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Abstract

Motivation: Nowadays, virtual screening (VS) plays a major role in the process of drug develop-
ment. Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not
trivial and may require target-specific fine-tuning. Furthermore, drug design also requires
improved predictions for putative secondary targets among which is Estrogen Receptor alpha
(ERw).

Results: VS based on combinations of Structure-Based VS (SBVS) and Ligand-Based VS (LBVS) is
gaining momentum to improve VS performances. In this study, we propose an integrated ap-
proach using ligand docking on multiple structural ensembles to reflect receptor flexibility. Then,
we investigate the impact of the two different types of features (structure-based and ligand molecu-
lar descriptors) on affinity predictions using a random forest algorithm. We find that ligand-based
features have lower predictive power (rp = 0.69, R? = 0.47) than structure-based features (rp = 0.78,
R? = 0.60). Their combination maintains high accuracy (r, = 0.73, R? = 0.50) on the internal test set,
but it shows superior robustness on external datasets. Further improvement and extending the
training dataset to include xenobiotics, leads to a novel high-throughput affinity prediction method
for ERa ligands (rp = 0.85, R*> = 0.71). The presented prediction tool is provided to the community
as a dedicated satellite of the @TOME server in which one can upload a ligand dataset in mol2 for-
mat and get ligand docked and affinity predicted.

Availability and implementation: http://edmon.cbs.cnrs.fr.

Contact: schneider@cbs.cnrs.fr or labesse@cbs.cnrs.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite the fact that the efforts invested in drug development have
constantly increased during the last decades, the number of drug
approvals stays almost constant (Munos, 2009). Indeed, about 81%
of all new drug candidates fail (DiMasi et al., 2010), mainly due to a
lack of drug efficiency and/or side effects associated with off-target
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binding. In order to reduce time and cost of drug development pro-
cess, various computer aided methods have been implemented. Two
main techniques, namely structure-based and ligand-based virtual
screening, are widely used (Lavecchia, 2015; Lionta et al., 2014).
They are now routinely used for hit identification in order to priori-
tize compounds for experimental assays and they are also gaining
interest for lead optimization.
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Ligand-based virtual screening (LBVS) methods are based on
analyzing features of substructures and chemical properties related
to activity of the ligand. They are useful to search chemical libraries
using global or substructure similarity (Mestres and Knegtel, 2000),
shape-matching (Nicholls ez al., 2010) or pharmacophores (Yang,
2010). The algorithms used in those methods are in constant devel-
opment and recent LBVS methods are based on data mining and ma-
chine learning (Lavecchia, 2015). They do not require structural
knowledge of the receptor.

Structure-based virtual screening (SBVS) can be used to predict
the binding mode of drugs, to define the important specific interac-
tions between ligand and target and finally to discover a way to im-
prove a given drug by guiding further optimization. SBVS includes
docking of candidate ligands into a protein target, followed by
evaluation of the likelihood of binding in this pose using a scoring
function with an important trade-off between speed and accuracy
(Cerqueira et al., 2015). Compared to LBVS, which is restricted to
similar molecules the training had been performed on, SBVS is ap-
plicable to completely new molecules but it requires knowledge of
the targeted structure (or reliable theoretical models). Moreover,
very small changes or addition of the molecules that can create
strong repulsions (e.g. steric clashes) are more likely to be identified
by SBVS methods than by LBVS.

Combining LBVS with SBVS is emerging as a way to compensate
limitations of each of these complementary approaches. Indeed,
there are new attempts to combine both, thanks to the increasing
number of both atomic structures and affinity measurements.
Usually, the combination of LBVS and SBVS is performed in a se-
quential or parallel manner (Yu et al., 2018; Zhang et al., 2017).
The sequential approach uses both methods as filter steps in a hier-
archical procedure with increasing refinement. The parallel ap-
proach compares the selected compounds of both methods and
retrieves either a consensus (selected by both) or a complementary
selection (top molecules from each approach) (Lavecchia and Di
Giovanni, 2013). Alternatively, one might apply a weak similarity
restraint such as a molecular shape restraint for the ligand (to be
classified as a shape-matching LBVS method) during the docking
process in SBVS as it is implemented in the docking software
PLANTS (Korb et al., 2009).

In the present study, we take advantage of a new interface be-
tween PLANTS and the web server @TOME (Pons and Labesse,
2009) to screen multiple conformations in parallel (to be described
in more details elsewhere). It also allows us to systematically deduce
a shape restraint and binding site boundaries based on the geometry
of the original ligand from each crystal structure in a fully automatic
manner. Subsequent postprocessing is performed using various che-
moinformatics tools including several scoring functions to predict
protein-ligand affinity and select an optimal pose.

Ultimately, all the parameters computed to evaluate a ligand
pose can be used for machine learning. Indeed, the combination of
LBVS and SBVS with machine learning is an emerging approach to
improve affinity prediction (Wojcikowski et al., 2017). Therefore,
we evaluate applicability of machine learning on the docking out-
puts of @TOME and PLANTS and ligand similarity measurements.
In order to set up and evaluate this development, we focused on a
well-known therapeutic target—the estrogen receptor ERa.

