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Summary

The increasing proportion of variance in human complex traits explained by polygenic scores, 

along with progress in preimplantation genetic diagnosis, suggest the possibility of screening 

embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo 

screening are unclear, which undermines discussion of associated ethical concerns. Here, we use 

theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the 

difference in trait value between the top-scoring embryo and the average embryo. The gain 

increases very slowly with the number of embryos, but more rapidly with the variance explained 

by the score. Given current technology, the average gain due to screening would be ≈2.5cm for 

height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide 

confidence intervals, and indeed, in large nuclear families, the majority of children top-scoring for 

height are not the tallest.

Graphical Abstract

In Brief:

Recent progress in genetic testing of embryos has made it technically feasible to profile IVF 

embryos for polygenic traits such as height or IQ, but simulations, models, and empirical data 

show that the gain in trait value when selecting the top-scoring embryo is currently limited and 

uncertain.
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Introduction

The use of biotechnology to influence the genetic composition of human embryos in the 

absence of specific disease risk raises many ethical concerns, and the recent live births 

resulting from human embryonic CRISPR editing have heightened global attention to these 

issues (Coller, 2019; National Academies of Sciences Engineering and Medicine, 2017). 

Currently, the most practical approach to genetic “enhancement” of embryos is 

preimplantation genetic screening of IVF embryos. Preimplantation genetic diagnosis and 

screening (Sullivan-Pyke and Dokras, 2018) have been utilized for years to avoid 

implantation of embryos harboring monogenic disease-causing alleles or aneuploidies. 

Recently, it also became technically feasible to generate accurate genome-wide genotypes 

from single-cell input (Kumar et al., 2015). This development, coupled to recent progress in 

complex traits genetics, has made it possible to genetically screen embryos for polygenic 

traits, and has raised the prospect of “designer babies” (The Economist, 2018).

Perhaps the most controversial potential application of polygenic embryo selection would be 

selection for intelligence, especially given the abhorrent history of the early-20th century 

eugenics movement (Tabery, 2015). While most ethicists are deeply troubled by such 

prospects, at least one prominent scholar has suggested that there is an ethical obligation for 

parents to “select the best children” (Savulescu, 2001). In our view, any discussion of the 

ethics of embryo selection would ideally be informed by quantification of the expected 

utility of polygenic selection, either as of today, or as reasonably projected into the future. In 

this report, we thus utilize statistical and empirical methods to evaluate the potential effects 

of human embryo selection for polygenic traits.

Polygenic scores (PS) are derived from large-scale genome-wide association studies 

(GWAS) of complex traits, which can be quantitative (such as intelligence or height) or 

categorical (such as disease status, in which case they are often referred to as ‘polygenic risk 

scores’) (Wray et al., 2013). A PS is the count of effect alleles in an individual’s genome, 

weighted by each allele’s strength of association with the trait of interest in an independent 

GWAS (International Schizophrenia Consortium, 2009). The predictive power of a PS is 

usually represented by rps
2 , or the proportion of variance of the quantitative trait explained by 

the PS. To date, the largest GWAS of intelligence (Davies et al., 2018; Savage et al., 2018) 

has demonstrated a relatively modest out-of-sample rps
2  (≈5%), despite large sample sizes 

(n≈300,000 individuals). By contrast, recent large-scale GWASs of height have attained rps
2

of approximately 25%, demonstrating a highly polygenic genetic architecture similar to 

intelligence (Yengo et al., 2018a). Consequently, in the present report, we analyze height in 

addition to cognitive ability, which also allows us to exploit several datasets in which height 

data, but not intelligence data, are available.

PSs are typically evaluated on a cohort basis, and are not used to differentiate one individual 

from another (although a recent report has demonstrated that, for an extraordinarily tall NBA 

player, the PS for height was >4 standard deviations above the population mean (Sexton et 

al., 2018)). In order for polygenic embryo selection to hold potential utility (independent of 

ethical considerations), PSs must provide sufficient predictive power to differentiate between 

Karavani et al. Page 3

Cell. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



embryos within the restricted range of genetic variance available in a single family, and with 

a finite number of embryos. Two reports utilizing only mathematical modeling have 

suggested that substantial effect sizes for embryonic selection are possible (Branwen, 2016; 

Shulman and Bostrom, 2014). But to our knowledge, despite the widespread application of 

polygenic scores to complex traits and precision medicine in the research literature 

(Torkamani et al., 2018), no published studies have empirically examined the possibilities 

and limitations of a polygenic approach to embryo selection.

