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Abstract

The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate 

and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, 

mutations in half of the twenty human SOX genes have been associated with rare congenital 

disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous and 

inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been 

reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates 

DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review 

key clinical and molecular features of SOXopathies and discuss the prospect that the disease 

family likely involves more SOX genes and larger clinical and genetic spectrums than currently 

appreciated.
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DEFINING SOXOPATHIES

A seminal discovery was made in 1990 with the cloning of SRY (see glossary), the gene that 

occupies and defines the sex-determining region on the Y chromosome and whose 

inactivation underlies disorders of sex development (DSDs) [1]. SRY encodes a transcription 

factor with a high-mobility-group (HMG)-type DNA-binding domain. This discovery 

prompted a search for close relatives, with the vision that SRY-related HMG box (SOX)-

containing genes would also have critical roles. Major cloning efforts and completion of 

genome sequencing projects made it clear by the turn of the 21st century that humans and 

most mammals possess nineteen SOX genes in addition to SRY [2]. Both forward and 

reverse genetic approaches have uncovered pivotal functions for most SOX genes, such that 

it is now well recognized that the SOX family exerts master roles in many developmental, 

physiological and pathological processes by governing cell type-specific genetic programs in 
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both stem/progenitor cells and highly specialized cell types [3]. Thanks to major advances in 

genetic testing procedures, mutations in half of the SOX genes have been associated to date 

with congenital diseases. Several of these associations were made very recently, and the 

numbers of reported pathogenic mutations have been increasing exponentially over the years 

(Figure 1). SOX mutation-driven diseases affect various processes, but most are 

developmental disorders and due to de novo alterations inactivating one SOX allele. We 

henceforward refer to them as SOXopathies, just as RASopathies, for instance, are due to 

mutations in components of the RAS/MAPK pathway [4] and collagenopathies are primarily 

due to mutations in collagen genes [5]. We here review these diseases clinically and 

genetically and in the context of current knowledge of SOX functions. While focusing on 

developmental disorders due to germline mutations in SOX genes, we also briefly discuss 

other diseases, such as cancers, which may be triggered or influenced by somatic mutations 

in SOX genes or by factors altering SOX gene or protein activities. We end with a discussion 

on the perspective that SOXopathies likely involve more SOX genes and exhibit larger 

clinical and genetic spectrums than currently known.

SHARED AND UNIQUE FEATURES OF SOX PROTEINS AND GENES

SOX proteins, like TCF/LEF proteins, share significant identity in their DNA-binding 

domain with HMGB proteins (Figure 2A). The latter are ubiquitous chromatin architectural 

factors that run in SDS-PAGE with a high mobility [6], whereas SOX and TCF/LEF proteins 

are classical transcription factors expressed in discrete cell types. The HMG domain forms 

three α-helices that fold into an L-shaped structure, penetrates the minor groove of DNA, 

and sharply bends DNA (Figure 2B). Key residues responsible for these properties and for 

nuclear trafficking are conserved among HMGB, SOX, and TCF/LEF proteins, but the 

degree of residue identity is much higher within than across families (Figure 2A). 

Differences account for DNA sequence specificities and bending angles. SOX factors 

preferentially bind motifs matching or resembling C[A/T]TTG[A/T][A/T]. DNA bending is 

critical for transcriptional activity, likely by facilitating enhanceosome assembly [7]. As 

further described later, missense variants in many HMG-domain residues cause 

SOXopathies, showing how important the domain and many of its residues are.

The SOX family comprises eight groups, SOXA to SOXH (Figure 2A and 2C). SOX 

proteins share almost 100% identity in the HMG domain with same-group relatives, but only 

about 50% with other-group members. They also share significant identity with same-group 

members outside the HMG domain, especially in functional domains, which include 

homodimerization, transactivation and transrepression domains, but share virtually no 

identity with other-group members outside the HMG domain. One would expect that 

missense variants would cause diseases even if located outside the HMG domain, but as 

described later, only a few cases have been described so far.

SRY is located on the Y chromosome in a region ancestrally related to a segment of the X 

chromosome containing SOX3. The other SOX genes are spread across autosomal 

chromosomes (Figure 2D). Same-group SOX genes have identical exon-intron structures. 

The SOXA, SOXB and SOXC genes are made of a single exon, whereas SOXD genes 

comprise at least 15 coding exons and multiple 5’ untranslated ones, and SOX5 and SOX6 
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are spread over hundreds of kb. The other SOX genes are small and feature 2 to 5 exons. 

