Skip to main content
. 2019 Dec 9;49(1):20190107. doi: 10.1259/dmfr.20190107

Table 5.

List of the diagnostic performance reported in the remaining studies

Author (year) Accuracy Sensitivity Specificity Mean deviation from reference AUC Correlation against reference
Alveolar bone resorption
Lin27 (2015) NA 92.5% /LOOCV;
92.8% /independent sample
86.2% /LOOCV;
85.9% /independent sample
NA NA NA
Lin28 (2017) NA NA NA 9.5% NA NA
Lee29 (2018) Identification of PCT
81.0% /premolar;
76.7% /molar
Prediction of hopeless teeth
82.8% /premolar;
73.4% /molar
NA NA NA Prediction of hopeless teeth
0.826/premolar;
0.734/molar
NA
Periapical lesions
Mol31 (1992) 80.2% 83.3% 75.6% NA NA 0.67
Carmody30 (2001) 83.40% /automatic classification;
57.8% /manual classification
NA NA NA NA 0.78/automatic classification;
0.44/manual classification
Flores66 (2009) 94.1% /reference: CBCT;
88.2% /reference: biopsy
NA NA NA NA NA
Maxillofacial cysts and tumors
Mikulka33 (2013) 85% /follicular and radicular cysts;
81.8% /follicular cysts;
88.9% /radicular cysts
NA NA NA NA NA
Nurtanio34 (2013) 87.18% NA NA NA 0.944 NA
Rana76 (2015) NA NA NA No significant difference NA NA
 Abdolali67 (2016) NA NA NA NA 0.936 0.83/radicular cysts;
0.87/dentigerous cysts;
0.80/keratocysts
Yilmaz69 (2017) 100% /10-fold CV;
94% /LOOCV;
96% /split sample
NA NA NA NA NA
Abdolali68 (2017) 94.29% /SVM;
96.48% /SDA
NA NA NA NA NA
Decision making model
Ngan74 (2016) 93.02% NA NA NA NA NA
Son47 (2018) 92.74% NA NA NA NA NA
Tooth types
Miki70 (2017) 88.8%   NA NA NA NA NA
Tuzoff46 (2019) 99.87% /teeth numbering 99.94% /teeth detection
98.00% /teeth numbering
99.94% /teeth numbering NA NA NA
Identification of root canals
Benyó71 (2012) 91.70% NA NA NA NA NA
Detection of maxillary sinusitis
Ohashi45 (2016) Diagnostic performance of the AI model
73.50% 77.60% 69.40% NA NA NA
Change of diagnostic performance after the use of the AI model
Before After Before After Before After NA Before After NA
66.0% /IEDs;
79.9% /experts
73.4% /IEDs;
81.1% /experts
63.4% /IEDs;
74.5% /experts
71.6% /IEDs;
76.0% /experts
68.6% /IEDs;
85.2% /experts
75.30% /IEDs;
86.2% /experts
0.728/IEDs;
0.871/experts
0.780/IEDs;
0.897/experts
Identification of inflamed gingiva
Rana73 (2017) NA NA NA NA 0.746 NA
Identification of dental plaque
Yauney72 (2017) 84.67% /RD;
87.18/CD
  NA NA NA 0.769/RD;
0.872/CD
NA
Classification of the stages of the lower third molar development
De Tobel44 (2017) 51%   NA NA 0.6 stages NA NA
Detection of dental caries
Lee32 (2018) 89.0% /premolar;
88.0% /molar;
82.0% /both
84.0% /premolar;
92.3% /molar;
81.0% /both
94.0% /premolar;
84.0% /molar;
83.0% /both
NA 0.917/premolar;
0.890/molar;
0.845/both
NA

AUC, area under the receiver operating characteristic curve; CBCT, cone-beam CT; CD, commercial device; CV, cross-validation; IED, inexperienced dentist; LOOCV, leave-one-out cross-validation; NA, not available; NN, neural network; PCT, periodontally compromised teeth; RD, research device; SDA, sparse discriminant analysis; SVM, support vector machine.