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Abstract

The development of resistance of Neisseria gonorrhoeae to available first-line antibiotics, 

including penicillins, tetracyclines, fluoroquinolones and cephalosporins, has led to the circulation 

of multidrug-resistant gonorrhea at a global scale. Advancements in high-throughput whole-

genome sequencing (WGS) provide useful tools that can be used to enhance gonococcal detection, 

treatment and management capabilities, which will ultimately aid in the control of antimicrobial 

resistant gonorrhea worldwide. In this minireview, we discuss the application of WGS of N. 
gonorrhoeae to strain typing, phylogenomic, molecular surveillance and transmission studies. We 

also examine the application of WGS analyses to the public health sector as well as the potential 

usage of WGS-based transcriptomic and epigenetic methods to identify novel gonococcal 

resistance mechanisms.

One sentence summary:

This minireview examines the application of whole-genome sequencing methodologies to respond 

to the urgent threat of antimicrobial-resistant gonorrhea.
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INTRODUCTION

The discovery of antibiotics led to a revolutionary era of medicine that provided a simple 

and effective way to combat both common and deadly diseases. While the development of 

resistance to antimicrobial agents is an adaptive mechanism, the extensive and improper use 

of antibiotics in both medical and agriculture communities has ushered in a period of 

significant and problematic antimicrobial resistance (AMR) (Khachatourians 1998; 

Andersson and Levin 1999). Moreover, the extent of AMR has led to the evolution of 

multidrug-resistant (MDR) and extensively drug-resistant (XDR) pathogens that are 
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commonly referred to as superbugs, including resistant strains of Klebsiella pneumonia, 
Escherichia coli, Staphylococcus aureus, Clostridium difficile and Neisseria gonorrhoeae 
(NG) (Brazier 2008; Ippolito et al. 2010; Unemo and Shafer 2014; WHO 2017). Neisseria 
gonorrhoeae is the etiological agent that causes the sexually transmitted infection gonorrhea, 

and both MDR and XDR strains of this pathogen have been identified (Tapsall et al. 2009; 

Ohnishi et al. 2011; Unemo et al. 2012). Tapsall et al. (2009) defined MDR NG isolates as 

those that are resistant to either extended-spectrum cephalosporins (ESCs) or spectinomycin 

(i.e. category I antibiotics), plus at least two of the following antibiotic classes: penicillins, 

fluoroquinolones, azithromycin, aminoglycosides and carbapenems (i.e. category II 

antibiotics). XDR isolates are defined as those that are resistant to category I antibiotics and 

three or more category II antibiotics. The identification of both MDR and XDR strains 

emphasizes the critical need to continually monitor NG antimicrobial susceptibility patterns 

(CDC 2016).

Gonorrhea is the second most commonly reported notifiable disease in the USA (CDC 

2016), and the World Health Organization (WHO) estimated 78 million new cases (among 

adults aged 15–49 years) worldwide in 2012 (Newman et al. 2015). Since initial reports of 

acquired resistance to sulfonamides in the early 1940s, NG strains have readily developed 

resistance to each monotherapeutic antibiotic treatment (Unemo, Del Rio and Shafer 2016). 

Moreover, the development of NG resistance to available first-line antibiotics, including 

penicillins, tetracyclines, fluoroquinolones and cephalosporins, has been mediated by both 

plasmid- and chromosome-mediated mechanisms (Tapsall 2001). NG is naturally competent 

for DNA transformation and the uptake and incorporation of foreign DNA into Neisseria 
genomes can occur during all growth phases (Biswas et al. 1977). This characteristic enables 

the spread of AMR determinants, and oral commensal Neisseria species are likely 

significant contributors. Oral commensal species are repeatedly exposed to antimicrobial 

agents, and this establishes an environment that facilitates the acquisition of resistance genes 

(Lewis 2015). These resistance genes are likely acquired by NG associated with 

asymptomatic pharyngeal infections. Therefore, the development of plans to combat and 

control AMR gonococcal strains is critical.

