
Data and text mining

CoCoScore: context-aware co-occurrence

scoring for text mining applications

using distant supervision

Alexander Junge * and Lars Juhl Jensen *

Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of

Copenhagen, Copenhagen N 2200, Denmark

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on October 18, 2018; revised on May 30, 2019; editorial decision on June 5, 2019; accepted on June 10, 2019

Abstract

Motivation: Information extraction by mining the scientific literature is key to uncovering relations

between biomedical entities. Most existing approaches based on natural language processing ex-

tract relations from single sentence-level co-mentions, ignoring co-occurrence statistics over the

whole corpus. Existing approaches counting entity co-occurrences ignore the textual context of

each co-occurrence.

Results: We propose a novel corpus-wide co-occurrence scoring approach to relation extraction

that takes the textual context of each co-mention into account. Our method, called CoCoScore,

scores the certainty of stating an association for each sentence that co-mentions two entities.

CoCoScore is trained using distant supervision based on a gold-standard set of associations be-

tween entities of interest. Instead of requiring a manually annotated training corpus, co-mentions

are labeled as positives/negatives according to their presence/absence in the gold standard.

We show that CoCoScore outperforms previous approaches in identifying human disease–gene

and tissue–gene associations as well as in identifying physical and functional protein–protein asso-

ciations in different species. CoCoScore is a versatile text mining tool to uncover pairwise associa-

tions via co-occurrence mining, within and beyond biomedical applications.

Availability and implementation: CoCoScore is available at: https://github.com/JungeAlexander/

cocoscore.

Contact: alexander.junge@cpr.ku.dk or lars.juhl.jensen@cpr.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Text mining of the scholarly literature for the purpose of informa-

tion extraction is a fruitful approach to keep abreast of recent re-

search findings. The first step in information extraction is named

entity recognition (NER) (Jurafsky and Martin, 2008). Biomedical

NER aims to identify relevant entities, such as genes, chemicals or

diseases, in text. Entities of interest can either be predefined in a dic-

tionary or predicted using a machine learning model. NER is fol-

lowed by a normalization step mapping the entities to a fixed set of

identifiers, such as HGNC gene symbols (Yates et al., 2017) or

Disease Ontology terms (Kibbe et al., 2015). General approaches

such as LINNAEUS (Gerner et al., 2010), Tagger (Pafilis et al.,

2013), taggerOne (Leaman and Lu, 2016) or OGER (Basaldella

et al., 2017) recognize diverse biomedical entities in text, while spe-

cialized tools recognize mentions of genetic variants (Allot et al.,

2018) or chemicals (Jessop et al., 2011).

It is an active area of research to aggregate literature mentions of

individual entities to extract higher-level information, such as pair-

wise biomedical relations, from the literature. Approaches to extract

pairwise relations from a corpus of scientific articles, e.g.
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downloaded from PubMed, typically follow one of three main para-

digms. Firstly, pattern-based approaches define a fixed set of regular

expressions or linguistic patterns to match single phrases stating rela-

tions of interest. Pattern-based approaches typically achieve high preci-

sion but low recall in practice and require a labor-intensive manual

construction of matching rules. Examples for this class of approaches

are textpresso (Muller et al., 2004) or pattern-based approaches, as

developed by Saric et al. (2004), used in STRING (Szklarczyk et al.,

2017) and STITCH (Szklarczyk et al., 2016). Secondly, unsupervised

counting approaches count how often two entities appear together

and aggregate these counts over the whole corpus in a co-occurrence

statistic. A major shortcoming of simple counting-based co-occurrence

scoring approaches to find pairwise relations is that the context of

each co-occurrence is ignored, which can lead to low precision. For in-

stance, sentences explicitly stating the absence of an association or

describing findings unrelated to a relation are counted, too.

