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Abstract

Motivation: Missingness in label-free mass spectrometry is inherent to the technology. A computa-

tional approach to recover missing values in metabolomics and proteomics datasets is important.

Most existing methods are designed under a particular assumption, either missing at random or

under the detection limit. If the missing pattern deviates from the assumption, it may lead to biased

results. Hence, we investigate the missing patterns in free mass spectrometry data and develop an

omnibus approach GMSimpute, to allow effective imputation accommodating different missing

patterns.

Results: Three proteomics datasets and one metabolomics dataset indicate missing values could

be a mixture of abundance-dependent and abundance-independent missingness. We assess the

performance of GMSimpute using simulated data (with a wide range of 80 missing patterns) and

metabolomics data from the Cancer Genome Atlas breast cancer and clear cell renal cell carcinoma

studies. Using Pearson correlation and normalized root mean square errors between the true and

imputed abundance, we compare its performance to K-nearest neighbors’ type approaches,

Random Forest, GSimp, a model-based method implemented in DanteR and minimum values. The

results indicate GMSimpute provides higher accuracy in imputation and exhibits stable perform-

ance across different missing patterns. In addition, GMSimpute is able to identify the features in

downstream differential expression analysis with high accuracy when applied to the Cancer

Genome Atlas datasets.

Availability and implementation: GMSimpute is on CRAN: https://cran.r-project.org/web/packages/

GMSimpute/index.html.
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1 Introduction

Mass spectrometry (MS) based metabolomics and proteomics data

have been widely used in the study of various diseases, such as diabetes

and cancer, revealing signals associated with the progression to disease

(Ore�si�c et al., 2013; Pflueger et al., 2011) and the interaction with

other omics data (Tang et al., 2014; Wu et al., 2017). MS is one of the

primary detection techniques used in the profiling and analysis of small

molecule metabolites, lipids and peptides, using two different strategies

for online separation: gas chromatography (GC) and liquid chromatog-

raphy (LC). The profiling of MS metabolomics data involves sample

preparation, running the MS equipment, and preprocessing for metab-

olite abundance level. In order to identify a compound from MS raw

output, a preprocessing tool, such as XCMS (Smith et al., 2006),

apLCMS (Yu and Jones, 2014), MZmine2 (Myers et al., 2017) and

MassHunt, is employed to quantify the peaks with peak height or area

being the estimated abundance level of the compound. Similar

approaches are used in quantitative proteomics, where peptides are

assigned by database searches and quantified using peak height or peak

area in extracted ion chromatograms with software such as Skyline

(MacLean et al., 2010) or MaxQuant (Tyanova et al., 2016).

The MS profiling process always results in missing values in metab-

olite or peptide abundance from three common sources: (i) truly miss-

ing in a sample due to biological and technical reasons, (ii) present in a

sample but at a concentration below the detection thresholds and

(iii) present in a sample at a level above the detection limit but fail to be

detected due to algorithms used in data preprocessing. The missing val-

ues in MS studies can be categorized as missing completely at random

(MCAR), missing at random (MAR) and missing not at random

(MNAR). MCAR is the result of random errors from either laboratory

preparation procedures or instrument fluctuation not showing the cor-

responding mass spectra, while MAR originates from data preprocess-

ing algorithms (i.e. errors in peak detection and deconvolution) but has

peaks in the mass spectra in the time window. Most of MNAR is the

metabolite/peptide abundance below the limit of detection (LOD), due

to instrument setting, preprocessing noise level or low abundance. In

this case, MNAR can be viewed as left-censored data. Existing

approaches to deal with missing values in metabolomics and proteo-

mics are either backfilling or prediction. Backfilling uses the maximum

intensity within a small nearby m/z value and retention time region for

the missing peak to generate an alternative abundance level. In con-

trast, prediction methods apply statistical models to predict the area or

height of missing peaks based on that of the detected spectrums.

Although backfilling is recommended in many preprocessing tools, e.g.

there are still issues in this method as stated in a recent publication

(Wei et al., 2018b). In certain downstream statistical analysis, the val-

ues recovered by backfilling might cause severe bias, as some of them

might be equivalent to the noise level.