Regardless of body size, most SOX genes are separated from coding neighbors by dozens to 

thousands of kb. These flanking regions typically house multiple enhancers that underlie 

complex modes of gene regulation. Accordingly, mutations in these regions have been 

shown in multiple cases to cause diseases. The expression pattern of each SOX gene is 

unique, typically including several cell types, but overlaps with that of same-group 

members, allowing the genes to exert additive or redundant functions. This property implies 

that inactivating mutations often cause disease only in processes where key roles of a gene 

cannot be compensated by those of a co-expressed close relative.

SOXOPATHIES REVEAL KEY ROLES FOR HUMAN SOX GENES DURING 

AND BEYOND DEVELOPMENT

SRY

To date, several hundreds of distinct SRY mutations have been reported to cause disease, 

more than for any other SOX gene, likely because SRY is a master determinant of sex 

determination (Figure 3), is present at only one copy, and has no SOXA relative to share its 

functions with. Most SRY mutations cause XY sex reversal (Key Table) [8, 9]. They include 

full or partial gene deletions as well as point mutations affecting protein integrity [10, 11]. 

Disease-causing missense variants have been identified in almost every HMG-domain 

residue, but rarely outside this domain [12]. This is explained by the fact that SRY has no 

functional domain other than its HMG motif. SRY translocations from the Y to the X 

chromosome also cause DSDs. In these cases, individuals carrying SRY on an X 

chromosome develop as males (XX sex reversal), and individuals with an SRY-depleted Y 

chromosome develop as females (XY sex reversal) [13]. Mouse models have confirmed and 

explained the master role of SRY in sex determination: XY mice lacking Sry develop as 

females, and XX mice carrying an Sry transgene develop as males [14, 15]. Sry is transiently 

expressed in the embryonic gonad and its main role is to activate Sox9, which then activates 

other male sex differentiation genes, including Sox8 [16].

SOXE genes

The SOXE genes, SOX8, SOX9 and SOX10, were next after SRY to be associated with 

diseases. They encode transcriptional activators with critical functions in many processes.

Mutations inactivating one SOX9 allele were first shown in 1994 to cause Campomelic 

Dysplasia (CD) [17, 18]. The disease owes its name to the bending (campo) of limbs 

(melic), one of many features of this neonatally lethal skeletal dysplasia. The few individuals 

that have survived to adulthood presented such clinical features as mental retardation and 

hearing loss in addition to short stature and generalized skeletal malformations [19]. SOX9 

is a master regulator of chondrogenesis [20]. It is highly expressed in skeletal progenitor 

cells and throughout chondrocyte differentiation, and activates most chondrocyte-specific 

genes [21, 22]. Its heterozygous inactivation in mice reproduces human CD and its 

homozygous inactivation precludes chondrogenesis [23, 24]. Non-skeletal defects of CD 

patients reflect important functions of SOX9 in other processes, but based on data from 

homozygous mutant mice, they reveal only the “tip of the iceberg” regarding SOX9 
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functions. As indicated earlier, SOX9 is also a master of sex determination. Two-thirds of 

XY CD patients are sex reversed, and 17q duplications that include SOX9 cause XX sex 

reversal [25]. In mice, Sox9 homozygous inactivation causes XY sex reversal, as so does 

Sox9 heterozygous inactivation in a Sox8-null background [26, 27]. More than a hundred 

different mutations affecting SOX9 have been shown to cause disease. They are described in 

depth in BOX 1 as a paradigm of the wide spectrums of mutations and diseases than can be 

associated with a SOX gene. In brief, CD with XY sex reversal is due to de novo 

heterozygous SOX9 mutations that delete the gene body, translocate most of the upstream 

regulatory region, or preclude expression of a functional protein. Missense variants are 

almost always located in the HMG and homodimerization domains, the latter allowing high-

affinity binding of SOX9 to pairs of DNA recognition sites. Microdeletions and 

translocations occurring far-upstream or downstream of SOX9 cause milder diseases, 

namely acampomelic dysplasia, Pierre Robin sequence (PRS), and DSD without skeletal 

dysplasia, while duplications of specific upstream regions have been shown to cause XX sex 

reversal. While nonsense mutations affecting the C-terminal transactivation domain cause 

CD and XY sex reversal, proving the critical role of this domain, missense mutations in this 

domain only cause testicular dysgenesis. The reason is likely that transactivation domains 

are intrinsically disordered and may thus tolerate missense variants better than the highly 

structured HMG and dimerization domains.