The development of resistance to available first-line antibiotics led the Centers for Disease 

and Prevention (CDC) to recommend a dual-use treatment of ceftriaxone with either 

azithromycin or doxycycline as treatment for uncomplicated gonorrhea (Workowski and 

Bolan 2015), and similar guidelines were established by other countries, regions and 

organizations, including Australia, Canada, Europe, and the WHO (Bignell and Unemo 

2013; PHAC 2013; Australian Sexual Health Alliance 2016; WHO 2016). Furthermore, 

countries and organizations have implemented surveillance projects such as the Gonococcal 

Isolate Surveillance Project (GISP) and the STD Surveillance Network in the USA, the 

surveillance program run by the Public Health Agency of Canada (PHAC), the Gonococcal 

Resistance to Antimicrobials Surveillance Programme (GRASP) in the United Kingdom and 

the Gonococcal Antimicrobial Surveillance Programme (GASP) run by the WHO, which 

monitors several regions worldwide (WHO 2012; Cole et al. 2014; PHAC 2015; CDC 2016; 

Chen et al. 2016; Kubanov et al. 2016; Public Health England 2016; Trembizki et al. 2016). 

Increased surveillance in combination with retrospective studies has elucidated patterns of 

resistance in several countries. For instance, gonorrhea surveillance in the USA, based on 
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GISP data, indicated that the prevalence of NG isolates exhibiting reduced susceptibility to 

ceftriaxone (MIC ≥ 0.125 μg/mL) was 0.1%–0.4% between 2007 and 2015 (CDC 2016). 

The prevalence of reduced susceptibility to cefixime (MIC ≥ 0.25 μg/mL) declined from 

1.4% to 0.5% between 2011 and 2015, but increased to 0.8% in 2014 (CDC 2015, 2016). 

Therefore, these data indicate that resistance to cephalosporins is currently evolving in US 

populations. Regarding azithromycin resistance, the percentage of resistant isolates 

increased from 0.6% to 2.6% between 2013 and 2015 (CDC 2016). The lack of novel 

antimicrobial treatments in the development pipeline makes the study and surveillance of 

resistance to previously used antibiotics necessary. An examination of resistance to 

spectinomycin, ciprofloxacin, penicillin and tetracycline indicated that all isolates collected 

through GISP in 2014 were susceptible to spectinomycin (CDC 2015), and 39.6% of isolates 

collected in 2015 were resistant to penicillin, tetracycline or ciprofloxacin (CDC 2016). 

Furthermore, an analysis of isolates collected in 2011 through Euro-GASP, representing 21 

European countries, found that 7.6%, 5.3% and 48.7% of the examined isolates exhibited 

reduced susceptibility to cefixime (MIC ≥ 0.12 μg/mL), azithromycin (MIC ≥ 0.5 μg/mL) 

and ciprofloxacin (MIC ≥ 0.5 μg/mL), respectively (Cole et al. 2014). The observed 

percentages indicated minor decreases in the prevalence of reduced susceptibility to 

cefixime (down from 8.7% in 2010) and significant decreases in resistance to azithromycin 

(down from 13.2% in 2009) and ciprofloxacin (down from 62.7% in 2009) (Cole et al. 
2014). However, it is also important to note that the number of countries reporting isolates 

with reduced susceptibility to cefixime increased from 10 in 2009 to 17 in 2011. Studies of 

NG isolates from Japan have identified several isolates with reduced susceptibility to ESC, 

including the XDR HO41 isolate, which exhibited high-level resistance to ceftriaxone 

(Ohnishi et al. 2011; Shimuta et al. 2013, 2015). Furthermore, an examination of isolates 

collected from Korea indicated that 3%, 9% and 5% of the studied isolates exhibited 

resistance to ceftriaxone, cefixime and azithromycin, respectively (Lee et al. 2015b). 