Furthermore, counting-based co-occurrence scoring approaches do

not allow to differentiate between different kinds of associations, such

as physical protein–protein interactions and transcription factor–target

associations. The major strengths of counting approaches are that they

typically achieve relatively high recall and require no annotated train-

ing data or manually crafted match patterns. Examples of this class of

approaches are the text mining evidence contained in STRING and

DISEASES (Pletscher-Frankild et al., 2015) as well as DisGeNet

(Pinero et al., 2017). Thirdly, supervised machine learning approaches

require a labeled training dataset of associations and train a model to

recognize relations of interest. Machine learning approaches are prone

to overfit to the often small, manually annotated training datasets

resulting in brittle models that do not generalize well to other datasets.

For example Rios et al., (2018) showed that generalization between

datasets of protein–protein and drug–drug interactions is only

achieved when additional techniques such as the use of adversarial

neural networks for domain adaption are employed. Examples for ma-

chine learning-based approaches to relation extraction are BeFree

(Bravo et al., 2015) and LocText (Cejuela et al., 2018). Bundschus

et al. (2008) make use of conditional random fields.

Distant supervision, sometimes called weak supervision, can be

used to generate datasets with a large number of samples with some

amount of noise in the labels (Craven and Kumlien, 1999; Lamurias

et al., 2017; Poon et al., 2015; Ravikumar et al., 2012). Distant

supervision for relation extraction only requires access to a know-

ledge base of well-described associations as well as an unlabeled set

of entity co-occurrences. Labels for the dataset of co-occurrences are

then inferred based on the presence or absence of the co-mentioned

entities in the knowledge base. Note that a manually annotated text

corpus is not required when using distant supervision.

In this work, we describe a novel approach, CoCoScore, that com-

bines an unsupervised counting approach with a machine learning ap-

proach based on distant supervision. This allows CoCoScore to train

a machine learning model to score sentence-level co-mentions without

requiring an expert-curated dataset of phrases describing associations.

The model is based on fastText (Joulin et al., 2016) and relies on

word embeddings that represent words as dense vectors. CoCoScore

finally aggregates all sentence-level scores in a given corpus in a final

context-aware co-occurrence score for each entity pair. We apply

CoCoScore to different biomedical relation extraction tasks: tissue–

gene, disease–gene, physical protein–protein interactions and func-

tional protein–protein associations in H.sapiens, D.melanogaster and

S.cerevisiae. CoCoScore consistently outperforms a baseline model

that uses constant sentence scores, following previously proposed

approaches. We show then that the performance of CoCoScore fur-

ther benefits from an unsupervised pretraining of the underlying word

embeddings. By querying CoCoScore with manually constructed sen-

tences, we show that keywords indicating protein–protein interac-

tions and, to a certain extent, negations and modality are reflected in

the sentence scores. A Python implementation of CoCoScore is avail-

able for download. The software package is geared towards reusabil-

ity across many text mining tasks by only requiring a list of co-

mentions for scoring without relying on a particular NER approach.

2 Materials and methods

2.1 Corpus
The corpus used for text mining consists of PubMed abstracts as well

as both open access and author’s manuscript full text articles avail-

able from PMC in BioC XML format (Comeau et al., 2018; Do�gan

et al., 2014). All abstracts were last updated on June 9th, 2018 and

all full text articles were last updated on April 17, 2018. We removed

full text articles that were not classified as English-language articles

by fastText (Joulin et al., 2016) using a pretrained language identifi-

cation model for 176 languages downloaded from https://fasttext.cc/

docs/en/language-identification.html. We furthermore removed full

text articles that could not be mapped to a PubMed ID and those that

mention more than 200 entities of any type included in our dictionary

of biomedical entities such as proteins, chemicals, diseases, species or

tissues. The final corpus consists of 28 546 040 articles of which 2

106 542 are available as full text and the remainder as abstracts.