The existing prediction imputation strategies for MS metabolo-

mics or proteomics data include K-nearest neighbors (KNN), com-

bination of KNN and zero (Grace et al., 2015), singular value

decomposition (Troyanskaya et al., 2001), model-based imputation

(Karpievitch et al., 2009), Random Forest (RF) (Breiman, 2001),

quantile regression imputation of left-censored data (QRILC) (Wei

et al., 2018b), accelerated failure time model (Tekwe et al., 2012),

or imputing with a constant value, such as the mean, minimum

observed value or LOD or some function of the LOD. Shah et al.

(2017) recently proposed KNN Truncation (KNN-TN) as an ap-

proach for imputing MNAR data. Similar to KNN, KNN-TR

requires the user to specify K a priori, which often can be difficult.

The simulation study completed by Wei et al. (2018b) found that RF

is the optimal only for MAR, and QRILC is optimal only for data

values missing below detection (MNAR). However, these methods

have not been compared to KNN-TR. Another new approach

(MINMA) was developed by Jin et al. (2017) for missing values in

LC-MS only, utilizing adducts, retention time and m/z values along

with missing value prediction by support vector machine (Hearst

et al., 1998). This method would need adaptation prior to applica-

tion to GC-MS data, since adducts are not available in GC-MS and

the m/z values of GC-MS are different from LC-MS.

Existing imputation methods for MS data often assume that

most of the missing values in the profiled data are below MS detec-

tion limit or at the lower quartile. However, the proportion of

MCAR or MAR in MS data is not negligible, as discussed previously

(Wei et al., 2018b). To examine the missing patterns in MS data, we

examined the peptide and metabolite levels in samples with tech-

nical replicates in several different datasets, described in Section 2.1.

In order to address the limitations of existing imputation methods

and improve accuracy of downstream statistical analyses, we develop

an omnibus approach that considers different possible types of missing

values simultaneously without the need for specifying parameters a pri-

ori. We propose the use of a Lasso model to select subsets of detected

peaks to predict the missing values using a two-step procedure, two-

step Lasso (TS-Lasso). An extensive simulation study was completed to

assess the performance of TS-Lasso and compare this method to other

imputation approaches. We further expanded the approach to account

for the situation when majority of missing peaks occur at lower abun-

dance level in R package GMSimpute. Lastly, analysis of data from

various studies showed that TS-Lasso did outperform existing methods

regardless of the composition of missing values. In the context of this

paper, ‘compound’, ‘peptide’, ‘aligned peak’ and ‘feature’ are used

interchangeably to describe MS metabolites or peptides. Compound

minimum (in a metabolomics dataset) could also be considered as the

same as peptide minimum in a proteomics dataset.

2 Materials and methods

2.1 Missing patterns in MS
We investigated the missing patterns using the following three proteo-

mics datasets and one metabolomics dataset with technical replicates.

H2286 post-translational modification dataset: Phosphotyrosine (pY),

Phosphoserine (pS) and Phosphothreonine (pT) peptides from two bio-

logical samples in a lung cancer cell line were quantified under control

(C) conditions and treated with Dasatinib (D). Details of sample prep-

aration can be found in the original publication (Bai et al., 2014).

H366 dataset: in a similar manner, pY, pS and pT were quantified in

another lung cancer cell line, with two samples for control and two

treated with Dasatinib (Bai et al., 2014). Activity-based protein profil-

ing dataset: An example of a chemical labeling technique to enrich

ATP-utilizing proteins, from six cell lines under either control or treat-

ment conditions. Details of the experiment can be found in the original

publication (Fang et al., 2015). In each proteomics dataset described

above, two technical replicates were obtained from each biological

sample. For each pair of technical replicates from a biological sample,

we summarized the distribution of peptide abundance using a box plot

and labeled those detected in both replicates as ‘non-missing’ set while

those detected only in one technical replicate as ‘missing’ set. For the

metabolomics dataset (Kirwan et al., 2014), 40 QC technical replicate

samples were quantified along with multiple biological samples of

interests. We summarized the missing patterns in 10 randomly selected

QC replicates. Metabolites detected in a QC sample but not detected in

at least one of remaining replicates were labeled as ‘missing’.
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2.2 TS-Lasso method
The aligned abundance matrix usually contains a certain number of

rows without any missing peaks in the mass spectrum, since targeted

profiling can identify common metabolites or peptides. The

extracted peaks’ intensity or height from MS experiments is general-

ly correlated as shown in Supplementary Figure S1. Hence, we pro-

posed an approach that employs compounds or peptides without

missing spectra and the linear dependence between them for imput-

ation. The log abundance levels are assumed to follow a multivariate

normal (MVN) distribution in MS study. The parameters of MVN

can be estimated by the sample mean and sample variance-

covariance matrix computed at log scale. Therefore, our method

recovers different types of missing peaks simultaneously based on

the assumption of MVN distribution with variance-covariance, re-

gardless if the missing values were due to low abundance or

random.

