Skip to main content
. Author manuscript; available in PMC: 2020 Dec 16.
Published in final edited form as: Inorg Chem. 2019 Dec 2;58(24):16487–16499. doi: 10.1021/acs.inorgchem.9b02432

Table 3.

Comparison of Computed and Experimental g Values and Ligand-Field Splittings for Relevant FeCN Adductsa

model method g1 g2 g3 rms devc Δ (cm−1) V (cm−1)
1ox-CN exptl 1.988 2.161 2.204 4731d 1094d
DFT/PBE0/CP-SCF 2.026 2.127 2.145 0.045
DFT/B3LYP/CP-SCF 2.020 2.110 2.131 0.055
CASSCF/NEVPT2 1.946 2.183 2.234 0.032 4321 512
2ox-CN exptl 1.964 2.161 2.231 4063d 1292d
CASSCF/NEVPT2 1.953 2.191 2.256 0.023 3886 431
α-CDO exptlb 1.937 2.235 2.379 2776d 1171d
CASSCF/NEVPT2 1.914 2.258 2.425 0.032 2833 1056
β-CDO exptlb 1.951 2.207 2.344 3126d 1416d
CASSCF/NEVPT2 1.930 2.228 2.350 0.017 3366 1013
Hybrid-1 CASSCF/NEVPT2 1.931 2.206 2.389 nae 3280 1422
Hybrid-2 CASSCF/NEVPT2 1.971 2.283 2.352 nae 2849 785
a

The CASSCF/NEVPT2 calculations employed a CAS(11,13) active space and TZVP basis set.

c

rms dev = root-mean-square deviation between experimental and computed g values.

d

The experimental Δ and V values were calculated using Taylor’s equations for low-spin FeIII complexes in the absence of iron–ligand covalency, assuming a SOC parameter (λ) of 400 cm−1. See ref 68 for more details.

e

na = not applicable.