SOX8 inactivation was initially proposed to contribute to mental retardation in Alpha-

Thalassemia/Mental Retardation (ATR-16), a syndrome due to deletions or unbalanced 

translocations within a 1-Mb 16p13.3 region that includes SOX8 [28]. However, this 

proposition remains unvalidated. Recently, genome rearrangements just upstream of SOX8 
and missense variants within and outside the HMG domain were identified in males and 

females with a DSD spectrum that included oligozoospermia, azoospermia, primary ovary 

deficiency and XY sex reversal [29]. Noteworthily, mental retardation was not reported. 

These findings establish the importance of human SOX8 in sex determination, like mouse 

Sox8. Sox8-null mice are viable and leaner than normal [30]. Sex determination is 

unaffected unless, as reported earlier, the mice are also Sox9 heterozygous null. Sox8-null 

males, however, become infertile early in adulthood [31].

Heterozygous mutations inactivating SOX10 cause various neurocristopathies: Waardenburg 

disease, characterized by hearing loss and pigmentation defects; the Hirschsprung intestinal 

disorder; PCWH, which comprises Peripheral demyelinating neuropathy, Central 

demyelinating leukodystrophy, and Waardenburg and Hirschsprung disease [32, 33]; and 

Kallmann syndrome, a form of hypogonadism characterized by delayed or absent puberty 

and olfactory defects [34]. The diseases are reminiscent of the phenotypes of mice carrying 

spontaneous Sox10 inactivating mutationa (e.g., Sox10DOM) or a Sox10 null allele at the 

heterozygous state (megacolon and pigmentation defect) or homozygous state (namely, lack 

of peripheral nervous system glia and disrupted differentiation of oligodendroglia) [35-37]. 

Many aspects of these diseases reflect the fact that SOX10 is essential to specify neural crest 

cells, controls the development of various neural crest derivatives, including Schwann cells, 

cardiac crest cells, sensory neurons and melanocytes, and is also essential for the 

development of oligodendrocytes from neuroectoderm [38, 39].
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SOXB genes

The SOXB group comprises SOXB1 (SOX1, SOX2, and SOX3) and SOXB2 genes (SOX14 
and SOX21), originally described as encoding transcriptional activators and repressors, 

respectively. Recent studies, however, have shown that this functional distinction between 

the two subgroups may not be as strict as initially proposed, as SOX2, for instance, represses 

as many genes as it activates in neural stem cells [40]. All SOXB genes are expressed in 

progenitor cells from early development and most highly in the nervous system.

Expansions of a polyalanine tract within the SOX3 coding sequence were shown in 2002 to 

cause X-linked mental retardation, short stature due to growth hormone deficiency, and 

occasionally facial dysmorphism and complete panhypopituitarism [41]. These alterations 

cause protein aggregation, and thus loss of function. Other mutations, either reducing or 

increasing SOX3 dosage, may cause variants of septic-optic dysplasia (SOD), a highly 

heterogeneous disease that includes optic nerve hypoplasia, corpus callosum and septum 

pellucidum agenesis, and panhypopituitarism due to pituitary hypoplasia [42]. Furthermore, 

unique rearrangements in the SOX3 regulatory region, which likely led to ectopic expression 

of SOX3 in the developing gonad, were reported in patients with XX male sex reversal [43]. 

Consistent with these diseases, Sox3-null mice have profound growth insufficiency, 

weakness, craniofacial abnormalities, hypopituitarism, and midline CNS defects [44]. They 

do not have sex reversal, but both males and females show severely reduced fertility.

SOX2 is well known for its master roles in specification, differentiation and maintenance of 

pluripotent embryonic stem cells and other progenitor cell types [45]. Various kinds of 

heterozygous loss-of-function mutations were first associated in 2003 with anophtalmia or 

microphtalmia syndromes often including craniofacial and other skeletal abnormalities, 

developmental delay, learning difficulties, esophageal atresia, sensori-neural hearing loss 

and genital abnormalities [42, 46]. In agreement with these data, Sox2-null mice die in early 

embryogenesis from failure to form pluripotent epiblast [47]; mice with Sox2 hypomorphic 

mutations display a spectrum of eye and other malformations [48]; and Sox2+/− mice show 

impaired development of the hypothalamo-pituitary and reproductive axes [49].

It remains unknown whether SOX1, SOX14 and SOX21 mutations cause diseases. It also 

unknown whether mouse Sox14 is critical. In contrast, Sox1-null mice have microphthalmia 

and cataract [50] and suffer from epilepsy associated with abnormal ventral forebrain 

development and olfactory cortex hyperexcitability [51], and Sox21-null mice are small, for 

unexplained reasons [52], and show cyclic alopecia, explained by master roles for SOX21 in 

hair shaft cuticle differentiation [53]. One can thus predict that SOXopathies may soon be 

revealed for these genes.