The preprocessed MS proteomics and metabolomics data are

typically presented with compounds or peptides in rows and samples

in columns. We partition the raw log abundance matrix into two

parts as shown by the matrix in (1). The first part contains J

compounds without missing values, denoted by x1; . . . ; xJ and

the second contains K compounds, each with at least one missing

value, denoted by y1; . . . ; yK. For j ¼ 1; . . . ; J; k ¼ 1; . . . ; K;

xj ¼ xj1; . . . ;xjNð Þ; yk ¼ ðyk1; . . . ; ykNÞ and N is the number of inde-

pendent samples.

x1

..

.

xJ
�
y1

..

.

yK

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

x11

..

.

xJ1

� � �
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� � �

x1N
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� � �
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0
BBBBBBBBB@

1
CCCCCCCCCA

: (1)

The first imputation is to predict missing values (NA) in each yk

using candidate predictors x1; . . . ; xJ with Lasso, generating the

first imputed data matrix shown in Equation (2). In the second step,

we set each yk back to the missing data in Equation (3) and re-

predict it by an updated list of candidate predictors x1; . . . ;

xJ; ŷ1; . . . ; ŷk�1; ŷkþ1; . . . ; ŷK with Lasso, generating the second-

imputed abundance matrix.

First step: For each compound k, predict NA’s in yk with linear

model: ykn ¼ b0 þ b1x1n þ � � � þ bJxJn þ ekn; n ¼ 1; . . . ; N,

and ekn’s are normal random errors. bj’s are estimated by Lasso

using samples for which ykn 6¼ NA, i.e. minimizing 1
N

PN
i¼1

ðykn � b0 � b1x1n � � � � � bJxJnÞ2 þ k b0 þ b1 þ � � � þ bJ

� �
with

k being tuned by cross-validation. The NA in yk; i.e. ykn� is pre-

dicted by bj’s estimates and x1n� ; . . . ; xJn� , denoted as ŷkn� in

Equation (2).
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Second step: For each compound, restore the log abundance ŷk

in Equation (2) to the raw data yk with NA, and use log abundance

of all the other compounds in Equation (2) as candidate predictors,

shown by Equation (3).
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ŷ11 � � � y1N

..

.

yK1

�
yk1

..

.

� � �
�

NA

..

.
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: (3)

Build the full linear model for yk with the expanded list of candi-

date predictors in Equation (3):

ykn ¼ b0 þ b1x1n þ � � � þ bJxJn þ bJþ1ŷ1n þ � � � þ bJþk�1ŷ k�1ð Þn
þ bJþkþ1ŷ kþ1ð Þn þ bJþKŷKn þ ekn: (4)

Coefficients in Equation (4) are also estimated by Lasso with k
being tuned, similar to the first step. Re-predict NA at ykn� with the

Lasso coefficient estimates from Equation (4) and predictors

x1n� ; . . . ; xJn� ; ŷ1n� ; . . . ; ŷðk�1Þn� ; ŷðkþ1Þn� . . . ; ŷKn� , generating the

second-imputed log abundance matrix.

The value of k in Lasso represents the penalty to shrink coeffi-

cients to zero (Hui and Trevor, 2005). Thus, a different value of k
may select a different set of variables or predictors. We implemented

this two-step approach using the R package, glmnet (Friedman

et al., 2010), named TS-Lasso. One advantage of using this package

is the automatic parameter tuning of k, which only requires the in-

put number of folds (i.e. subsamples) for tuning cross-validation.

This package provides a default list of 100 candidate k values based

on the input data and selects the optimal k by a built-in cross-valid-

ation algorithm. The imputation does not require any pre-specified

biological outcomes of research interests.

2.3 Other imputation methods
In the following simulation study and real data analysis, we imputed

missing values using TS-Lasso and also compared its performance

against that of KNN, KNN-TR, RF, minimum of the data matrix,

observed compound (or peptide) minimum, the model-based imput-

ation method in DanteR (Karpievitch et al., 2009; Taverner et al.,

2012), and then compared their performance by multiple metrics.