The ERu is a steroid binding receptor playing a key role in a var-
iety of diseases due to its important role in development and physi-
ology. The most prominent examples are ER-based cancer therapies
that focus on blocking estrogen action in targeted tissues, with ERa
being the main target for treatment of ER-positive breast cancer
(Ma et al., 2009). The development of new and improved selective

ER modulators is therefore still of high interest for pharmaceutical
companies to target tissues selectively and to avoid resistance and
adverse effects (Baker and Lathe, 2018; Katzenellenbogen et al.,
2018; Wang et al., 2018).

Moreover, ERx can also be an unwanted target of drugs or xeno-
biotics (Baker and Lathe, 2018; Delfosse et al., 2012) and has been
identified as an anti-target that should be considered in toxicity tests
during drug development. Thus, a better understanding of the mech-
anism of ligand recognition by ERe is of paramount importance for
safer drug design. Previously, dedicated prediction methods have
been addressing the question of whether a molecule is binding or not
(Mansouri et al., 2016; Niu et al., 2016; Pinto et al., 2016; Ribay
et al., 2016), and traditional structure-activity relationship (QSAR)
modeling studies have also been performed with varying success on
this nuclear receptor (Asikainen et al., 2004; Hou et al., 2018;
Waller et al., 1995; Waller, 2004; Zhang et al., 2013, 2017).

Despite the fact that ERa is an already well characterized thera-
peutic target (Ekena et al., 1997; Nettles et al., 2004), we are still
lacking an efficient and robust method for predicting the binding
mode and affinity of docked ligands. A large number of ER« crystal
structures in complex with ligands are now known and the binding
affinity of hundreds of chemical compounds have been experimen-
tally determined. Therefore, ERa represents a perfect example to at-
tempt a full characterization by combining SBVS with LBVS and
employing machine learning in order to better predict binding affin-
ity and potential future drug profiles.

2 Approach

Here, we present an integrated approach for high accuracy affinity
predictions on the well-known and intensively studied drug target
ERo. First, a training set and several testing sets were built by sys-
tematic docking of chemical compounds extracted from the
BindingDB, the FDA and from in-house experiments, into the avail-
able crystal structures of ERo. An interesting feature of the approach
is the fact that we take advantage of structural ensembles for the re-
ceptor and the ligand to simulate flexibility. Scoring functions and
other chemometric information were gathered for the corresponding
complexes through the @TOME server and for the ligands through
the CDK. All virtual screening results are made available at http:/
atome4.cbs.cnrs.fr/htbin-post/AT23/MULTI-RUN/FILTER/showform.
cgi? WD=AT23/EG/38751543. Seeing that the accuracy of scoring
functions is not sufficient for fine ligands ranking, we employ a
random forest machine learning algorithm on diverse features,
including structure-based docking metrics and ligand-based molecu-
lar descriptors. We also tested various subsets of descriptors, such as
MACCS fingerprints, and different algorithms. The developed
prediction tool is provided to the community as an automatic
prediction extension within the @TOME-EDMon server (http://
edmon.cbs.cnrs.fr). The developed machine learning method is
equally applied on and provided for ERf and PPARy.

3 Materials and methods

3.1 Ligand datasets

3.1.1 BindingDB dataset

Two sets of experimentally tested ligands for the human ERa
(UniProtID: P03372) were extracted from BindingDB (Gilson et al.,
2016; Liu et al., 2007) (2018 dataset, updated 2018-04-01). One set
contains ligands with known inhibitory constant (Ki) as affinity
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measure, and a second set contains ligands with half maximal inhibi-
tory concentration (IC50) as an affinity proxy.

A few peptides and a series of boron cluster containing molecules
were removed from both datasets, as it was not possible to generate
proper 3D conformations or charges for these molecules. The final
sets contained 281 ligands (Ki set) and 1641 ligands (IC50 set), re-
spectively, with an overlap of 48 common compounds. Overall,
both datasets show a similar compound diversity (compare
Supplementary Fig. S1). For training, we preferred to focus on the
Ki dataset since it corresponds to more direct measurements while
the ICS50 dataset was used as a larger dataset for method testing.

3.1.2 In-house xenobiotic dataset

The xenobiotic chemical data that was used first as an external test-
ing dataset and afterwards to build an extended training set, is an
in-house dataset of 66 ligands with measured affinities for ERa
(Grimaldi et al., 2015). These extra compounds correspond mostly
to bisphenols, halogenated compounds, as well as phytoestrogens
(natural fused heterocycles and macrocycles partially micmicking
estradiol).

3.1.3 FDA ER« dataset
In order to have a second external validation, we used the Estrogen
Receptor targeted dataset from the Endocrine Disruptor Knowledge
Base (EDKB) provided by the U.S. Food & Drug Administration
(FDA), named here ER-EDKB dataset. The dataset contains 130 ER
binders and 101 non-ER binders including natural ligands and xeno-
chemicals that are structurally different from drug-like molecules.
For ER binders, the binding affinity measure is reported as a relative
binding activity (RBA), which is based on an assay using rat uteri.
Those cell-based measurements are influenced by different factors,
such as cellular permeability, and are unfortunately not directly
comparable with direct Ki measures. Nevertheless, we predicted
affinities using all models and transformed the measured RBA values
back to pIC50 values (pIC50 = log;,(RBA) — 8).