SOXF genes

SOX7, SOX17, and SOX18 compose the SOXF group. They encode transcriptional 

activators that have been shown in animal models to be pivotal in several developmental 

processes, including cardiogenesis, vasculogenesis and angiogenesis (SOX7, SOX17 and 

SOX18), lymphangiogenesis and hair follicle development (SOX18), and 
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hemangioblastogenesis, definitive endoderm and gastro-intestinal system formation 

(SOX17) [54-60].

First described in 2003, SOX18 loss-of-function mutations cause Hypotrichosis-

Lymphedema-Telangiectasia syndrome (HLTS), i.e., sparse hair, absence of eyebrows and 

eyelashes, lymphatic edema, and peripheral vein anomalies [61]. Following this report, one 

patient developed renal failure and additional patients with Hypotrichosis-Lymphedema-

Telangiectasia-Renal Defect syndrome (HLTRS) were found to carry pathogenic SOX18 
variants [62]. Some variants were heterozygous and nonsense, truncating SOX18 before or 

within its transactivation domains. It was proposed, but not tested, that the mutant protein 

could dominant-negatively affect the wild-type protein. Other variants were homozygous 

missense and found in consanguineous families, in which heterozygotes were unaffected. 

They constitute the first and so far, only cases of recessive SOXopathy.

SOX17 variants were described in 2010 in patients with congenital anomalies of the kidney 

and urinary tract (CAKUT) [63]. Several patients were carrying a missense variant located 

in a region of unknown function and causing excessive accumulation of SOX17 protein in 

vitro. It was later found in an individual that did not have CAKUT disease [64]. Other 

patients also had missense variants outside the HMG domain of unknown functional impact. 

These SOX17 variants could generate risk rather than causative alleles for CAKUT. Very 

recently, SOX17 heterozygous variants linked to pulmonary arterial hypertension and 

congenital heart disease (PAT-CHD). Two studies reported frameshift, nonsense and 

missense variants, the latter affecting highly conserved residues in the HMG domain or 

transactivation/β-catenin-binding domain [65, 66]. Several alterations segregated with PAH 

in families. Further, genome-wide association studies found common genetic variations 

associated with PAH in a critical enhancer upstream of SOX17 [67].

Mutations in SOX7 have not been firmly linked to a disease yet, but recurrent microdeletions 

of 8p23.1 that include SOX7 and GATA4 confer a high risk of congenital diaphragmatic 

hernia (CDH) and cardiac defects [68]. CDH is partially penetrant in Sox7+/− and Gata4+/− 

mice, suggesting that combined haploinsufficiency of SOX7 and GATA4 may cause CDH.

SOXD genes

The SOXD group comprises SOX5, SOX6, and SOX13. These genes encode proteins that 

homodimerize through coiled-coil domains and bind target genes preferentially to pairs of 

SOX sites. SOX5 and SOX6 are closer to one another than to SOX13, and control several 

developmental processes. They help either in transactivation or in transrepression depending 

on the cell context. Sox5 and Sox6 single-null mice are born with discrete skeletal 

malformations, and double-null fetuses die in utero with a severe chondrodysplasia [69]. 

This is explained by cooperation of SOX5 and SOX6 with SOX9 in activating the 

chondrocyte program [20, 21]. In contrast, these SOXD proteins inhibit transactivation by 

SOXC, SOXE or other factors in neocorticogenesis (SOX5), oligodendrogenesis (SOX5 and 

SOX6), myogenesis (SOX6), erythropoiesis (SOX6), and melanogenesis (SOX5) [70-75].

In 2006, a child with craniosynostosis and other dysostosis features was found to carry a 

balanced translocation (t(9; 11)(q33;p15) disrupting SOX6 (11p15) [76]. Another child, with 
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a 9q32-q34 deletion, had a similar phenotype but no craniosynostosis, and a third child, who 

inherited a missense variant from his unaffected mother, only had craniosynostosis. The 

variant was located in an N-terminal region of SOX6 of unknown function. These cases 

concur that SOX6 mutations might cause craniosynostosis, but this possibility needs 

validation.

In 2012, de novo heterozygous translocations and microdeletions disrupting SOX5 were 

reported in patients with global developmental delay, intellectual disability, hypotonia, 

autistic-like features, and mild facial dysmorphism and skeletal malformations [77]. The 

disorder was named Lamb-Shaffer syndrome and additional loss-of-function variants, 

including nonsense ones, were subsequently reported in other patients [78].