The compound minimum is a commonly-used method for MS im-

putation. Although GSimp (Wei et al., 2018b) is a comprehensive

tool for left-censored data imputation based on QRILC (Wei et al.,

2018b), Elastic Net (by glmnet) prediction and Gibbs sampling, this

method adopts a fixed value of parameter k in glmnet without tun-

ing via cross-validation as utilized in TS-Lasso, and requires more

computation time compared to the other methods, especially for

large sample size studies (N > 30). Hence, we applied GSimp solely

in two real datasets from the Cancer Genome Atlas (TCGA) studies

to illustrate its performance.

2.4 Missing data simulation and GMSimpute
In this study, missing values indices are generated in different scen-

arios with the corresponding true values set or ‘knocked out’ to be

missing (or ‘NA’). Two types of missingness were simulated and

mixed for each dataset, i.e. abundance-dependent missingness

(ADM) and abundance-independent missingness (AIM). ADM is

also referred to as missingness below LOD. In order to generate a

comprehensive list of possible realistic missing patterns that might

be observed in real MS studies, we designed 80 scenarios that varied

in terms of the total proportion of missing values, proportion of

AIM (i.e. 0.2–0.8) and sample size, illustrated by the flowchart in

Supplementary Figure S2. Missing data in each scenario were
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simulated as a combination of ADM and AIM, with details elabo-

rated in Supplementary Methods.

We further generalized the TS-Lasso method and implemented it

in an R package GMSimpute to allow utilizing the compound min-

imum method when random missing proportions are trivial based

on prior knowledge of missing patterns. Missing patterns could be

visualized in box-violin plots using QC or technical replicates when

available, providing evidence for each type of missingness. The de-

fault setting for GMSimpute is to use TS-Lasso and only switch to

the compound minimum when a large proportion (i.e. �80%) of

LOD missing values is observed and the sample size is not large

(N � 30). GMSimpute not only includes both TS-Lasso and com-

pound minimum imputation methods, but also provides a pipeline

to generate missing values and an estimation function for the pro-

portion of AIM.

3 Results

3.1 Missing patterns in MS proteomics data
The abundance of ‘non-missing’ and ‘missing’ peptides for each pair

of technical replicates in dataset H2286 are summarized by the vio-

lin and box plots (Fig. 1). There are four biological samples, two

control samples and two samples treated by Dasatinib, and each

with two technical replicates. Overall, the H2286 dataset contains

in total 85 pS, 57 pT and 568 pY peptides for the two controls and

two drug treated samples, respectively. The mode and median of the

abundance for the peptides in ‘missing’ sets are lower than those in

‘none-missing’ sets. As expected, the peptides in the missing sets are

enriched for ADM. Furthermore, highly expressed peptides in the

upper quantile in some of the ‘missing’ sets clearly suggested that

AIM component was also observed. This is even more pronounced

in D1, D2 samples in the pY and pS panels that the medians between

the missing and non-missing set sets are much closer than those in

other panels. Similar distributions of missing patterns for the

proteomics datasets H366 and activity-based protein profiling are

included in Supplementary Figures S3–S6, and those for the metabo-

lomics dataset are in Supplementary Figure S7.

3.2 Imputation performance—simulated data
To assess the performance of GMSimpute in comparison to other

commonly-used methods, an extensive simulation study with 80

scenarios was completed. The complete data matrix was simulated

from a MVN distribution, where the mean and covariance used in

data generation are derived from the TCGA breast cancer (BC)

metabolomics data (N ¼ 30) (Tang et al., 2014). We selected 350

aligned metabolites (or features)-each contained no more than 50%

missing values-from this real dataset to compute mean and covari-

ance using the log-abundances. In the simulated complete data

matrices, missing values were generated by varying proportions of

AIM (and ADM). The distributions of simulated missing and non-

missing values were visualized in Supplementary Figure S8. When

the AIM proportion is low, the peptides in the missing set have low

abundance as simulated. As the proportion of AIM increases (from

left to right panel), there are more missing peptides with higher

abundance levels. It shares some resemblance to some of the

observed patterns in the real datasets in Figure 1.