Interestingly, affinity distributions of the datasets cover a wide
range of about ten orders of magnitude without major gaps for dis-
tinct affinity ranges (see Supplementary Fig. S2).

3.2 Generation of ligand conformations

On the ligand side, there are two factors that can have an impact on
docking. One is the initial conformation submitted to a docking pro-
gram. Indeed, providing the bound conformation is a well-known
bias to improve the success of a docking tool as previously recog-
nized (Cross et al., 2009; Plewczynski et al., 2011). The generated
ligand conformations can also differ significantly due to ambiguities
in molecular descriptions (e.g. multiple conformations of heterocyc-
lic alkyl moieties are possible from usual SMILES strings) and to the
optimization procedure after ab initio building. Indeed, we notice
that some steroid compounds highlighted improperly distorted con-
formation (data not shown). The second factor is the atomic partial
charges that have an impact on ligand pose evaluation and can be
calculated using different models (e.g. Gasteiger and MMFF94). In
PLANTS, the atomic partial charges affect hydrogen bond donor/ac-
ceptor properties (e.g. for aromatic carbons) impacting significantly
the docking itself and hence its subsequent scoring.

The initial ligand sets were downloaded from BindingDB (BDB)
and have 3D conformations generated by VConf and partial charges
generated by VCharge (Chang and Gilson, 2003). We also tested
two other charge models (Gasteiger and MMFF94 charges) instead
of the default charge for the 3D conformers built by Vconf.
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Fig. 1. Structure-based dataset generation approach. The ligand dataset was
extracted from the BindingDB (BDB), which uses VConf for 3D conformation
generation and VCharge for charge assignment. Two more partial charge
models (MMFF and Gasteiger) and two other 3D conformation generators
(OpenBabel and Frog2) were employed to generate a total of five ligand sets.
Those were submitted to the @TOME server for docking and complex evalu-
ation. The @TOME output datasets ‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and
‘Frog3D’ (containing the results of 20 dockings per ligand in different struc-
tures) were grouped in three combined datasets, a different charge dataset
‘dCharge’, a different conformation dataset ‘dConf’, and an ‘ALL’ dataset

Two other 3D generators [OpenBabel (O’Boyle ez al., 2011) and
Frog2 (Miteva et al., 2010)] using their default charge. This resulted
in a total of five ligand sets. The ligand sets were then grouped based
on variation on their 3D generation, their charges or all together as
depicted in Figure 1.

Noteworthy, by training on distinctly generated datasets in par-
allel we prevent dependencies and bring more versatility.
Consequently, the user would be able to provide compounds with-
out the need for further conversion that could possibly introduce
errors.

3.3 Structure-based ligand docking

3.3.1 Ensemble docking

First, all liganded ERa structures available in the PDB (461 mono-
mers) were gathered using the @TOME server (Pons and Labesse,
2009) by submitting the ‘canonical’ amino acid sequence of ERa
(UniProt identifier: P03372-1) with a specified sequence identity
threshold of 90%. All gathered 461 monomers had a sequence iden-
tity between 95 and 100% with the submitted sequence and corres-
pond to point mutants of the human ERa. Missing or substituted
side-chains were modeled using SCWRL 3.0 (Wang et al., 2008)
using the strictly conserved side-chains fixed. By default, for each
ligand to be docked (e.g. from BDB), a set of 20 different template
structures were automatically selected among all available PDB
structures. This selection is based on the highest similarity
(Tanimoto score) between the uploaded ligand and the co-
crystallized ligand present in a template. The automatic virtual
screening procedure implemented in the @TOME server uses the
docking program PLANTS with its shape restraint functionality
(with a weighting of -3, the default value suggested by the software
manual), using the original ligand of the screened structure as a
pharmacophore. Of note, this ligand is also used to define the
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boundaries of the binding site to be screened (using a distance cutoff
of 8A). So, not only the protein conformation is (slightly) distinct
but various cavity volume and extent are used in this parallel dock-
ing procedure. For each template screened, only one pose was com-
puted by PLANTS. After docking and structure alignment, the 20
computed poses were clustered by conformation similarity, and the
most likely pose is selected automatically among the largest cluster
using a dedicated heuristics. Accordingly, we perform ligand dock-
ing on conformational ensemble as an optimal procedure for SBVS.