2.2 Datasets and distant supervision
We use tagger v1.1 to recognize named entities in the corpus using a

dictionary-based approach. Tagger can be downloaded from https://

bitbucket.org/larsjuhljensen/tagger/. The dictionaries used for named

entity recognition, training and test datasets as well as pretrained

word embeddings and fastText scoring models described below can

be downloaded from: https://doi.org/10.6084/m9.figshare.7198280.

v1. The named entity recognition step is followed by a normalization

step to a common naming scheme. All gene/protein identifiers were

mapped to identifiers of corresponding proteins used in STRING

v10.5 (Szklarczyk et al., 2017). The normalization of disease and tis-

sue identifiers is described below. We used placeholder tokens in all

datasets to replace tissue, gene, protein and disease names found by

tagger. This blanking of entity names is important to learn a co-

occurrence scoring model independent of the identity of the entities

mentioned. Finally, we retain sentences that co-mention at least two

biomedical entities of interest, depending on the given dataset.

The assignments of binary class labels to the sentences in each data-

set follows a distant supervision approach to obtain a weak labeling.

Given a sentence co-mentioning two entities of interest, the sentence is

assigned a positive class label (1) if the entity pair is found in a given

gold standard set of pairwise associations. If the two entities appear in

the gold standard individually but not in association, the sentence is

assigned a negative class label (0). The gold standard is specific to each

dataset and described in the following sections. Table 1 lists informa-

tion about the final datasets. The final CoCoScore scoring scheme can

then be defined as a sum over all articles in the corpus (see Section 2.3).

2.2.1 Disease–gene associations

We followed the approach in the DISEASES database (Pletscher-

Frankild et al., 2015) and obtained an expert-curated gold standard

of disease–gene associations from Genetics Home Reference (GHR)

(Fomous et al., 2006) (downloaded on May 7, 2017) by parsing

disease-associated genes from json-formatted disease entries in

GHR. We also retained entity co-mentions in the literature that
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involved a Disease Ontology (DO) (Kibbe et al., 2015) child term of

a disease found in the gold standard. This propagation upwards the

DO hierarchy yields a larger dataset of disease–gene associations

while not compromising quality. For instance, any article linking the

gene APP to Alzheimer’s disease implies that APP has a more general

role in neurodegenerative disease. Disease names and aliases were

mapped to DO identifiers.

2.2.2 Tissue–gene associations

We followed the approach in the TISSUES database (Palasca et al.,

2018) and downloaded manually curated tissue–gene associations

from UniProtKB (SIB Members, 2016). We restricted the tissue–gene

association dataset to 21 major tissues, following the benchmarking

scheme of the TISSUES database, and employed ontology propaga-

tion upwards the BRENDA Tissue Ontology (BTO) (Gremse et al.,

2011), similar to the previously described DO propagation for disease

mentions. Tissue names were normalized to BTO identifiers.

2.2.3 Functional protein–protein associations

We obtained gold standard protein–protein associations (PPA) for

H.sapiens, D.melanogaster and S.cerevisiae following the approach

for benchmarking associations in STRING (Szklarczyk et al., 2017):

Proteins found in at least one KEGG pathway map (Kanehisa et al.,

2017) were considered positives since they are functionally associ-

ated in the given pathway. We also supplemented the original

KEGG maps with artificial maps created by joining proteins from

maps that share common metabolites.

2.2.4 Physical protein–protein interactions

We obtained gold standard physical protein–protein interactions (PPI)

for H.sapiens, D.melanogaster and S.cerevisiae by obtaining interactions

classified as ‘binding’ from STRING v10.5 and retained only the highest

scoring interactions, with a score >0.9, as the gold standard. Binding

interactions with a score �0:9, were added to a grey list. Co-mentions

of grey-listed protein pairs were ignored and counted as neither positives

nor negatives when creating the gold standard via distant supervision.

While the resulting PPI datasets only contain protein pairs that physical-

ly bind to each other, the PPA datasets also encompass other functional

associations as defined by membership in the same pathway.

2.3 Context-aware co-occurrence scoring
The context-aware co-occurrence scoring approach implemented in

CoCoScore consists of two components. Firstly, a sentence-level classifi-

cation model is trained to predict context-aware co-mention scores.

Secondly, a scoring scheme combines sentence-level scores into a co-

occurrence score taking evidence gathered over the whole corpus into

account.