The imputation performance was evaluated by the compound/

peptide-wise Pearson correlation and normalized root mean square

errors (NRMSE) between the complete and imputed log abundance

for all samples, with NRMSE computed as NRMSE¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 ðykn � ŷknÞ

2
q

=
�

N max ykð Þ �min ykð Þ
� ��

. Using the afore-

mentioned missing data generating procedure, each scenario con-

tains only one simulated dataset, since correlation and NRMSE are

compound/peptide-wise and there are M ¼ 350 observations for

each metric. Except for the scenario with AIM being small (i.e.

20%) for sample size of N ¼ 30, the TS-Lasso generally outperforms

other methods (Supplementary Fig. S9). Therefore, we used TS-

Lasso as the default and only set GMSimpute to the compound min-

imum method for the four scenarios with 80% of missing below

LOD when N � 30.

The results show that GMSimpute outperforms other methods,

especially when the sample size is large (N > 30). The Pearson cor-

relation presented in Figure 2 and the NRMSE presented in Figure 3

both illustrate that the performance of compound minimum or over-

all minimum decreases sharply as the AIM proportion p increases,

and is always worse than the other methods for p > 0:5.

Additionally, imputation by the overall minimum level results in

high NRMSE, especially for the scenario p ¼ 0:8. The machine

learning methods of RF, KNN and KNN-TN have higher prediction

power than compound or overall minimum for p > 0:5, but have

poor performance at p < 0:5. According to NRMSE, GMSimpute

is superior to the remaining methods across all scenarios regardless

of the proportion of AIM. Finally, the performance of GMSimpute

at N ¼ 120 240 is stable across all scenarios in terms of Pearson cor-

relation and NRMSE, which is not observed in any of the other

methods. In the simulated datasets, the DanteR model-based ap-

proach (Karpievitch et al., 2009) was not applied, since the metabol-

ite groups and phenotypes were not used for generating the

abundance matrix.

3.3 Imputation performance—metabolomics and

proteomics data in cancer studies
In addition to the simulated data, two metabolomics datasets and

two proteomics datasets in cancer research were also used as the

Fig. 1. Missing pattern in MS proteomics technical replicates. Each panel

shows the log abundance of ‘non-missing’ and ‘missing’ pY, pS or pT per

pair of technical replicates by violin and box plots. On the x-axis, C1, C2 repre-

sent two biologically control samples, and D1, D2 represent two biologically

samples treated by Dasatinib
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basis for the simulation study. For metabolomics studies, the first

dataset contains 25 TCGA BC estrogen receptor (ER) positive or

negative samples and five normal breast specimens with 399 known

metabolites (Tang et al., 2014). The second is from the TCGA clear

cell renal cell carcinoma (ccRCC) study (Hakimi et al., 2016), con-

sisting of 138 matched tumor and normal tissue pairs and 877 iden-

tified metabolites, 299 of which are unknown. The first proteomics

dataset contained 56 BC ER positive tumor samples from a study in

the Netherlands (De Marchi et al., 2016) with ‘Good’ versus ‘Poor’

tamoxifen treatment outcome. The second proteomics dataset con-

tained 31 colon versus 31 rectum adenocarcinoma tumor samples

without treatment from TCGA colorectal study (Cancer Genome

Atlas Network, 2012).

For TCGA BC metabolomics data, we used all 30 tumor and

normal samples and subset to M ¼ 193 of non-missing metabolites

as the complete abundance dataset. In contrast, the tumor samples

in the ccRCC metabolomics study were excluded in order to obtain

more non-missing metabolites as the complete abundance matrix,

i.e. 138 ccRCC normal samples with M ¼ 197 metabolites. Using

these two complete metabolomics datasets, missing abundance val-

ues were generated for 60% of the metabolites as described in the

aforementioned simulation study. The samples in the BC study were

divided into three groups of pronounced difference, i.e. normal, ER

positive and ER negative. The clinical groups for the ccRCC study

normal samples were grouped by the grade of matched tumor tissue,

between which there might not be any biological differences.

We applied DanteR ANOVA model-based imputation method

(Karpievitch et al., 2009; Taverner et al., 2012) along with TS-Lasso

only to the proteomics datasets, quantified by MaxQuant (Tyanova

et al., 2016) but not the metabolomics datasets, since this model-

based method was designed to impute proteomics abundance based

on the effect of peptide, protein and treatments (Karpievitch et al.,

2009). For both proteomics datasets, we randomly selected 1000

peptides without missing values as the complete abundance matrix.