We consider here embryo selection in the context of a hypothetical IVF cycle. Our quantity 

of interest is the difference between the predicted value of the selected trait (i.e., height or 

intelligence) when the embryo with the highest PS is selected, compared with the mean 

across embryos. We term this difference the gain, and we further differentiate between the 

predicted gain, as determined by the PS, and the realized gain, as observed in the fully-

grown offspring. Because no study can be performed in actual embryos, we utilize three 

sources of data: 1) a quantitative genetic model; 2) simulated embryo genomes generated 

using realistic parameters from existing genotyped datasets of adults with known phenotypic 

values; and 3) a unique pedigree dataset of nuclear families with large numbers of offspring 

(10 on average), now fully-grown adults, with available genotype and phenotype data. In our 

simulated data, we examine the gain as a function of varying predictive strengths (rps
2 ) of the 

PS, as well as of the number of embryos (n) available; these results are compared against a 

theoretical model derived for average gain. Although a typical IVF cycle may produce 3-8 

viable embryos (median=5; (Sunkara et al., 2011)), we examine the gain across a broad 

range of values of n, given the possibility of future advances in IVF technology. Particular 

emphasis is placed on n = 10, representing a plausible upper bound within the foreseeable 

future.

Results

We first developed a simple quantitative genetic model for the expected gain. The model 

assumes a polygenic additive trait with no assortative mating, and hence no correlation 

between the scores of SNPs from homologous chromosomes or chromosomes of spouses. 

We recognize that statistically significant assortative mating has been demonstrated for 

genetic variants associated with polygenic traits such as height and educational attainment 

(Conley et al., 2016); however, the overall magnitude of this effect accounts for <5% of the 

variance in spousal phenotype (Robinson et al., 2017; Tenesa et al., 2015). Assortative 

mating would tend to reduce the efficacy of embryo selection due to reduced variance 

available from which to select and lower within-family score accuracy (Mostafavi et al., 

2019), and thus our results described below represent an upper bound on the potential gain.

We assumed a couple has generated n embryos, and computed the distribution of the 

polygenic scores of these embryos for a trait with phenotypic variance σz
2, of which a 

proportion rps
2  is explained by the PS. The set of n polygenic scores can be modeled as 

having a multivariate normal distribution with zero means, all variances equal to σz
2rps

2 , and 

all covariances equal to 1
2σz

2rps
2 . The gain is formally defined as the difference between the 

Karavani et al. Page 4

Cell. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximal and average PSs among the n embryos. Based on properties of multivariate normal 

distributions, the mean gain can be shown to be approximately (for details see Methods S1, 

Sections 1–3)

E gain ∝σzrps logn, (1)

where the coefficient of proportion is ≈0.77. A more accurate formula based on extreme 

value theory can also be derived (Methods S1 Eq. (33)). Most notably for our purposes, the 

mean gain increases with the square root of the variance explained (or linearly with the 

correlation coefficient between the PS and the trait), but the effect of n is considerably 

attenuated, as denoted by the square root and log transformation in Eq. (1).

Next, for our simulations, we used genotypic and phenotypic data from two cohorts. The 

Longevity cohort contained 102 couples of Ashkenazi Jewish origin with genome-wide 

genotypes and information on height, drawn from a larger longevity study (Atzmon et al., 

2009). The ASPIS cohort (Stefanis et al., 2004) contained 919 young Greek males with 

genome-wide genotypes and information on general cognitive function. To simulate 

embryos, we used either actual couples (for the Longevity cohort) or randomly matched 

couples (for both cohorts), and generated n = 10 or 50 synthetic offspring per couple based 

on a standard model of recombination (see Methods for details).

To predict the height or IQ of each embryo, we used polygenic scores based on summary 

statistics derived from recent large-scale GWAS meta-analysis. For height, the most recent 

meta-analysis contained ≈700,000 individuals (Yengo et al., 2018a) and did not include the 

subjects in our test (Longevity) cohort. For IQ, we utilized the most recent published meta-

analysis (Savage et al., 2018), from which the COGENT set of cohorts (including the ASPIS 

cohort) had been removed, resulting in a discovery sample size of n = 234,569. We 

optimized the polygenic scores with respect to imputation, LD-pruning, and the P-value 

threshold (Methods). Our scores predicted height in the Longevity cohort with rps
2 = 24.8 %

and IQ in the ASPIS cohort with rps
2 = 4.3 %, both within one percentage point of the 

maximum out-of-sample predictive power reported in the original GWAS. Using linear 

regression of the phenotype (age- and sex-corrected for height) on the polygenic scores in 

each cohort, we predicted the height or IQ of each simulated embryo.