Although extensive surveillance studies have not been conducted in all countries and 

regions, reports of resistance to various antibiotics continue to be published from localities 

around the world (Ali et al. 2016; Hamze et al. 2016; Hananta et al. 2016; Costa-Lourenço et 
al. 2017), thus indicating that the spread of AMR NG is a persistent global threat that 

warrants continued monitoring. While the presence of resistance determinants does not 

always translate into treatment failure, several reports of treatment failures to ESCs and 

azithromycin have also appeared (Unemo 2015), including an incident of dual treatment 

failure (ceftriaxone plus azithromycin) (Fifer et al. 2016), thus providing additional evidence 

that the presence of AMR gonorrhea poses a significant risk to global health.

Advances in high-throughput whole-genome sequencing (WGS) have drastically reduced the 

cost of sequencing and have increased the amount of available data (Park and Kim 2016). 

The availability of WGS data will greatly impact both our understanding of the evolution of 

AMR and the way that gonorrhea is diagnosed and treated (Seth-Smith and Thomson 2013; 

Baquero et al. 2015). This review will examine advances in molecular techniques used to 

type susceptible and resistant NG strains and how WGS has been utilized to characterize 

isolates and associated transmission patterns. Moreover, potential applications and 

implications of WGS to public health issues, including the determination of AMR profiles 
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and patient treatment options will be considered. Lastly, the potential application of WGS-

based transcriptomic and epigenetic methodologies to gonococcal studies will be discussed.

ADVANCES IN MOLECULAR TECHNIQUES USED FOR THE 

CHARACTERIZATION AND SURVEILLANCE OF NG ISOLATES

A complete understanding of the mechanisms associated with the development of AMR 

gonorrhea requires the ability to adequately characterize and classify specific isolates or 

strains that are involved in resistance outbreaks. In addition to non-sequence-based typing 

methods such as antimicrobial susceptibility testing, serovar determination and auxotyping, 

several sequenced-based methods are also utilized to compare isolates of interest (Table 1; 

Unemo and Dillon 2011). Before Sanger sequencing was readily accessible, non-sequence-

based methods such as restriction fragment length polymorphism, ribotyping and pulse field 

gel electrophoresis (PFGE) methods were used to type and characterize NG isolates (Unemo 

and Dillon 2011). PFGE has been successfully employed in molecular epidemiology 

analyses that examined the clustering of antibiotic-resistant NG isolates (Sosa et al. 2003; 

Yong et al. 2004; Morris et al. 2009; Starnino and Stefanelli 2009). However, while PFGE 

analyses can be used to detect and delineate clusters of resistant isolates, information about 

specific resistance mutations cannot be determined without the inclusion of sequence data.

Sequence-based methods such as NG multiantigen sequence typing (NG-MAST) and 

multilocus sequence typing (MLST), which assess the sequence variation of specific genetic 

loci, have been widely adopted for gonococcal strain typing, the assessment of relatedness, 

and the establishment and maintenance of respective databases that can be used to track 

specific sequence types (Unemo and Dillon 2011). NG-MAST analyses are based on the 

variable internal fragments of the highly polymorphic porin B (porB) and transferrin-binding 

protein B (tbpB) genes (Martin et al. 2004), and the most commonly used MLST scheme is 

based on the detection of variation between the sequences of seven conserved housekeeping 

genes (putative ABC transporter (abcZ), adenylate kinase (adk), shikimate dehydrogenase 

(aroE), fumarate hydratase (fumC), glucose-6-phosphate dehydrogenase (gdh), pyruvate 

dehydrogenase subunit (pdhC) and phosphoglucomutase (pgm)) (Bennet et al. 2007). Both 

methods are highly reproducible, and they provide high discriminatory power. However, the 

utilization of these methods often requires the additional isolation and sequencing of 

resistance genes to provide a basis for discriminatory analyses, and the results of alternative 

methods are often included to support the results of these methods (Ohnishi et al. 2010; 

Unemo and Dillon 2011). Attempts to utilize NG-MAST and MLST typing methods to 

predict antimicrobial susceptibility patterns at a regional scale have been met with some 

success (Palmer et al. 2008; Thakur et al. 2014).