Missing patterns were simulated for 60% of the peptides by the

same missing value-generating pipeline.

We first evaluated the performance of each method by Pearson

Correlation on log abundance for TCGA metabolomics datasets.

Figure 4 illustrates that TS-Lasso outperforms the other methods in

prediction accuracy, especially for the ccRCC study. For studies

with sample size around N ¼ 30, compound minimum outper-

formed the other methods if at least half of missing values were

ADM. On the other hand, TS-Lasso, KNN-TR and RF had similar

performance and outperformed the other methods if the random

missing proportion was higher than that of missing below LOD.

The bar charts in Supplementary Figure S10 displayed the perform-

ance of the model-based and TS-Lasso methods on the proteomics

data, which confirmed the power of TS-Lasso without using labels

of peptides, proteins and study groups in MS/MS study.

3.4 Impact on Log2 fold change and differential

analysis—TCGA metabolomics data
Based on the Pearson correlation in Figure 4, we further assessed the

top five methods for impact on two-group log2 fold change (LFC) of

abundance. The LFC in TCGA BC and ccRCC studies was com-

puted between tumor versus normal and high (G3, G4) versus low

(G2) grades, respectively. We calculated LFC per metabolite for the

Fig. 2. Pearson correlation on simulated abundance. The mean of Pearson

correlation between the true and imputed values are presented for each scen-

ario at different sample sizes. For each level of missing percentage, scenarios

are ordered by increasing the proportion of AIM from left to right

Fig. 3. Normalized root mean square errors on simulated abundance. It

shows the mean of NRMSE between the true and imputed values across

scenarios. For each level of missing percentage, scenarios are ordered by

increasing proportion of abundance independent missingness from left to

right

Fig. 4. Pearson correlation on TCGA metabolomics studies. The mean of

Pearson correlation between the true and imputed values in each TCGA study

is presented across scenarios
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imputed matrix and the complete abundance matrix, respectively,

and then compared the ratio LFCimputed/LFCcomplete by the boxplots

in Figure 5. This ratio is expected to be one for an ideal imputation.

A negative ratio indicates that imputation changed the direction of

up/downregulation, while a ratio near zero means imputation elimi-

nated (or minimized) the LFC.

TS-Lasso, KNN-TN, RF and compound minimum did not

change the upregulation in the imputed metabolites except for a few

outliers in both studies. TS-Lasso and KNN-TN displayed ratio near

one, indicating the smallest change in LFC size for the large-scale

study, and had similar performance as compound minimum in the

small-scale study. Similar results of LFC on the proteomics datasets

were presented in Supplementary Figure S11, comparing the same

imputation approaches along with DanteR model-based method.

As another way to assess the performance of imputation methods

in real data, differential analysis between clinical features in the two

TCGA metabolomics studies were as assessed for the complete and

imputed abundance matrices. The differential analysis was imple-

mented by Bioconductor R package, limma (Smyth, 2005), on the

log-transformed abundances with testing completed by F-test. The

imputation methods were first evaluated by Pearson correlation of

the log10 adjusted P-values between the complete and imputed

matrices similar to the metric in Wei et al., (2018b). Next, we com-

pared the overlap and disagreement of significant features between

imputed and complete matrices by area under the receiving oper-

ation characteristic curve, true positive rate (TPR) and false positive

rate (FPR). The significant metabolites for imputed or complete

matrices were selected based on the P-values adjusted by Benjamin–

Hochberg false discovery rate (FDR) (Benjamini and Hochberg,

1995) and a threshold of FDR < 5% for BC study and FDR < 10%

for ccRCC study. Since GSimp’s performance was comparable to

compound minimum, GSimp was not included in differential

analysis.

The correlation between the differential analysis log10 adjusted

P-values for the ‘pseudo complete’ data and the imputed data are

shown in Table 1 and Supplementary Tables S1 and S2. The applica-

tion of TS-Lasso resulted in the most accurate and stable DE

analysis results, especially for the ccRCC large sample size study.

KNN-type methods’ performance always depends on the value of K.

TS-Lasso had stable and better performance in most scenarios

according to the magnitude of impact on differential analysis

P-values. The area under the curve, TPR and FPR values for the

‘significant’ biomarkers detected at a threshold of FDR between the

complete and each imputed abundance matrix are listed in

Supplementary Table S3. The power or TPR for TS-Lasso is always

higher than the other methods with type I error or FPR controlled.