SOX13 is expressed in several tissues, including kidney, pancreas, lung, liver, and spinal 

cord. Its inactivation and overexpression in the mouse have revealed that it promotes 

gammadelta T cell development while opposing alphabeta T cell differentiation [79], and 

adds to SOX5 and SOX6 to control the development of mouse spinal cord oligodendrocytes 

[80]. To date, however, no human disease has yet been associated with mutations in SOX13.

SOXC genes

SOX4, SOX11, and SOX12 form the SOXC group. They encode transcriptional activators, 

of which SOX11 is the strongest, and SOX12 the weakest. They are expressed in many 

progenitor cell types and critically control cell survival and fate determination in response to 

various signaling pathways [81, 82] . Sox4-null mice die in utero from heart malformation 

and Sox11-null mice die at birth with abnormalities in the heart, skeleton, and multiple 

internal organs, whereas Sox12-null mice are healthy throughout development and 

adulthood under regular conditions [83-85]. Mouse conditional knockouts have uncovered 

redundant roles for Sox4 and Sox11 in many developmental processes from early 

organogenesis, including neurogenesis, skeletogenesis and outflow tract formation [86-88].

In 2014, two de novo heterozygous missense variants in the SOX11 HMG box were linked 

to a Coffin-Siris syndrome-like syndrome (CSSLS) characterized by intellectual disability, 

growth deficiency, facial dysmorphism and hypoplasia of the fifth digit [89]. The variant 

proteins were unable to bind DNA. Consolidating the notion of SOX11 haploinsufficiency, 

more de novo heterozygous mutations were later reported in patients with similar features 

[90]. They included SOX11-containing 2p25 deletions, a nonsense variant and additional 

HMG-domain missense variants.

Very recently, four de novo heterozygous missense variants in the SOX4 HMG box were 

identified in patients with intellectual disability and mild facial and digit dysmorphism [91]. 

Resemblance to CSSLS is consistent with combined roles for mouse Sox4 and Sox11 in 

many processes. Interestingly, the patients’ variants were nonfunctional in vitro, whereas all 

twelve variants listed in gnomAD, a database of control individuals, were functional. Thus, 

while many HMG-domain variants have been reported in SOX genes to cause diseases, this 

finding calls for caution in interpreting diagnostic data as it implies that not every such 

variant should be considered pathogenic.
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To date, SOX12 has not been linked to a disease yet. Sox12-null mice were recently found to 

show impaired regulatory T cell/lymphocyte differentiation during colitis [92]. This first 

finding of an important role for mouse Sox12 in vivo should encourage studies to link 

human SOX12 variants to SOXopathies.

SOXG and SOXH genes

Although SOX15 and SOX30 are classified as SOXG and SOXH genes, respectively, 

SOX15 shares recent ancestry with SOXB1 genes and SOX30 with SOXD genes. Neither 

gene has been linked to a human disease yet, but important roles have been shown for their 

mouse orthologs. Sox15-null mice develop normally and have an unremarkable adult life 

except for a reduced ability to regenerate skeletal muscle in response to a crush injury [93]. 

This weakness is explained by the expression of Sox15 in satellite cell-derived myoblasts 

and its involvement in myogenic determination. Sox30-null mice look normal too, but males 

are sterile, due to a block of spermiogenesis at the round spermatid stage [40]. Based on 

these data, it is tempting to speculate that mutations in human SOX15 and SOX30 underlie 

yet-to-be-uncovered SOXopathies.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

The study of SOX genes and discovery of SOXopathies have provided seminal information 

on genetic, cellular and molecular mechanisms underlying fundamental processes from early 

development onwards. With all the current information, we can tentatively provide a unified 

view of SOXopathy disease features. Indeed, most SOXopathies are rare developmental 

syndromes. Based on findings in animals, most SOXopathies only show “the tip of icebergs” 

regarding crucial involvement of SOX genes in human processes. Intellectual disability, 

disorders of sex development, and skeletal and cardiovascular malformations are common, 

but defects in virtually every system have been reported. Additionally, most SOXopathies 

result from de novo heterozygous loss-of-function mutations, and thus reveal gene 

haploinsufficiency. Of course, there are exceptions. For example, SRY loss-of-function 

variants fully reveal SRY functions because SRY has no close relative and is expressed from 

a single allele; Reduced fertility due to SOX8 mutations are adult rather than developmental 

diseases; and SOX3 and SOX9 duplications as well as SOX18 missense variants outside the 

HMG domain have been associated with diseases. All cases, however, reflect the importance 

of proper gene dosage to achieve normalcy.