2.3.1 Unsupervised pretraining of word embeddings

Word embeddings represent each unique word in the corpus by a

vector. We use a skipgram word embedding model that learns word

vectors such that the vector representation of a word can be used to

predict the words appearing in its context. This objective allows to

represent words with similar syntax and semantics by similar vec-

tors, as measured in terms of their inner product. Further details on

the skipgram model and its training process can be found in

Mikolov et al. (2013) and Bojanowski et al. (2016).

We pretrained word embeddings using fastText v1.0 (Joulin

et al., 2016) on the whole corpus, not just on sentences in the dataset

that co-mention entities of interest, which improves their generaliza-

tion to downstream machine learning tasks. This step can be viewed

as an instance of transfer learning where information is brought

from a general task, the pretraining of word embeddings, to a specif-

ic task, the classification of sentences co-mentioning biomedical

entities.

2.3.2 Training a sentence classification model

Our sentence-level classification model was implemented using

fastText v.1.0 in supervised classification mode. Given a sentence,

the pretrained vector representations of each word in the sentence

are averaged. A logistic regression classifier M, implemented in

fastText, then predicts a binary class label since each sentence is

labeled as either positive or negative after distant supervision. The

sentence classification model M returns a score between 0 and 1. We

interpret this score as the probability that the sentence belongs to

the positive class, i.e. that it states an associations.

The dimensionality of word embeddings was set to 300; we per-

formed 50 epochs of stochastic gradient descent with learning rate

of 0.005 to train the model. We used unigram as well as bigram

embeddings in the logistic regression classifier M to partially capture

local word order. Instead of performing a computationally expen-

sive cross-validation for hyperparameter tuning, we set these

fastText hyperparameters by manually optimizing the performance

on a subset of the disease–gene association training data. Remaining

hyperparameters were set to their defaults in the fastText v1.0

release.

2.3.3 Co-occurrence scoring

The final CoCoScore co-occurrence scores for a pair of entities

aggregates the scores computed by sentence model M over all docu-

ments in the dataset. Given a corpus C and an entity pair (i, j), the

co-occurrence count C(i, j) for the pair is

Cði; jÞ ¼
X
k2C

skði; jÞ;

Table 1. Entity, pair and co-mention counts as well as percentage of positive instances in all datasets

Dataset type Organism Entity count Pair count Pos. pairs Gold pairs Gold pairs cov. Co-mentions Pos. co-mentions

Disease–gene H.sapiens 698 diseases, 1972 genes 51 786 4.9% 2726 93.7% 1 182 951 45.2%

Tissue–gene H.sapiens 21 tissues, 14066 genes 174 916 13.2% 31 387 74.0% 15 706 365 39.4%

Functional PPA H.sapiens 4695 proteins 1 032 063 14.1% 361 744 40.4% 16 390 304 58.2%

Functional PPA D.melanogaster 1792 proteins 36 524 27.4% 88 604 11.3% 358 141 64.9%

Functional PPA S.cerevisiae 1567 proteins 47 005 32.6% 59 111 25.9% 301 582 65.4%

Binding PPI H.sapiens 6053 proteins 1 236 751 2.9% 76 299 47.4% 15 611 378 21.3%

Binding PPI D.melanogaster 2168 proteins 60 378 12.7% 32 541 23.6% 463 822 42.6%

Binding PPI S.cerevisiae 1612 proteins 35 786 17.2% 13 500 45.6% 240 112 59.0%

Note: ‘Gold pairs’ refers to the total number of pairs found in the gold standard. ‘Gold pairs cov.’ is the percentage of gold-standard pairs co-mentioned in at

least one sentence in the dataset.
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where

skði; jÞ ¼
maxu2Tkði;jÞ ruði; jÞ if i and j are co-mentioned in k
0 else

:

�

Here, Tkði; jÞ is the set of sentences co-mentioning i and j in

document k and ruði; jÞ is the sentence-level score returned by M for

sentence u. The co-occurrence counts C(i, j) are converted to co-

occurrence scores S(i, j) as follows:

Sði; jÞ ¼ Cði; jÞa Cði; jÞCð�; �Þ
Cði; �ÞCð�; jÞ

� �1�a

: (1)

Cði; �Þ and Cð�; jÞ are the sums of all co-occurrence counts involving

entity i and j, respectively, Cð�; �Þ sums the co-occurrences of all entity

pairs. The hyperparameter a trades off the influence of C(i, j) counts

and the observed-over-expected ratio captured in the second term of

Equation 1. a was set to 0.65 after cross-validation (see Section 3.1).