3.3.2 Structure-based molecular descriptors

Each docking pose is evaluated by various chemoinformatics tools
(see Table 1). Here, in order to predict protein-ligand affinities, we
take advantage of several re-scoring functions [namely MedusaScore
(Yin et al., 2008), DSX (Neudert and Klebe, 2011) or X-SCORE
(Wang et al., 2002)) recently embedded in @TOME to derive a con-
sensus score [including also ChemPLP as used in PLANTS (Korb
et al., 2006)]. Here, we used both, raw output from these scoring
functions, and linear regression based on a study of PDBbind (to be
described elsewhere). In addition, other evaluations are performed
on the server, such as the model quality of the receptor [QMean
(Benkert et al., 2008)] and the evaluation of the ligand conformation
[such as LPC (Sobolev et al., 1999) or AMMP energy computed by
AMMOS (Pencheva et al., 2008)]. Other scores measure the similar-
ity between the docked ligand and the pharmacophoric anchor used
to guide the docking. For instance, AnchorFit (as computed by
PLANTS) evaluates their shape similarity, and the Tanimoto score
(computed by OpenBabel) evaluates compositional similarity.
Finally, we also implemented two new scoring metrics, one compar-
ing ligand—receptor interactions as a sequence-based profile (named
PSim for Profile Similarity), and the other predicting a pose RMSD
based on a support vector machine (named LPE for Ligand Position

Table 1. Structure-based docking metrics

Metric name  Short description

PlantsFull PLANTS score (with anchor weight) (Korb ez al., 2006)

Plants PLANTS ChemPLP score (without weight)

PlantsLR PLANTS pKa (calculated by linear regression on
PDBbind)

MedusaScore  Medusa original score (Yin et al., 2008)

MedusalLR MedusaScore pKa (calculated by linear regression on
PDBbind)

XScore XScore affinity score (pKa) (Wang et al., 2002)

DSX DSX original score (Neudert and Klebe, 2011)

DSXLR DSX pKa (calculated by linear regression on PDBbind)

AtomeScore @TOME pKa = mean(PLANTS, XScore,
MedusaScore, DSX)

Tanimoto Similarity between candidate ligand and anchor ligand

AtomSA S.A. @TOME score

QMean QMean score of receptor model

AnchKd Affinity calculated between receptor/anchor (pKa)

AnchorFit Candidate/ligand superimposition score (PLANTS
software)

LigandEnergy Internal energy of ligand (AMMP force field)

LPC LPC software score (receptor/ligand complementarity
function)

PSim Similarity to receptor/ligand interaction profile in PDB
template

CpxQuality Complex quality consensus score

LPE Ligand Position Error (SVM multi-variable linear
regression)

Error). These evaluation metrics will be described in more detail
elsewhere.

The above parameters were important for structure-based
screening, and they were complemented by other information
regarding the chemical nature of ligands using additional molecular
descriptors.

3.3.3 Ligand molecular descriptors

In order to include more information about the small molecules
being screened, molecular descriptors were calculated using the
Chemistry Development Kit (CDK) (Willighagen et al., 2017), a col-
lection of open source Java libraries for chemoinformatics, through
its R interface rcdk (Guha, 2007). The descriptors were selected
based on their ability to represent the diversity of the ligand dataset,
taking into account their orthogonality, and based on their variable
importance score during model training. The final set of 11 QSAR
molecular descriptors includes topological, geometrical, constitu-
tional and charge based descriptors and is listed in Table 2 with
CDK descriptor name, the used abbreviation and a short
description.

3.3.4 Combined structure/ligand descriptors

All 5 docking datasets (originating from the 5 different ligand sets)
provided 19 structure-based docking metrics for the 20 docking
poses computed for each ligand. For each metric, median and stand-
ard deviation were computed and used as a unified instance. Ligand-
based variables (11 CDK molecular descriptors) were added to the
19 structure-based metrics. A correlation matrix with all descriptors
used for the Ki-BDB dataset is provided as heatmap (see
Supplementary Fig. S5). Alternatively, the commonly used MACCS
fingerprints (166 features) (Durant et al., 2002; Taylor, 2007) were
also tested for comparison.

3.4 Machine learning approaches

3.4.1 Algorithm selection and training

For all analyses, calculations and machine learning, the R language
(version 3.2.4) was used with RStudio (employed packages are listed
in Supplementary Table S1). In an initial test on the BDB Ki dataset
we assessed the performance of 7 machine learning algorithms (see
Supplementary Fig. S3): Random Forest (RF), Gradient Boosting

Table 2. Ligand-based molecular descriptors

Abbrv. CDK descriptor name Short description

MW Weight molecular weight

VABC VABC volume descriptor

nAtom AtomCount number of atoms

nBond BondCount number of bonds

nRotBond  RotatableBondsCount number of rotatable bonds

nAromBond AromaticBondsCount number of aromatic bonds

nHBDon HBondDonorCount number of hydrogen bond
donors

nHBAcc HBondAcceptorCount number of hydrogen bond
acceptors

TPSA TPSA Topological Polar Surface
Area

XLogP XLogP prediction of logP based on
the atom-type method
called XLogP

HybRatio HybridizationRatio fraction of sp3 carbons to sp2

carbons
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Machine (GBM), support vector machine (SVM) with a radial ker-
nel (SVM_R), a polynomial kernel (SVM_P) and a linear kernel
(SVM_L), linear regression (LinReg), decision tree (CARTree) and
Partial Least Squares (PLS). All algorithms were employed with de-
fault variable settings with the R package ‘caret’. In order to avoid
over-fitting of the models, we used stratified 10-fold cross validation
repeated 10 times for all models in this study (unless otherwise
indicated).

Alternatively, an external test set was built by taking a stratified
selection of 20% of the whole dataset. The remaining 80% was
used as training set for the models.

