Skip to main content
. 2019 Jul 26;36(1):160–168. doi: 10.1093/bioinformatics/btz538

Table 4.

Model performances on the FDA ER-EDKB test set

Algorithm Training set Variable type Pearson correlation
RF ALL+Xeno @TOME+LD 0.748
RF ALL+Xeno @TOME+LD+MACCS 0.740
RF ALL @TOME+LD 0.663
RF ALL @TOME+LD+MACCS 0.648
RF BDB+Xeno @TOME+LD 0.712
RF BDB+Xeno @TOME+LD+MACCS 0.688
RF BDB @TOME+LD 0.584
RF BDB @TOME+LD+MACCS 0.542
RF BDB+Xeno MACCS only 0.487

Note: The presented models employ all the RF algorithm and differ in training set composition concerning used molecules and in type of variables used. @TOME+LD = docking evaluation variables from the @TOME server + ligand descriptors calculated with CDK.