Figure 1 outlines the complete context-aware co-occurrence

scoring approach, illustrating both C(i, j) and M.

2.3.4 Baseline scoring scheme

We next defined a baseline model to compare CoCoScore to.

Contrary to the context-aware model implemented in CoCoScore,

the baseline model does not take context into account but scores all

co-mentions equally. Given a corpus C and entity pair (i, j), the base-

line co-occurrence count ~Cði; jÞ is defined as:

~Cði; jÞ ¼
X
k2C

~skði; jÞ;

where

~skði; jÞ ¼
1 if i and j are co-mentioned in a sentence in k
0 else:

�

Note that the central difference between CoCoScore and this

baseline is that ~skði; jÞ in the baseline uses a constant sentence score

of 1 while skði; jÞ in CoCoScore relies on sentence scores learned by

the model M. As before, the final co-occurrence scores ~Sði; jÞ are

computed from ~Cði; jÞ:

~Sði; jÞ ¼ ~Cði; jÞa
~Cði; jÞ ~Cð�; �Þ
~Cði; �Þ ~Cð�; jÞ

 !1�a

(2)

For the datasets of sentence-level co-mentions used in this work,

this baseline model is equivalent to the co-occurrence scoring model

used in, e.g. STRING (Franceschini et al., 2013; Szklarczyk et al.,

2017), STITCH (Szklarczyk et al., 2016), TISSUES (Santos et al., 2015;

Palasca et al., 2018) and DISEASES (Pletscher-Frankild et al., 2015).

2.3.5 Performance evaluation

The area under the precision–recall curve (AUPRC) achieved by a

given scoring model was computed by first sorting all entity pairs

according to their co-occurrence scores in decreasing order and calcu-

lating precision as well as recall at each score threshold as follows:

precision ¼ TP

TPþ FP

and

recall ¼ TP

TPþ FN
¼ TP

P
;

where TP is the number of true positives, FP is the number false of

positives, FN is the number of false negatives and P is the number of

positives. The AUPRC is the area under the precision–recall curve.

A random classifier has AUPRC equal to the fraction of positives in

the dataset and a perfect classifier has an AUPRC of 1. Precision–recall

curves are better suited than receiver operating characteristic curves

(ROC) for imbalanced datasets since the latter give inflated performance

estimates (Lever et al., 2016; Lichtnwalter and Chawla, 2012). However,

for comparison, we also state model performance in terms of area under

ROC (AUROC) in the Supplementary Material of this article.

Fig. 1. Context-aware scoring of co-occurrences. (A) N sentences in the corpus co-mention the gene LRRK2 (i) and Parkinson’s disease (j). Context-aware sen-

tence-level scores r(i, j) are summed to produce the final co-occurrence count C(i, j). (B) The score r1ði ; jÞ is computed by blanking gene and disease names, map-

ping all remaining words to their word vectors and scoring the resulting sentence vector using a machine learning model. As described in Section 2.3.2, this

model is based on logistic regression and trained via distant supervision
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All AUPRC performance measures reported below were adjusted to

a fixed percentage of 10% positive samples in the dataset. This adjust-

ment makes AUPRC values comparable between datasets with different

fractions of positives. We picked a positive percentage of 10% since

this seems to be a realistic prior given our datasets (Table 1). Adjusting

the AUPRC to a fixed class distribution was performed as follows: Let

a be the target fraction of positives in the dataset (0.1 in this work) and

b be the observed fraction of positives in the dataset. To adjust the

AUPRC, we replace precision with the following adjusted measure:

precisionadjusted ¼
ða=bÞ � TP�

a=bÞ � TPþ ðð1� aÞ=ð1� bÞÞ � FP

The adjusted AUPRC is then the area under the precisionadjusted–

recall curve.