To date, the discovery of SOXopathies is merely mid-way completed. Many important 

questions remain unanswered (see Outstanding Questions). Half of the SOX genes are still 

disease-orphan and more disease associations may remain unknown for the other half. One 

might think that the remaining diseases are benign, otherwise they would be known by now, 

but this argument is easy to counter since SOX17 was linked to pulmonary arterial 

hypertension and congenital heart failure only in the last year. In addition to developmental 

disorders, some still-elusive SOXopathies may arise only with increasing age and in specific 

contexts, such as cancer, tissue repair and immune response (BOX 2). Further research is 

also needed to better understand the cellular and molecular basis of SOXopathies, and in 

particular, the issue of disease penetrance and severity. For this, we need to learn how to 
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distinguish pathogenic from risk and benign variants. To explain diseases and develop 

therapeutic strategies, we also have to further characterize the factors that functionally 

interact with SOX genes and proteins. All new knowledge will undoubtedly be very valuable 

to inform genetic counseling and to better understand and treat many other diseases, 

including those in which SOX genes may intervene abnormally even if intact.
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GLOSSARY

De novo refers to gene deletions or variants detected in a child, but 

not in the biological parents.

DNA bending ability of the HMG domain to induce a strong bend of the 

DNA helix. This property is believed to have an 

architectural role in the formation of enhanceosomes 

(complexes of transcription factors bound to enhancer 

sequences).

Dominant negative refers to a heterozygous mutation that results in a variant 

protein that negatively interferes with the activity of the 

wild-type protein.

Haploinsufficiency term referring to a gene located on an autosomal 

chromosome that is unable to fully achieve its normal 

functions when one of its alleles carries a loss-of-function 

mutation.

HMG domain DNA-binding domain originally identified in HMGB 

proteins, which are members of the superfamily of non-

histone chromatin proteins that exhibit high mobility in 

SDS-PAGE. This domain also characterizes the SOX and 

TCF/LEF families.

SOX acronym for SRY-related HMG box-containing gene or 

protein. SOX proteins share at least 50% similarity in the 

HMG domain with SRY and with one another. The SOX 

family counts 19 members in addition to SRY in humans 

and most mammals.

SOX motif DNA sequence specifically recognized and bound by the 

HMG domain of SOX proteins. This motif corresponds to 

or resembles the C[A/T]TTG[A/T][A/T] sequence. 

Interactions occur at the level of A/T pairs in the minor 

groove of the DNA helix.
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SRY gene located in the sex-determining region of the Y 

chromosome. SRY is the founder (first identified member) 

of the SOX family.
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Box 1.

A variety of mutations can cause SOXopathies: an example from SOX9

Many mutations within and around SOX9 have been associated with disease. The gene 

itself is small (5.4 kb), but embedded within a 2-Mb-long region lacking any other coding 

gene. This region constitutes the SOX9 topologically associated domain (TAD), i.e., a 

higher-order chromatin interaction structure controlling SOX9 expression (Figure IA) 

[95]. It comprises many enhancers driving SOX9 expression in Sertoli cells, 

chondrocytes or other cell types, and translocations, deletions, duplications, and point 

variants at various locations within this TAD underlie skeletal dysplasias and DSD 

phenotypes with various degrees of severity [1, 20, 27, 96-100]. Mutations within the 

SOX9 gene body have also been associated with SOXopathies (Figure IB). Nonsense 

variants result in truncated proteins retaining partial activity or completely inactive. 

Frameshift variants result in shorter or longer proteins with altered activities. Nonsense 

and frameshift mutations are widely distributed along the coding sequence, whereas 

missense variants are largely restricted to splice sites and to the dimerization, DNA-

binding or transactivation domains. Most missense mutations and in-frame deletions in 

the dimerization and HMG domains and in splice sites cause severe disease (CD with XY 

sex reversal), whereas missense variants outside these regions cause mild genitalia 

defects without skeletal abnormalities.
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Figure I. 
Types and distributions of pathogenic mutations in the SOX9 locus. A) SOX9 locus and 

flanking genes on 17q24.3, including enhancers primarily active in chondrocytes (ChEnh, 

green bars), Sertoli cells (TesEnh, blue bars), embryonic mandibular region (PRSEnh, light 

green bars) and other cell types/tissues (brown bars); microdeletions causing Pierre Robin 

sequence (PRSΔ) and XY sex reversal (XYSRΔ); a duplication causing XX sex reversal 

(RevSexΔ); and translocations causing campomelic dysplasia (dark green arrows), 

acampomelic dysplasia (lighter green arrows), Pierre Robin sequence (light green 

arrows), XY or XX sex reversal (blue arrows), or skeletal dysplasia and XY sex reversal 

(teal arrows). B) SOX9 exon/intron and protein structures, including pathogenic 

microdeletions (del) and nonsense variants (*), frameshift variants (fs) and missense and 

splice variants (Δ).
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Box 2.