3.4.2 Comparison of different tree-based algorithms

The RF algorithm we used, has only one tunable hyperparameter
that can be adjusted for the present dataset. Therefore, we wondered
whether other tree-based ensemble algorithms with more tunable
hyperparameters offer an improved prediction accuracy when tuned
more carefully. In total, five different tree-based algorithms were
employed on the same Ki BindingDB2018 dataset for affinity predic-
tion and subsequent performance comparison. They are: random
forest (RF), regularized random forest (rRF), global regularized ran-
dom forest (rRFglobal), Extreme Gradient Boosted Trees (xgbTree)
and Extreme Gradient Boosted Trees with dropout (xgbDART).
Here, Bayesian optimization was employed to select the best hyper-
parameters (5 to 7 depending on the method), which demands a
substantially increase in computational expense compared to the
one-variable optimization required for the RF algorithm. The per-
formance of the different models are compared based on the left out
data during cross-validation (see Supplementary Fig. S4).

3.5 Random Forest regression modeling

Random forest models were trained on each dataset separately
(‘MMFPF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’), on the combination
of the three different 3D conformation datasets ({‘BDB’, ‘OB3D’,
‘Frog3D’} = ‘dConf’), on the combination of the three different par-
tial charge datasets ({‘MMFF’, ‘Gast’, ‘BDB’} = ‘dCharge’) and on
all five datasets combined (‘ALL’) (compare Fig. 1).

Besides the Pearson correlation (rp), two further regression
evaluation metrics were used to evaluate the model performance on
the external test set. First, the coefficient of determination (R?) is
calculated using the sum of squares method. The second metric,
the Root Mean Square Error (RMSE) is the average deviation of the
predictions (predicted affinities) from the observations (measured
affinities). In some cases, we also indicate the Spearman rank correl-
ation (rg).

4 Results and discussion

We developed and tested an automated and integrated structure-
and ligand-based approach to predict quickly accurate binding affin-
ities for ERa. This approach takes into account structural variability
from the ligand side by using different 3D generators and different
charge models, and from the receptor side by using 20 structures for
each ligand to be docked. Here, we give access to the docking poses
while we evaluate thoroughly the affinity predictions performed
using various methods.

4.1 Predictions using re-scoring methods
In a first attempt, the predictive power of the four different scoring
functions implemented in the @ TOME server was assessed.

Table 3. Pearson correlations (rp) on all five datasets between ex-
perimental affinities and scores from four scoring functions Plants,
MedusaScore, DSX and XScore, of (1) the best pose selected by
@TOME, and of (2) the median scores of the four scoring functions,
calculated on 20 dockings per ligand on all five datasets

Dataset name  Plants MedusaScore DSX  XScore
(1) rp on predictions

for the best pose
Gast 0.042 0.154 0.129  0.060
MMFF 0.063 0.182 0.157 0.082
BDB 0.038 0.111 0.118 0.076
OB3D 0.109 0.180 0.143  0.129
Frog3D 0.022 0.132 0.118  0.040
(2) rp on predictions

over 20 poses
Gast —0.031 0.204 0.019 0.049
MMFF —0.025 0.192 0.038 0.054
BDB -0.019 0.087 0.022  0.059
OB3D —-0.017 0.175 0.008 0.050
Frog3D —0.048 0.199 0.005 0.036

The Pearson correlations between affinity measurement and the
median scores (calculated on 20 docking poses per ligand) are very
low for all generated datasets (see Table 3). Even the most recent
scoring functions (MedusaScore and DSX) performed poorly in this
test. Interestingly, the selection of the best pose among the 20 com-
puted ones slightly improves the correlation between predicted and
measured affinities for 3 scoring functions but for MedusaScore
which appeared as the most robust and the best for the various lig-
and description schemes.

However, the overall correlation is too low for fine ligand affin-
ity prediction and indicates a limitation of the general-purpose scor-
better
Supplementary Table S2) suggested a better ranking that could be
useful to guide machine learning. This prompted us to develop a
more sophisticated method that should be able to combine advan-
tages of different docking evaluations (structure-based and ligand-

ing functions, but the Spearman correlation (see

based ones) and potentially take into account specific features.

4.2 Random Forest regression—model training

First, we did some model optimization using parameter tuning, vari-
able selection and engineering (e.g. to better take into account rotat-
able bounds, see below).

4.2.1 Structure-based and ligand-based partial models

To investigate the actual affinity prediction capabilities of structure-
based and ligand-based variables, partial models were trained using
the 19 structure-based metrics or the 11 ligands-based metrics on
the same dataset named BDB. Affinity predictions made on the held-
out 20% test set are shown in Supplementary Figure S6. The
docking-metrics only model (rp = 0.78, s = 0.77 and R* = 0.60)
outperforms the molecular-descriptors only model (rp = 0.69, rg =
0.70 and R* = 0.47). Interestingly, the combined model (trained on
BDB using simultaneously Vconf and Vcharge data) has Pearson
correlation coefficient, Spearman’s rank and R value in between
the reduced-variable models (rp = 0.73, rg = 0.74 and R? = 0.50).