The advancement of sequencing technology has led to the availability of high-throughput 

sequencing methods, including commonly used short- and long-read technologies such as 

Illumina and PacBio, respectively (Reuter, Spacek and Snyder 2015). Moreover, the 

decreased costs associated with these technologies have resulted in the sequencing of 

thousands of NG genomes, which are available as complete or draft genomes in publically 

accessible databases such the Sequence Read Archive maintained by the National Center for 
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Biotechnology Information and the European Nucleotide Archive. These sequences 

represent a plethora of data that can be used to determine genome-wide variation between 

isolates (e.g. indels, single-nucleotide polymorphisms (SNPs), recombination breakpoints, 

etc.), structural variation, and transcriptomic and methylomic profiles (Flusberg et al. 2010; 

Reuter, Spacek and Snyder 2015). Identified SNPs can be aligned and phylogenetically 

analyzed, providing enhanced discriminatory power regarding relatedness and transmission 

at both regional and global scales. For instance, Vidovic et al. (2014) used Illumina-derived 

data to extract SNPs from nine housekeeping genes and penA alleles, and these data were 

subsequently used to elucidate the population structure and phylogenetic relationships of 

several NG isolates. While most WGS studies use Illumina and PacBio technologies, it 

important to note that researchers also utilize less common technologies, including 454 and 

Ion Torrent technologies, to characterize AMR NG isolates (de Curraize et al. 2016; 

Graham, Doyle and Jennison 2017).

WGS not only allows the identification and tracking of resistance genes, but it also 

facilitates the identification of novel resistance mutations. Mutations in several genes are 

well described as being predictive of resistance, including mutations in genes associated 

with resistance to cephalosporins (e.g. penicillin-binding protein 2 (penA), multiple 

transferable resistance repressor (mtrR) and porB), azithromycin (e.g. mtrR and its promoter 

region and 23S rRNA) and fluoroquinolones (e.g. gyrA and parC) (Table 2; Goire et al. 
2014; Unemo and Shafer 2014). While previous methods required the isolation, PCR 

amplification and sequencing of individual genes to detect novel resistance determinants, 

comparative WGS analyses can be used to compare variation throughout the genome, 

resulting in the discovery of novel mutations. For instance, WGS analyses of NG sequences 

from the USA resulted in the identification of a novel mosaic penA allele and mosaic mtrR 
mutations that conferred resistance to cefixime and azithromycin, respectively (Grad et al. 
2014, 2016). Therefore, while the utilization of molecular-based typing methods is 

beneficial, WGS-based methods provide a superior tool for typing and relatedness analyses, 

and the use of these data also allow the identification and characterization of specific 

resistance genes and associated mutations without the need for the isolation and sequencing 

of individual genes. However, despite its prevalence in several countries, WGS capabilities 

are not available worldwide, resulting in the continued use of MLST and NG-MAST typing 

methods. Therefore, until WGS becomes ubiquitous, the characterization of NG isolates 

using these methods will likely continue. However, recent studies that utilized WGS in 

conjunction with MLST and/or NG-MAST methodologies reported discordance between the 

results gleaned from the two methods in that isolates assigned to a specific sequence type 

were distributed among different phylogenetic clades (Demczuk et al. 2015; Jacobsson et al. 
2016). Thus, the use of NG-MAST and MLST analyses can lead to confusion regarding the 

phylogenetic relatedness of isolates. This result is expected given that NG-MAST analyses 

examine less than 1% of the gonococcal genome, while WGS analyses provide enhanced 

resolution since they consider genome-wide variation. However, until WGS-based methods 

are established as the gold standard, the use of WGS in combination with NG-MAST/MLST 

analyses will likely persist as a way to compare isolates that were typed using different 

methods.
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APPLICATION OF WGS TO THE ELUCIDATION OF GONOCOCCAL 