SOX genes and non-developmental diseases

Many types of diseases implicate SOX genes, but are not due to germline SOX mutations 

and therefore do not classify as SOXopathies. Cancers are the great majority of them 

[101]. In fact, all SOX genes have been shown to be dysregulated in at least one tumor 

type. Deregulation can occur at the genetic level, or at the epigenetic, transcriptional, 

translational and post-translational levels, resulting in either increased or decreased SOX 

activities. SOX factors being master determinants of cell fate, their deregulation can 

cause drastic changes in cell stemness, survival, proliferation, migration, and 

differentiated activities. SOX genes can be either tumor repressors or promoters 

depending on tumor types and environment.

Among other adult-onset and degenerative diseases, single nucleotide polymorphisms 

within and around SOX4 correlate with moderate risks for osteoporosis and reduced 

expression of SOX4 in bone correlates with postmenopausal osteoporosis [102, 103]. A 

significant association exists between SOX5 variants and a familial form of late-onset 

Alzheimer’s disease [104]. Also, a single nucleotide polymorphism in SOX8 was 

identified as a genuine multiple sclerosis susceptibility locus [105], a finding consistent 

with the importance of mouse Sox8 in oligodendrocyte myelination [106]. If confirmed, 

these polymorphisms within or around SOX4, SOX5 and SOX8 could classify these 

disease forms as SOXopathies. Additionally, SOX5, SOX6, and SOX9 downregulation 

[107] and SOX4 and SOX11 upregulation correlate with cartilage degeneration in 

osteoarthritic patients [108]. Also, SOX2 downregulation is seen in brain sections from 

Alzheimer’s patients, which is consistent with neurodegeneration features resembling 

Huntington’s and Alzheimer’s disease described in mice with Sox2 deficiency [109].

Autoimmune diseases are another class of disorders worth mentioning. Like other 

transcription factors, several SOX proteins are inclined to generate pathogenic 

autoimmune responses. For instance, SOX13 was initially discovered in humans as an 

autoantigen in type 1 diabetes [110] and later in primary biliary cirrhosis [111], and 

SOX9 and SOX10 are vitiligo autoantigens in autoimmune polyendocrine syndrome type 

I [112].
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OUTSTANDING QUESTIONS BOX

• Are all twenty human SOX genes involved in SOXopathies? Are 

SOXopathies primarily developmental disorders or do they also include a 

broad range of adult-onset diseases? How broad is the spectrum of diseases 

associated with any single SOX gene? Are diseases the only outcome of SOX 

gene variants or are there any phenotypic advantages conferred by some rare 

or common SOX gene variants to human carriers?

• Are pathogenic SOX missense and nonsense variants primarily resulting in 

null alleles? Do some confer reduced, increased, dominant-negative, or 

ectopic activity?

• Have SOX genes acquired new functions or new expression level 

requirements during evolution that could explain why several SOXopathies 

are detected in humans but not in mice upon heterozygous inactivation of 

some SOX genes? In particular, as many SOX genes are required for brain 

development, has the evolution of human brain-specific features relied on 

regulatory changes in SOX gene dosage and expression pattern?

• What are the treatment options for SOXopathies? Is gene therapy an option? 

Are SOX proteins druggable? When should therapies be initiated?
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HIGHLIGHTS

• SOXopathies are rare severe disorders resulting from mutations in the SOX 

genes. They have been associated to date with half of the twenty SOX family 

members and the numbers of genes involved and pathogenic variants are still 

on the rise.

• Most SOXopathies result in developmental defects and are syndromic, 

including such severe defects as sex reversal, intellectual disability, skeletal 

dysmorphism, and cardiovascular anomalies.

• SOXopathies can be caused by many types of gene alterations, and most 

mutations are de novo, heterozygous and loss-of-function, thus exposing gene 

haploinsufficiency.