2.3.6 CV and train/test splitting

For each dataset, we reserved all co-mentions involving 20% of the en-

tity pairs as the test set which is only used for the final model evalu-

ation step. This pair-level splitting ensures independence of training

and test datasets since all co-mentions of a specific pair of entities are

found exclusively in the training or exclusively in the test set. Each

training dataset consists of co-mentions of the remaining 80% of entity

pairs. In the training dataset, we randomly sampled a maximum of

100 sentence-level co-mentions per pair to ensure that the sentence-

level model M does not overly fits to pairs that appear very often in the

literature. To ensure a realistic performance evaluation, no such sam-

pling was done for the test dataset. 3-fold cross-validation (CV) on the

training set was used to tune the hyperparameter a. For computational

reasons, we randomly sampled 10% of interactions in the three biggest

datasets (functional PPA H.sapiens, binding PPI H.sapiens, tissue–gene

associations) during CV. This reduced the number of associations in

the downsampled dataset to approximately the number of associations

in the remaining datasets. 1000 bootstrap samples on the test dataset

were drawn to compute performance standard deviations and to test

statistical significance using Student’s t-test.

3 Results and discussion

3.1 Sentence scores of higher importance in CoCoScore

than in baseline model
Before analyzing the performance on the test set, we tuned the weight-

ing exponent hyperparameter a for both CoCoScore and the baseline

model (see Section 2.3) via cross-validation (CV). a determines how

much weight is put on the co-occurrence counts compared to the

observed-over-expected ratio. The CoCoScore model achieved optimal

CV performance for a � 0:65 and the baseline model for a � 0:55 for

most datasets. Supplementary Figure S1 depicts CV performance de-

pending on a for both models. We consider the tissue–gene dataset,

where CV results in a considerably down-weighted observed-over-

expected ratio term, an outlier due to the poor performance of both

models on this dataset. The optimal a for CoCoScore was larger than

the optimal a for the baseline model. This means that the best perform-

ing CoCoScore model put more weight on the co-occurrence counts

than on the observed-over-expected-ratio, compared to the baseline

model (Equations 1 and 2). We hypothesize that this is because

CoCoScore down-weights uninformative sentences, compared to in-

formative ones, making the sentence-level scores more reliable.

Furthermore, the CoCoScore model outperformed the baseline on all

datasets for the respective optimal a ranges as well as two alternative

CoCoScore implementations that use the sentence scoring model M as

a filter for removing low scoring sentences prior to score aggregation

(see Supplementary Fig. S2). Below, we use a ¼ 0:65 for CoCoScore

and a ¼ 0:55 for the baseline to compute test dataset performance.

3.2 CoCoScore outperforms baseline model in

identifying disease–gene and tissue–gene associations
Table 2 lists AUPRC performance for both CoCoScore and the base-

line model on the tissue–gene and disease–gene association datasets.

Supplementary Table S1 depicts the performance in terms of the

area under the receiver operating characteristic curve (AUROC).

CoCoScore outperformed the baseline model on both dataset. Both

approaches achieved considerably better performance on the dis-

ease–gene than on the tissue–gene association dataset. We thus

manually inspected the 10 highest-scoring associations in the tissue–

gene association dataset. Five of these tissue–gene pairs were

counted as false positives, as defined by the gold standard derived

from UniProtKB (Section 2.2.2). However, each of these pairs had

more than 900 sentence-level co-mentions in articles and multiple

sentences clearly stating the expression of the respective gene in the

respective tissue. We concluded that these five associations are likely

true positives that are missing in the gold standard rather than false

positives. The seemingly poor performance on the tissue–gene asso-

ciation dataset can in part be explained by the incompleteness of the

gold standard. At the same time, CoCoScore appears to be able to

learn informative text patterns leading to an improved performance.

