apart from the clinical relevance noted above, switching at
the vlsE locus presents a new recombinational paradigm that
utilizes sequence homology to promote recombination in the
absence of the RecA protein. The molecular mechanism of
the gene conversion events will provide new information on
the diversity of recombination mechanisms. Unraveling the
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molecular details could also potentially provide additional
approaches for precise correction of mutations that cause
genetic disease. In addition to recombination mechanisms, the
vls locus provides a fascinating model for accelerated evolution
of the entire locus as well as for the hypermutability by error-
prone repair that is associated with recombinational switching.
Further studies on this versatile and fascinating system for
immune evasion will expand our knowledge in a variety of
areas.
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