PHYLOGENOMIC RELATIONSHIPS AND TRANSMISSION PATTERNS

In addition to enhanced typing capabilities, WGS-based analyses provide tools that can be 

used to elucidate phylogenetic relationships among isolates, to identify novel resistant 

lineages and to estimate transmission patterns. WGS data have been successfully used to 

study a variety of bacterial species with regard to molecular epidemiology, AMR 

determination, AMR surveillance and genomic characterization (Lee et al. 2015a; Tyson et 
al. 2015; Metcalf et al. 2016; Nair et al. 2016; Zhao et al. 2016), and the methods used to 

examine those species have been, or will likely be, key to our understanding of the 

mechanisms that drive the evolution and dissemination of AMR in NG populations. 

Regarding general phylogenetic relationships among NG isolates, studies have examined the 

phylogenetic patterns of multiple isolates collected from individual countries or regions 

(Ezewudo et al. 2015; Grad et al. 2016). For instance, Ezewudo et al. (2015) utilized WGS 

data to characterize the phylogenetic relationships of 76 NG isolates from Australia, Austria, 

Chile, Canada, Japan, Pakistan, the Philippines, Norway, Sweden and the USA, and the 

results indicated that the isolates did not cluster geographically. In addition, the researchers 

performed population structure analyses and determined that the samples represented at least 

five distinct subpopulations. Thus, this study provides an example of various WGS 

applications that will further our understanding of the genetic relatedness, spread, and 

population structures of NG isolates, which cannot be easily garnered from traditional 

sequencing methods. Grad et al. (2016) utilized WGS data from 1102 isolates collected in 

the USA from 2000 to 2013 to examine the genetic relatedness and the population structure 

of isolates that exhibited resistance to cephalosporins, macrolides and fluoroquinolones. The 

results of the phylogenomic analyses suggested that cephalosporin resistance is largely 

clonal and that resistance to both macrolides and fluoroquinolones has emerged multiple 

times in the USA. Although this study examined isolates that were systematically collected 

over a long period of time, the application of similar phylogenomic analyses to target 

isolates collected outside of a formal surveillance system will provide invaluable 

information about the origin and spread of resistance mechanisms at regional and global 

scales.

In addition to utilizing WGS data to obtain increased resolution of phylogenetic 

relationships, several studies focused on determining the genetic relatedness of isolates with 

similar resistance profiles (Demczuk et al. 2015, 2016; Grad et al. 2016; Jacobsson et al. 
2016). Jacobsson et al. (2016) utilized WGS to analyze the molecular resistance mechanisms 

and the spread of azithromycin-resistant isolates in Europe. The results of the analysis 

indicated that the 75 isolates (collected from 17 countries) fell into five distinct clades, thus 

indicating that the clonal spread of azithromycin resistance determinants was limited to 

relatively few strains. Moreover, the results of the comparative WGS analysis indicated that 

most of the isolates exhibited mutations in mtrR and its promoter, and that the four isolates 

with high-level resistance to azithromycin (MIC > 256 μg/mL) represented three separate 

emergent events of that specific phenotype, which was associated with 23S rRNA mutations. 

Comparative WGS methods also allowed the researchers to examine variation in nine 

additional genes that are associated with macrolide resistance without having to individually 
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isolate and amplify the specific genes. A retrospective study of azithromycin-resistant 

isolates from Canada, which were collected between 1997 and 2014, also found that isolates 

with high-level azithromycin resistance were phylogenetically diverse, and the associated 

mutations were found in 23S rRNA (Demczuk et al. 2016). Furthermore, the results 

indicated that low-level resistance was typically associated with mtrR promoter mutations, 

thus the general results were consistent with those of Jacabsson et al. (2016). However, Grad 

et al. (2016) found that while azithromycin resistance was associated with mutations in 

mtrR, 23S rRNA and ribosomal protein L22 (rplv), a resistance mechanism was not 

determined for 36% of the tested isolates. Therefore, additional analyses must be conducted 

to determine the unknown genes and mutations that confer resistance to azithromycin, and 

the availability of WGS data will make the difficult task of identifying those unknown 

resistance mechanisms tractable.