3.3 Physical protein–protein interactions are better

identified than functional protein–protein associations
Figure 2 depicts performance on functional protein–protein associa-

tions (PPAs) and physical protein–protein interactions (PPIs) across

Table 2. Adjusted area under the precision-recall curve (AUPRC)

for CoCoScore and baseline model on tissue–gene and disease–

gene association datasets generated via distant supervision

Method Disease–gene Tissue–gene

CoCoScore 0.86 0.19

Baseline 0.80 0.17

Fig. 2. Performance on functional protein–protein associations and physical

protein–protein interactions across H.sapiens, D.melanogaster and S.cerevisiae

for both CoCoScore (blue) and the baseline model (red). Performance is

depicted as adjusted area under the precision-recall curve (AUPRC) (Color ver-

sion of this figure is available at Bioinformatics online.)
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H.sapiens, D.melanogaster and S.cerevisiae for both CoCoScore and

the baseline. Supplementary Figure S3 depicts the performance in

terms of AUROC. CoCoScore outperformed the baseline and

yielded similar improvements on all functional PPA and physical PPI

datasets. While both models performed better on the binding PPI

datasets than on the functional PPA datasets, we did not observe a

clear trend in performance differences between organisms.

CoCoScore achieves best adjusted AUPRC of 0.67 for binding PPI in

H.sapiens and adjusted AUPRC of 0.57 in D.melanogaster and of

0.58 in S.cerevisiae. On the other hand, CoCoScore achieves best

adjusted AUPRC of 0.50 for functional PPA in both D.melanogaster

and S.cerevisiae and an adjusted AUPRC of 0.44 for H.sapiens.

Overall, CoCoScore outperformed the baseline model on all six pro-

tein–protein association datasets surveyed.

3.4 Pretrained word embeddings improve performance

on most datasets
The default CoCoScore sentence classification model relies on word

embeddings that were pretrained in an unsupervised manner on all

articles in the corpus. To assess the impact of this pretraining step

on CoCoScore’s performance, we compared the usage of pretrained

word embeddings to the usage of embeddings that are learned at

training time. In the latter scenario, the fastText-based sentence

scoring model not only optimizes the weights of the logistic regres-

sion classifier but also the vectors representing words, starting from

randomly initialized vectors. Since the latter approach never accesses

the complete corpus, word embeddings are only trained on sentences

co-mentioning entities that are found in the respective training

dataset.

Figure 3 depicts adjusted AUPRC performance with and without

pretrained word embeddings. The CoCoScore performance in

Figure 3 is the same as shown in Figure 2 and Table 2.

Supplementary Figure S4 depicts performance in terms of AUROC.

The CoCoScore model using pretrained word embeddings in

most cases outperformed non-pretrained word embeddings. We ob-

serve that the pretraining step was more fruitful for datasets with

poor performance. The small increase in performance for some data-

sets could be due to the considerable size of the distantly supervised

dataset (the smallest dataset contains 240k sentence co-mentions)

which are large enough to train adequate word embeddings without

pretraining. However, we still recommend using CoCoScore with

pretrained embeddings for best performance.

3.5 Making sense of CoCoScore’s sentence scoring

model by manually querying the model
The 300 dimensions of the word embeddings are not easily interpret-

able making it hard to understand which features drive sentence score

predictions for a model trained on a given dataset. We thus used an

indirect approach to interpret the sentence-level scoring model learn-

ed by CoCoScore by querying the model trained to recognize binding

PPIs in S.cerevisiae with hand-crafted example sentences.

We observed that the model returned high scores for sentences

containing keywords linked to physical interactions, such as the

words ‘complex’ or ‘subunit’, but did not pick up modality or uncer-

tainty in sentences very well, once a keyword was present. For in-

stance, the sentence ‘_ and _ form a complex.’ received a score of

0.99 while the sentences ‘_ and _ do not form a complex.’ and ‘_

and _ might form a complex.’ received a score of 0.98 and 0.99, re-

spectively. Here, ‘_’ is a generic token used to blank protein names.