• Missense variants are almost exclusively located in the HMG domain, a 

distinctive and multifunctional feature of all SOX proteins.
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Figure 1. 
Timeline of SOXopathy discovery. Cumulative graph showing the numbers of distinct 

pathogenic alterations identified within and around SOX genes over time. Closed symbols 

and plain lines represent validated gene-disease associations, whereas open symbols and 

dotted lines represent suggested associations. Links made through GWAS are not included 

because of undefined variants and numbers.
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Figure 2. 
Shared and distinctive features of SOX proteins and genes.

A. Alignment of the HMG domain sequences (including 3 flanking residues on each side) of 

the human HMGB and TCF/LEF proteins with those of a few SOX proteins (top) and all 

human SOX proteins (bottom) highlights full conservation (greyish blue) and semi-

conservation (cyan blue) of specific residues. Residues involved in DNA binding, DNA 

bending, α-helices, nuclear localization signals (NLS), and nuclear export signal (NES) are 

indicated.

B. 3D solution NMR structure of the human SRY HMG domain complexed to DNA shows 

that the HMG domain is characterized by three α-helices (H1 to H3 from the N- to the C-

terminus) that position themselves into an L-shape, contact DNA exclusively in the minor 

groove, and force bending of the DNA helix. This schematic was generated by SWISS-

MODEL according to [94].
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C. Domain structure organization of the human SOX proteins. HMG, HMG domain; TAD, 

transactivation domain; TRD, transrepression domain; DIM, homodimerization domain; cc, 

coiled coil; TAM, middle transactivation domain; TAC, C-terminal transactivation domain; 

PQA, PQA-rich domain.

D. Chromosomal distribution of the human SOX genes.
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Figure 3. 
Examples of key roles of SOX genes in development derived primarily from experiments in 

vitro and in animal models. Drawings were created using BioRender.
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Key Table.

Currently known SOXopathies and types of mutations involved

Group Gene Disease Type of mutations

T Del Dup Inv
Ms

Ns/Fs
HMG Other

SOXA SRY Disorder of sex development (DSD) ✓ ✓ - - ✓ ✓ ✓

SOXB1 SOX1 - - - - - - - -

SOX2 Anophthalmia/microphthalmia syndrome - ✓ - - ✓ ✓ ✓

SOX3 Mental retardation with panhypopituitarism, X-linked - - ✓ ✓ ✓ ✓ -

Septo-optic dysplasia (SOD) syndrome - - ✓ - - ✓ -

XX male sex reversal ✓ ✓ ✓ - - - -

SOXB2 SOX14 - - - - - - - -

SOX21 - - - - - - - -

SOXC SOX4 Neurodevelopmental syndrome with mild dysmorphism - - - - ✓ - -

SOX11 Coffin-Siris syndrome-like syndrome (CSSLS) - ✓ - - ✓ - ✓

SOX12 - - - - - - - -

SOXD SOX5 Lamb-Shaffer syndrome ✓ ✓ - - - - ✓

SOX6 [Craniosynostosis and craniofacial dysostosis] ✓ - - - - ✓ -

SOX13 - - - - - - - -

SOXE SOX8 [Alpha-thalassemia/mental retardation syndrome (ATR-16)] - ✓ - - - - -

Disorder of sex development (DSD) - - ✓ ✓ ✓ ✓ ✓

SOX9 Campomelic dysplasia (CD) ✓ ✓ - ✓ ✓ ✓ ✓

Acampomelic dysplasia (ACD) ✓ ✓ - - ✓ ✓ -

Disorder of sex development (DSD) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Isolated Pierre Robin Sequence (PRS) ✓ ✓ - - - - -

SOX10 Waardenburg-Hirschsprung syndrome - ✓ - - ✓ ✓ ✓

Peripheral demyelinating neuropathy, central dysmyelination, 
Waardenburg syndrome, and Hirschsprung disease (PCWH) - ✓ - - ✓ - ✓

Kallmann syndrome - - - - ✓ ✓ ✓

SOXF SOX7 - - - - - - - -

SOX17 [Congenital anomalies of the kidney and urinary tract (CAKUT)] - - - - - ✓ -

Pulmonary arterial hypertension and congenital heart failure (PAH-
CHD) - - - - ✓ ✓ ✓

SOX18 hypotrichosis-lymphedema-telangiectasia-renal defect syndrome 
(HLTRS) - - - - ✓ - ✓

SOXG SOX15 - - - - - - - -

SOXH SOX30 - - - - - - - -

Del, deletion; Dup, duplication; Fs, frameshift mutation; Inv, inversion; Ms, missense mutation within (HMG) or outside (Other) the HMG domain; 
Ns; nonsense mutation; T, translocation. Unconfirmed diseases are listed in square brackets.
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