Researchers have also utilized WGS methods to explicitly examine the transmission of NG 

isolates (Grad et al. 2014; De Silva et al. 2016; Didelot et al. 2016). For instance, Grad et al. 
(2014) examined 236 isolates collected through GISP between 2009 and 2010, and 

phylogeographic and Bayesian analyses were used to infer the transmission of NG isolates 

across time, space and sexual networks (men who have sex with men (MSM) and men who 

have sex with women) in the USA. The results of the analyses indicated that reduced 

susceptibility to cephalosporins was primarily spread eastward through MSM sexual 

networks. Moreover, the study found several instances of introductions into heterosexual 

populations by MSM. De Silva et al. (2016) conducted a similar study that focused on the 

transmission of approximately 1400 NG isolates collected in the UK between 2011 and 

2015, and these isolates were also compared to the data examined by Grad et al. (2014). The 

study attempted to elucidate transmission patterns at local, national and international scales. 

The results of the analysis indicated that most infections could be linked to direct or indirect 

transmission events at a local scale, and a small proportion of the isolates could be linked to 

cases outside of the local area (Brighton, UK) and to cases that originated in the USA. It is 

important to note that both Grad et al. (2014) and De Silva et al. (2016) incorporated MLST 

and NG-MAST data, respectively, and WGS-based analyses provided enhanced resolution 

compared to the alternative methods.

APPLICATION OF WGS TO PUBLIC HEALTH

WGS has been applied to a diverse array of clinical issues, including infection management, 

clinical diagnostics, drug development, prenatal testing and cancer treatment development 

(Dunne, Westblade, and Ford 2012; Price et al. 2013; Chrystoja and Diamandis 2014; Wyres 

et al. 2014; Kwong et al. 2015; Nakagawa et al. 2015; Swaminathan et al. 2016). The 

molecular diagnostics used by clinicians to detect gonorrhea are generally limited to the use 

of nucleic acid amplification tests (NAATs), which determine the presence or absence of the 

pathogen in clinical samples. Although widely used, non-culture-based NAATs do not 

provide any information about the susceptibility/resistance profiles of the detected isolate. 

To address this concern, a WGS pilot study, funded by the CDC’s Advanced Molecular 

Detection Initiative and coordinated by the Division of STD Prevention, was initiated at two 

public health laboratories in the USA to develop a WGS-based genotype to phenotype assay. 

As a part of the collaboration, the public health laboratories currently perform antimicrobial 
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susceptibility testing and WGS on select AMR alerts collected by GISP, and these data are 

then sent to the CDC for genomic characterization and phylogenomic analyses. Moreover, 

the WGS data are then used to inform the development of a bioinformatics pipeline that will 

utilize raw sequence data and calculated positive and negative predictive values (Grad et al. 
2016) associated with resistance determinants to estimate the susceptibility/resistance 

profiles of clinical isolates, with the development of WGS-based point-of-care tests as the 

ultimate goal. However, the development of WGS-based point-of-care tests is dependent on 

the advancement of faster and more efficient WGS technologies such as the single-molecule 

based Oxford Nanopore technology, which was recently used to sequence Ebola isolates in 

real-time in the field (Hoenen et al. 2016). Ideally, real-time sequencing technologies and a 

genotype to phenotype assay will eventually be available to clinicians for the relatively rapid 

diagnosis and treatment of gonococcal infections. The complete implementation of WGS 

analyses at clinical laboratories is dependent upon the resolution of several issues associated 

with the lack of user-friendly software and the interpretation of results by clinicians (Wyres 

et al. 2014). While several user-friendly tools have been developed to assess WGS data in 

non-clinical environments, the analysis of WGS data in clinical settings remains 

complicated. However, the development of a streamlined pipeline that requires minimal 

input from clinicians to generate simple, comprehensible results will help remedy this issue 

by automating the bioinformatics analyses.