4.2.2 Random Forest model trained on MACCS fingerprints

In this context, it might be interesting to add more information
regarding the chemical nature of the ligands studied. Instead of using
a reduced set of ligand-based parameters, we turned to use a more
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thorough description based on an extended and popular finger-
prints: MACCS. A new random forest model was trained on
MACCS fingerprints representing the ligands only, without provid-
ing any structural docking data. This resulted in a Pearson correl-
ation (rp) of 0.76, Spearman’s coefficient (rg) of 0.76 and an R of
0.57 on the Ki test set, midway between the two partial models com-
pared above (molecular descriptors only model and docking metrics
only model). Combining MACCS with docking-based features
improves the overall performance on the training and left-out testing
dataset (rp = 0.81, r¢ = 0.82 and R? = 0.61) but further evaluation
using external datasets suggested some overfitting (see below).

4.2.3 Combined models—trained on single and multiple combined
datasets

Then, we compared the various models trained on either single data-
sets (‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’) or multiple
combined datasets (‘nf’, ‘dCharge’ and ‘ALL’). Whereas the five
models trained on single datasets have an R? of 0.66 (+0.01), an
RMSE of 0.82 (£0.01) and an explained variance of 63.4 (*0.8)
during training, the three models trained on multiple datasets have a
better R? of 0.68 (+0.004), a lower RMSE of 0.78 (+0.008) and an
explained variance of 90.6 (*£3.7). Also evaluation on the 20% left-
out test set demonstrates improved predictions for the models
trained on multiple combined datasets (‘dConf’, ‘dCharge’ and
‘ALL’) with a mean Pearson correlation (rp) of 0.77 (and standard
deviation of 0.014), compared to the models trained on single data-
sets with a mean rp of 0.73 (and standard deviation of 0.029).

The boosted tree models xgbTree and xgbDART appeared to out-
perform slightly the RF model on this ‘ALL’ dataset. But the reverse
was true when evaluating the corresponding models onto the FDA data-
set (see below). Most of the differences are weak and may not be signifi-
cant. Accordingly, the more complex implementations did not provide
significant increase in performance and they were not studied further.

4.3 Random Forest regression—model testing

Most remarkable is the strong increase in accuracy when using ei-
ther the ‘dConf’ model trained on the three different 3D conform-
ation datasets (‘BDB’, ‘OB3D’ and ‘Frog3D’) or the model trained
on the fully combined ‘ALL’ dataset comprising all five datasets
(‘MMFPF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’) (compare also
Supplementary Fig. S7). Interestingly, using different charge models
improves affinity predictions, but slightly less efficiently than using
different 3D conformations. This is probably due to the fact that the
binding pocket of ERa is mostly hydrophobic and therefore the
ligands show the same property and partial charges are predomin-
antly found to differ only marginally.

4.4 Analysis of variable importance

To assess the impact of the various parameters from structure-based
and ligand-based scoring functions, the variable importance was
tracked during training of the RF models. The 30 most important
variables for the models trained on the ‘ALL’ dataset is shown in
Figure 2. Overall, all models have a rather similar variable import-
ance profile (data not shown).

Noteworthy, the most important variable “Tanimoto_Med’ is the
same for all trained models showing its outstanding importance. It
represents the median Tanimoto score calculated between the docked
ligand and the 20 shape restraints (or ‘anchors’) present in the tar-
geted structure. This may reflect the importance of using structures
bound to similar ligand to ensure proper affinity predictions.

Variable importance - RF on BDB 2018 ERa Ki
'ALL' dataset

Tanimoto_Med =
XLogP »

nAotB.nB *
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MW -
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Fig. 2. Variable importance of the top 30 variables, tracked during model
training for the model trained on the ‘ALL’ dataset with the full variable set.
Structure-based docking metrics have an extension (_Med or _SD). The suffix
_Med stands for the calculated median of the variable for a ligand’s 20 dock-
ings and _SD is the respective standard deviation of this variable

The second and third most important variables are #Ro¢B.nB’
and ‘XLogP’. ‘nRotB.nB’ estimates ligand flexibility, deduced
from the number of rotatable bonds %ZRo¢B’ and the total number
of bonds #%B’ by simply dividing them (#RotB’/'nB’). During
variable testing, this combined variable showed an increased import-
ance compared to the original variables (data not shown), which
were therefore removed for the final model training. The particular
importance of 7RotB.nB’ indicates the important role of entropy
cost for binding flexible ligands. Obviously, this parameters is not
easily handled in a systematic manner by general scoring functions
while it is an important parameter for affinity predictions. In the
particular case of ERa, it likely discriminates rather small and rigid
agonists from larger and more flexible antagonists to prevent overes-
timating the affinity of the latter. In agreement, the fifth variable is
the molecular weight (‘MW”) which may also compensate for the
additive terms of most scoring functions dedicated to affinity
predictions.

Another predominantly important and high-rank variable (se-
cond in the ‘ALL’ model and third in the ‘dCharge’ and ‘dConf’
models) is “XLogP’. Representing hydrophobicity and solubility of
the ligand, it is expected to be an important factor with respect to
the mainly hydrophobic binding pocket of ERa. Moreover, ‘XLogP’
may reflect solvent-driven entropic effects that are not easily taken
into account by usual scoring functions. Indeed, flexibility and
solvation-linked metrics can be regarded as useful for a crude esti-
mate of some entropic effects and counterbalance the enthalpy-
oriented affinity prediction approach of usual scoring functions.