On the other hand, the model seemed to recognize negations and

modality in sentences that contained the verb phrase ‘bind to’. The

sentence ‘_ always binds to _.’ received a score of 0.72, ‘_ binds to

_.’ received a score of 0.44, ‘_ possibly binds to _.’ received a score

of 0.37, ‘_ does not bind to _.’ received a score of 0.34, and ‘_ never

binds to _.’ received a score of 0.24. Based on this exploratory ana-

lysis, we conclude that the CoCoScore sentence scoring model for

S.cerevisiae binding PPIs seems to rely on keywords and is able to

detect modality and negations in certain situations.

3.6 Limitations and future work
While CoCoScore implements a novel context-aware co-occurrence

scoring approach that improves upon a baseline model for all our

A B

Fig. 3. Performance using pretrained and not pretrained word embeddings. Not pretrained embeddings are learned at training time. The performance of

CoCoScore with (blue) and without (green) pretrained word embeddings is shown for functional PPA and binding PPI datasets (A) as well as disease–gene and tis-

sue–gene associations (B). Performance is depicted as adjusted area under the precision-recall curve (AUPRC). All performance standard deviations after boot-

strap resampling were <0.006. The difference between models using pretrained and learned embeddings was significant for all datasets except disease–gene

associations and binding PPIs in D.melanogaster at a significance level of 0.001 (Color version of this figure is available at Bioinformatics online.)

CoCoScore 269

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz490#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz490#supplementary-data


test datasets, we see several limitations and directions for future re-

search. Relations extracted by CoCoScore currently lack directional-

ity. Many biomedical relations, such as protein phosphorylation, are

directional that is not trivial to infer if, for instance, one protein kin-

ase phosphorylates another, as commonly seen in signal transduc-

tion pathways. To address this shortcoming, CoCoScore’s distant

supervision approach could be combined with pattern-based

approaches to infer directionality. Alternatively, the word embed-

dings for the words in a sentence could not be collapsed into a single

sentence vector but kept as a sequence of vectors fed into a sequence

model such as a recurrent neural network.

We also plan to investigate the transferability of pretrained

sentence scoring models between relation extraction tasks.

For instance, a unified model could potentially be trained that recog-

nizes not one specific type of relations, such as disease–gene

associations, but also other relations, such as protein–protein inter-

actions. Keywords and modality driving sentence scores (Section

3.5) should, to some extent, be transferrable between relation ex-

traction tasks. Similarly, pretrained scoring models trained on one

dataset could be combined with supervised learning performed on a

second, expert-labeled dataset. This would enable the simultaneous

use of large, distantly supervised dataset as well as small, accurately

labeled dataset to boost performance. Magge et al. (2018) use a

similar approach to identify geographic locations in sequence data-

base entries.

Lastly, CoCoScore could be extended to score co-mentions be-

yond sentence-level by, for example, introducing a term in the scor-

ing model that depends on the distance between entities co-

mentioned outside a sentence.

4 Conclusion

Our newly developed approach, CoCoScore, performs pairwise

co-occurrence scoring over a big corpus by combining an unsuper-

vised counting scheme with a distantly supervised sentence

scoring model based on pretrained word embeddings. This scoring

model is in some situations able to recognize keywords, negations

and modality in sentences. Our approach performs better than a

baseline scoring scheme inspired by previously proposed approaches

on all eight benchmark datasets used in this study, covering disease–

gene, tissue–gene, physical protein–protein interactions and func-

tional protein–protein associations. The performance improvements

achieved by CoCoScore are driven by the underlying sentence scor-

ing model.

CoCoScore is a versatile tool to aid biomedical relation extrac-

tion via text mining that is applicable to many applications beyond

those presented in this paper. Our open source implementation only

requires sentences co-mentioning entities as input and is available

under a permissive license together with pretrained word embedding

as well as the sentence scoring models trained in this work. This

eases the integration of CoCoScore into existing text mining work-

flows for biomedical relation extraction.
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