4 Discussion

The simulation study in this paper thoroughly covers a comprehensive

collection of missing patterns applied to MS metabolomics data with

different sample sizes. Analysis of the real and simulated data found

the TS-Lasso method can outperform many commonly-used methods,

particularly when the sample size is large (N > 30), because it uses the

linear dependencies between metabolites. For downstream differential

analyses in application, this imputation method can also identify differ-

entially expressed features with higher accuracy. Interestingly,

GMSimpute performance in the real data was less apparent than that

in the simulated data, because the abundance of metabolites in simu-

lated data were generated from MVN distribution and the correlation

between metabolites was more significant compared to that in the real

datasets. A benefit of the TS-Lasso method is that the recovery of un-

detected peak’s intensity does not require MS profiling information,

such as m/z value or retention time. Additionally, the GMSimpute ap-

proach selects predictors among all candidate metabolites without re-

striction on the number of predictors. There are also alternative

machine learning tools based on generalized linear regression frame-

work, such as Elastic-Net Generalized Linear Models (Hui and Trevor,

2005) and Support Vector Regression (Basak et al., 2007). However,

these methods require specification of parameters that cannot be auto-

matically tuned by the corresponding R packages.

Finally, GMSimpute does not require the specification for the miss-

ing data pattern (e.g. specific designation of peaks that are MNAR,

MCAR and MAR) and performs consistently well. It is worthwhile to

note that GMSimpute allows imputation for metabolites with missing

value proportion as much as �50%, which is higher than the trad-

itional 20% missing rate, based on the ‘80%’ non-missing value rule

(Smilde et al., 2005). On the other hand, the metabolites with more

than 50% missing values are still removed in TS-Lasso imputation as

the method may not provide accurate prediction if the full matrix is

too small. We suggest 40% as the minimum proportion for non-

missing metabolites in TS-Lasso imputation in this study. When the

non-missing metabolites are low (or lower than 40%), we could

perform multi-step-Lasso by first imputing a subset of metabolites via

TS-Lasso to increase the proportion of ‘non-missing’ metabolites in all

Fig. 5. Ratio of LFC between the imputed and complete abundance matrix on

TCGA metabolomics data. Ratio>1: LFC enlarged and no change in upregula-

tion; 0<ratio<1: LFC reduced but no change in upregulation; ratio<0: upregu-

lation reversed; ratio¼1: no change on LFC

Table 1. Pearson correlation of differential analysis log10 adjusted

P-values in between the complete and imputed data for TCGA

metabolomics studies, with known metabolites only

Missing

(AIM, ADM)

TS-LASSO Random

Forest

KNN-TN

(K¼5)

Compound

minimum

TCGA breast cancer (N¼30)

3%, 12% 0.858 0.780 0.796 0.861

6%, 9% 0.903 0.796 0.836 0.850

7.5%, 7.5% 0.921 0.813 0.851 0.876

9%, 6% 0.927 0.829 0.878 0.812

12%, 3% 0.959 0.899 0.918 0.790

TCGA ccRCC (N¼138)

3%, 12% 0.917 0.908 0.914 0.913

6%, 9% 0.903 0.886 0.893 0.914

7.5%, 7.5% 0.930 0.895 0.919 0.846

9%, 6% 0.955 0.936 0.946 0.861

12%, 3% 0.982 0.967 0.973 0.819
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samples. Then, we could use the augmented ‘non-missing’ metabolites

to predict the remaining missing abundance via TS-Lasso again.

Future work should focus on improving the performance of

GMSimpute in the context ADM or AIM and small sample size.

Further investigation is needed to identify metabolites or peptides

missing below LOD. Imputation for this pattern should be improved

to account for the lower mean abundance and higher proportion of

missing. The impact of peptide-specific LOD, co-elution and ion

abundance competition on imputation could also be investigated in

the future. For small MS studies, re-extracting peaks at targeted range

of m/z value and retention time, e.g. MS-DIAL and apLCMS, is a

good option to recover missing features. Therefore, future research on

imputation for small studies should integrate the peaks or ions infor-

mation (e.g. adduct, m/z value and retention time for LC-MS).

5 Conclusion

In summary, GMSimpute uses Lasso in a two-step procedure to im-

prove the recovery of all possible types of missing abundance in MS

data and provides accurate downstream differential expression ana-

lysis, especially in the setting of large sample sizes.
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