Finally, the different scoring functions (DSX, Plants,
MedusaScore and X-score; through their means and standard devia-
tions) show a smaller importance than the three above parameters,
which could be in agreement with the poor correlations described
above. It may also arise from the intrinsic redundancy of our
selected variables as several affinity predictions are used in parallel.
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Correlations of measures & predlctions Table 4. Model performances on the FDA ER-EDKB test set
of BDB 2018 Ki + Xeno test set Algorithm Training set Variable type Pearson
correlation
ALL-
RF ALL+Xeno @TOME+LD 0.748
dCont- RF ALL+Xeno @TOME+LD+MACCS 0.740
RF ALL @TOME+LD 0.663
dCharge - Pearson RF ALL @TOME+LD+MACCS 0.648
Correlation RF BDB+Xeno  @TOME+LD 0.712
g Frog3D- l - RF BDB+Xeno ~ @TOME+LD+MACCS 0.688
¥ RF BDB @TOME+LD 0.584
§ o830 - RF BDB @TOME+LD+MACCS 0.542
= 0.800 RF BDB4Xeno  MACCS only 0.487
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Fig. 3. Performance evaluation of extended models on their respective 20%
left-out test sets. The initial dataset of 281 ligands is extended by a set of 66
xenochemicals. The heatmap shows Pearson correlations between predictions
and measures for all combinations of training model and prediction set. The
different training models are listed as rows and the test sets, on which the pre-
dictions were made, are listed as columns. RF models were trained on each
dataset separately (‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’, ‘Frog3D’), on the combin-
ation of the three different 3D conformation datasets ({'BDB’, ‘OB3D’, ‘Frog3D'}
= 'dConf), on the combination of the three different partial charge datasets
({'MMFF’, ‘Gast’, ‘BDB’} = ‘dCharge’) and on all five datasets combined (=
‘ALL’). The predictions with the Pearson correlation highlighted in the heatmap
(black box) is plotted as scatter-plot for details below. The scatter plot shows
the actual predicted versus measured affinities together with a regression line
(dashed line), the optimal prediction line (solid diagonal) and the evaluation
metrics—Pearson correlation coefficient (rg), coefficient of determination (R?)
and root-mean-square error (RMSE). All evaluation metrics were calculated
with respect to the actual values (solid diagonal), not the regression line

Overall, this result underlines the importance of developing dedi-
cated models for each target under investigation, in order to account
for some specific features including particular desolvation and flexi-
bility properties.

4.5 Model evaluation on different datasets

4.5.1 Model evaluation on an in-house xenobiotic dataset

We took advantage of a complementary and independent dataset—
the xenobiotic chemical data of 66 ERa binders to evaluate the

Note: The presented models employ all the RF algorithm and differ in
training set composition concerning used molecules and in type of variables
used. @TOME+LD = docking evaluation variables from the @TOME server
+ ligand descriptors calculated with CDK.

robustness of our models. Our models performed rather poorly on
this dataset with a Pearson correlation (rp) of 0.48 for the best
Random Forest model BDB-Ki (and 0.40 with the BDB-Ki+MACCS
model). For the
molecular-descriptors-only, as well as the MACCS-only model, cor-
relations are even lower with 7p of 0.45, 0.31 and 0.13, respectively.
This underlines the improved robustness of the BDB-Ki model com-
bining SBVS and LBVS features (compare also Supplementary Fig.
S$8). Importantly, the chemical nature of most xenobiotics differs sig-

partial models, docking-metrics-only and

nificantly from most of the drug-like compounds from the BDB
dataset used for training. As such, small xenobiotics (including the
small bisphenols) occupy only partially the hydrophobic cavity and
often also present numerous halogen substitutions (that are notori-
ously hard to model). Furthermore, for some of the small xenobiot-
ics we cannot rule out the possibility that two molecules may bind
simultaneously (with synergetic effects). This result prompted us to
combine these xenobiotics and BDB Ki dataset into an extended
training set to build a new RF model with improved performance
(Fig. 3).

4.5.2 Model evaluation on FDA ER-EDKB dataset

We then evaluated our two best models on a reference dataset com-
prising both 322 drug-like and xenobiotic compounds (see Table 4
and Supplementary Table S3). At the first glance, the predictions
made using the original model (trained on only BDB-Ki) showed a
lower performance especially on the edges of the affinity ranges with
both overestimated affinities for small and weak binders (e.g. alkyl-
phenol) and underestimated predictions for tight binders such as
rigid and compact agonists. Indeed, the BDB dataset is mainly com-
posed of large and high-affinity antagonists. Accordingly, some
FDA compounds such as high affinity agonists, appear as strong
outliers.