Despite the current inability to perform real-time WGS in a clinical setting, the WGS data 

from the aforementioned pilot study were used to characterize the resistance determinants 

and phylogenomic characteristics of a cluster of NG isolates that exhibited reduced 

susceptibility to cephalosporins and azithromycin in Hawaii (Papp et al. 2017). Moreover, an 

expansion of WGS of NG at public health laboratories across the USA is being established 

through the Combating Antimicrobial Resistant Bacteria initiative. An increased focus on 

combining WGS and epidemiological data will further inform our understanding of the 

evolution and transmission of AMR gonococcal isolates, which will greatly enhance the 

management of this pathogen.

APPLICATION OF WGS TO GENE EXPRESSION AND EPIGENETIC 

ANALYSES

It is important to note that the applications of WGS are not limited to analyses that assess 

typing, relatedness and transmission at the nucleotide level. In fact, WGS-based data can 

also be used to examine differential expression and epigenetic characteristics of various 

bacterial strains. RNA-Seq is a method that uses the high-throughput sequencing of RNA 

transcripts (converted to cDNA) to determine and quantify changes in gene expressions 

levels (Wang, Gerstein and Snyder 2009). RNA-Seq analyses were previously employed to 

predict a set of 827 essential gonococcal genes, including 133 genes that lacked a known 

function (Remmele et al. 2014). McClure et al. (2015) utilized the method to examine gene 

expression patterns in the lower genital tract of females during natural gonococcal infection, 

and the results indicated that over 65% of the gonococcal genome was transcribed during the 

infection. Moreover, the results of the analysis showed that mtrCDE genes were upregulated 

and mtrR (a known AMR gene) was downregulated in antibiotic-resistant NG strains. The 
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association between differential expression and AMR has been examined in other bacterial 

species. For instance, Suzuki, Horinouchi and Furusawa (2014) performed microarray 

analyses to examine differential expression patterns of E. coli isolates that were cultured 

under various drug treatment conditions, and the resulting gene expression profiles of a 

small number of genes were successfully used to predict resistance. Wright et al. (2015) 

utilized RNA-Seq analyses and resulting expression profiles to identify three genetic 

mechanisms that were associated with colistin resistance in Klebsiella pneumoniae isolates. 

Considering that some gonococcal resistance determinants have yet to be identified using 

traditional methods, the application of WGS-based transcriptome analyses will likely play a 

major role in the discovery of resistance determinants, and comparative WGS methods can 

be used to identify the specific mutations in the genes that confer resistance. In addition, 

evidence suggests that AMR is a multilocus phenomenon that could result from the 

combined effects of mutations in different genes (Day and Gandon 2012), so the results of 

RNA-Seq analyses might also help elucidate the interactions between various resistance 

genes.

Epigenetics refers to heritable changes in gene expression that do not alter the genetic code, 

and advances in this field will greatly impact our understanding of gonococcal AMR. Most 

studies of epigenetic mechanisms in bacteria have focused on the role of DNA and RNA 

methylation and corresponding effects on cell regulation, virulence and antibiotic resistance 

(Casadesus and Low 2006; Doi and Arakawa 2007). The development of single-molecule 

real-time (SMRT) sequencing via the PacBio platform also led to advancements in DNA 

methylation detection without the use of traditional bisulfite methods. PacBio SMRT 

sequencing uses variation in polymerase kinetics (based on fluorescent pulses) to detect 

methylated nucleotides (m4A, m4C and m5C methylation) (Flusberg et al. 2010), and this 

methodology has been used to characterize the methylomes of several bacterial species and 

strains (Murray et al. 2012; Davis, Chao and Waldor 2013; Powers et al. 2013; Lee et al. 
2015c; Pirone-Davies et al. 2015; Zhu et al. 2015). Evidence supports the conclusion that 

both DNA and RNA methylation have an effect on AMR in bacteria. For instance, DNA 

methylation can lead to differential gene expression, and if that expression affects the 

antibiotic susceptibility of a bacterial strain in the presence of a particular antibiotic, 

selection could favor the evolution and spread of a resistant phenotype (Adam et al. 2008; 