Most remarkable is the benefit of adding a complementary data-
set of 66 xenobiotic compounds to the initial 281 ligands from
BindingDB (see Table 4). Here, the best Pearson correlation (rp) of
0.75 is attained with the model trained on ‘ALL’ datasets including
the xenobiotics and the model trained on a single dataset (BDB)
including the xenobiotics also shows a high rp of 0.71. Accordingly,
the nature and diversity of the ligands matter, so that, proper cover-
age of the studied chemical space, in the training dataset compared
to the testing one is essential. The model trained on a single dataset
without the xenobiotics has already a decreased rp of 0.58, whereas
the partial models, docking-metrics-only and molecular-descriptors-
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only, and the MACCS-only model, show poor performances with rp
of 0.49, 0.47 and 0.41, respectively (compare Supplementary Fig.
S9). This underlines again the increased robustness of our feature
type combination.

4.5.3 Model evaluation on BindingDB—IC50 dataset
Finally, the most extended and reliable dataset we used for evaluating
our RF models is the BindingDB 2018 IC50 dataset which includes
1641 entities. Interestingly, the model trained on the Ki dataset already
performed well against IC50 data suggesting a strong robustness.
Training and testing the IC50 dataset (1641 compounds versus 281
for the Ki dataset) also provides some insights into dataset size require-
ments for the studied target. First, the performance on the IC50 test set
(rp = 0.87) is better than on the Ki dataset (rp = 0.77) (compare
Table 5). Then, cross-predictions were computed by either using the
model constructed on the Ki dataset for predictions on the IC50 data-
set, or employing the model constructed on the IC50 dataset for pre-
dicting the Ki dataset. In that case, it scems that the small Ki test set
(56 compounds) does not allow optimal validation as it shows a signifi-
cant drop in performance compared to the Ki training set (0.49 versus
0.64). On the contrary, the Ki-ALL model showed similar performance
on both the IC50 training and testing sets (1319 versus 322 entities).
We also evaluated our last model trained on the extended dataset
including both the Ki dataset and the xenobiotic dataset on the larg-
est available IC50 dataset from BindingDB (compare Table 6).
Good predictions were observed for the IC50 dataset although the
addition of the xenobiotic dataset did not bring any improvement
(nor any deterioration) for that particular dataset. For comparison
of all trained model see Supplementary Figure S10. Again, these
results suggests that our final model is rather robust.

5 Conclusion

We provide an original i silico method for accurate binding affinity
predictions that takes advantage of structural ensembles, of a limited
number of structure-based metrics (19) and of ligand-based descrip-
tors (11) in a unique combination. This combination led to a predic-
tion tool outperforming our other models based either on SBVS or

Table 5. Comparison of cross-predictions between the Ki and IC50
models and datasets

BDB Ki BDBKi BDBICS0
training set test set

BDB IC50
training set  test set

number of compounds 225 56 1319 322
Ki ALL model 0.99 0.77 0.64 0.69
IC50 ALL model 0.64 0.49 1.00 0.87

Note: Pearson correlations between experimental affinities and the random
forest predictions are reported.

Table 6. Evaluation of best RF models on various datasets

Prediction set Xeno FDA 1C50 Ki
RF ALL model

Ki+Xeno 0.98 0.75 0.65 0.96
Ki 0.48 0.66 0.65 0.77*
1C50 0.25 0.35 0.87* 0.61

Note: Pearson correlations between experimental affinities and the RF pre-
dictions are reported for the whole datasets but for values marked with <*’
that indicates values for a 20% test set.

on LBVS features when we take into account not only the overall
performance on the internal testing set but also the robustness on a
range of distinct datasets. This is true also with the use of many
more features as exemplified here with the MACCS fingerprints
(166 bits). Our work also confirmed the performance of Random
Forest over other machine learning approaches as previously noticed
(Russo et al., 2018). In some cases, higher accuracy was reported
but for smaller compound libraries (Hou et al., 2018). Accordingly,
our results present one of the largest validation surveys (1641
ligands from the BDB IC50 dataset) and best performing tools for
affinity prediction against ERa. As major advantages, RF algorithms
handle non-linearities, numerical and categorical variables, and they
give estimates of variable importance and generalization error.

By training our model in parallel on various types of partial
charges and/or 3D builders, we believe our tool will be more versa-
tile and robust to variations in the way the submitted compound
libraries are generated. Noteworthy, the user has simply to upload
one single dataset to EDMon, where the submitted chemical com-
pounds will automatically be docked and their theoretical affinity
for ERa be computed. With this tool, one can easily and rapidly
evaluate new compounds either to find putative binders of ERo or to
check the absence of binding to this frequent secondary target, in
order to avoid potential side-effects.

Interestingly, the same approach yields very similar performan-
ces on two other nuclear receptors (ERf and PPARy) (see
Supplementary Figs S11 and S12, respectively) and their automatic
affinity prediction is also implemented in EDMon. The method also
provided excellent results for a protein-kinase (to be described else-
where) and we see no reason for any limitation as soon as dozens or
hundreds of structures and affinity points are known. Areas for fur-
ther improvements are probably: increasing the accuracy in ligand
docking, a possible addition of complementary evaluation metrics
for the protein-ligand interactions, as well as using deep learning.
Testing challenging compounds is also an important way to guide
improvement and we expect our web server to be thoroughly tested
with novel compounds.
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