Baquero 2013). Moreover, RNA methylation of antibiotic targets (e.g. ribosomes) by rRNA 

methyltransferases can result in high-level resistance to antibiotics such as macrolides 

(Maravic and Flogel 2004). Therefore, it is imperative that epigenomic analyses of AMR 

gonococcal isolates be conducted, because the results of these analyses could shed light on 

novel resistance mechanisms in this bacterial species. Moreover, once the epigenetic patterns 

are detected, transcriptomic analyses can be used to quantify differences in the expression of 

identified genes.

CONCLUSIONS

The development of high-throughput WGS has revolutionized our ability to characterize and 

analyze microbial isolates and communities by impacting typing methods, epidemiologic 

surveillance, genetic relatedness analyses and transmission studies. The application of WGS 

tools to the study of AMR gonococcal isolates has already improved our understanding of 
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the evolution of AMR in NG and the transmission of resistant strains at local, national and 

global scales. WGS is not only applicable to research-based studies, but the implications of 

the results gleaned from WGS analyses will also influence the way in which surveillance is 

conducted, strain typing is assessed and treatment options are determined.

However, current applications of WGS have not fully elucidated the mechanisms that 

influence AMR in NG. As previously mentioned, Grad et al. (2016) recently found that the 

mechanisms associated with azithromycin resistance in 36% of the examined isolates could 

not be determined based on current knowledge. Furthermore, researchers have long 

postulated the existence of a non-transformable resistance determinant known as “factor X” 

that is associated with increased resistance to penicillin and ESCs, but this mechanism has 

not been identified (Unemo and Shafer 2014). The presence of unknown resistance 

mechanisms, in conjunction with the ease at which NG obtains novel resistance mechanism 

(resulting from its natural competence for DNA transformation), suggests that innovative 

techniques will be needed to determine both cryptic and novel resistance determinants. 

Although traditional methods have failed to identify these mechanisms, the use of WGS-

based transcriptomic and epigenetic analyses might provide novel ways to detect and 

describe unknown resistance mechanisms. Further WGS-based studies of gonococcal 

isolates and the development of innovative WGS-based analyses will enhance our 

gonococcal detection, treatment and management capabilities, which will ultimately aid in 

the control of AMR gonorrhea worldwide.
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Table 2.

Antibiotics to which NG exhibits resistance or reduced susceptibility and resistance markers that are 

detectable using WGS methodologies.

Antibiotic Resistance markers References

Penicillin blaTEM-1
(plasmid-mediated)

Ashford, Golash and Hemming (1976);

penA
(D354-insertion)

Dowson et al. (1989); Veal, Nicholas and Shafer (2002)

Tetracycline tetM
(plasmid-mediated) rpsJ (V57M, V57L, V57Q)

Morse et al. (1986); Hu et al. (2005)

Spectinomycin 16S rRNA (C1192U) rpsE (V25-deletion; K26E) Galimand, Gerbaud and Courvalin (2000); Unemo et al. (2013)

Quinolones gyrA (D95G, D95A, D95N, S91F) parC (S87R, 
S87N, S87I)

Shultz, Tapsall and White (2001); Grad et al. (2016)

Macrolides mtrR (G45D) mtrR promoter (A-deletion, 
interspecies mosaic alleles) 23S rRNA (C2611T, 
A2059G; >1 copy of each)

Zarantonelli et al. (1999); Ng et al. (2002); Cousin, Whittington and 
Roberts (2003); Galarza et al. (2010); Grad et al. (2016); Johnson et 
al. (2016)

Cephalosporins penA (mosaic penA XXXIV) ponA (L421P) porB 
(A121N)

Olesky, Hobbs and Nicholas (2002); Unemo et al. (2012); Golparian 
et al. (2014); Grad et al. (2014)
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