Having calculated the predicted height of each simulated embryo from the Longevity cohort 

and the predicted IQ of each simulated embryo from the ASPIS cohort, we sought to test the 

predictions of the mathematical model in Eq. (1). To examine the relationship between 

predicted gain and the variance accounted for by the PS, we fixed the number of embryos to 

n = 10, and plotted the mean gain for height against increasing rps
2 . Because polygenic 

contributions to most complex traits (including height and IQ) are evenly distributed 

throughout the genome (Shi et al., 2016), we generated PSs that were progressively stronger 

using PSs derived from growing subsets of the 22 autosomes (e.g., chromosome 1 SNPs 

only, chromosome 1 + chromosome 2 SNPs only, etc.). As shown in Figure 1, the average 

gain reaches ≈3cm or ≈3 IQ points when the full genome-wide PS is used (corresponding to 

≈0.5 and ≈0.2 standard deviations of the trait, respectively). The average gains obtained 
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from varying rps
2  are close to the values predicted by the theoretical model (Eq. (1)). Our 

results did not differ when the actual couples are used as the source of the simulated 

embryos (Figure 1, panel B), compared to couples randomly matched from the Longevity 

cohort (Figure 1, panel A), indicating that effects of any assortative mating in this dataset are 

de minimis.

The PSs used so far are based on current GWAS results and on a simple LD-pruning and P-

value-thresholding strategy. However, GWASs are expected to increase in size (in particular 

given the rapid growth of the direct to consumer genetic industry (Khan and Mittelman, 

2018)), and statistical prediction methods are constantly improving [e.g., (Chung et al., 

2019; Lello et al., 2018; Mak et al., 2017; Vilhjálmsson et al., 2015)]. Given that the 

theoretically predicted relationship of the gain with rps was supported by the data in Figure 

1, we can forecast the prospects of embryo selection as predictors become increasingly 

accurate. For example, doubling the proportion of explained variance of height from ≈25% 

to 50% is expected to increase the mean gain from ≈3 to ≈4.24cm, with a maximum 

possible gain of ≈5.5cm for rps
2 ≈ 80 % (the upper bound of the heritability of the trait, as 

derived from twin studies; (Jelenkovic et al., 2016)). Similarly, quadrupling the variance 

explained for IQ would lead to a doubling of the gain, to ≈6 IQ points (given n = 10 

embryos).

Next, we tested the relationship between the gain and the number of embryos, holding rps
2

constant. In Figure 2, we show the expected gain vs the number of embryos, for up to 50 

embryos. Comparison to the theoretical model again shows good agreement, with an even 

better fit demonstrated in Figure S1 based on a more accurate approximation (Methods S1 

Eq. (33)). Two implications are immediately apparent from Figure 2. First, current 

reproductive technologies are in the most sensitive area of the curve. With a typical IVF 

cycle yielding 5 testable, viable embryos (Sunkara et al., 2011), the predicted gain is reduced 

from ≈3 to ≈2.5 (cm or IQ points); below 5 embryos, the gain drops precipitously. Second, 

there is a rather slow increase of the mean gain as the number of embryos increases beyond 

10. Thus, even with 1000 embryos, the mean gain would be only ≈1.7 times higher 

compared to selection with 10 embryos. Again, no differences were observed between 

randomly paired and actually married couples (panels A and B). The pattern for intelligence 

was roughly equivalent to that observed for height (panel C).

Both of the results above demonstrate the average gain expected under varying levels of rps
2

and n across 102 real couples or 500 simulated couples. However, for any given couple, the 

predicted gain will further vary around this mean. The distribution of the gain, when 

choosing the best out of 10 embryos, is shown in Figure 3 for height (for both random and 

actual couples) and IQ. The gain in height is typically between 1-6cm, with a median of 

2.88cm for random couples (SD: 1.03; IQR: 2.34-3.80) and 3.02cm (SD: 0.98; IQR: 

2.43-3.84) for actual couples. The gain in IQ was between ≈1-7 points (SD: 1.06; IQR: 2.43 

- 3.84), with a median of 3.02 IQ points. Thus, the predicted gain for a given couple may be 

somewhat higher or lower than suggested by the mean results of our simulations, due to 

variation across couples and the random assortment of SNPs in the offspring (see Methods 
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S1, Section 4 for a derivation of the variance of the gain). The mean gain itself is affected by 

the genotypes of the parents, but not by their total scores (Methods S1, Section 5).

Figure 3 demonstrates the variability of the predicted gain across couples, but environmental 

variance leads to additional and substantial variability in the realized gain, as observed in the 

phenotype of the offspring. Naively (Methods S1, Section 6), given PSmax ,the score of the 

top-scoring embryo, the 95% prediction interval for the (zero-centered) trait value is

PSmax − 1.96σz 1 − rps
2 , PSmax + 1.96σz 1 − rps

2 . (2)

Eq. (2) can be compared to a 95% prediction interval of [−1.96σz, 1.96σz] without selection. 

However, prediction intervals can be narrowed based on the parental phenotypic values, 

which are usually known. For example, it has been long known that mid-parental height can 

explain ≈40% of the variance in height of the offspring (Aulchenko et al., 2009), or 

theoretically h4/2 ≈ 32% (Visscher et al., 2010). These ≈32% of the variance overlap with 

the ≈25% explained by the PS, and the combination of both sources of information can 

never explain more than the heritability. As shown in Figure 4A, even under the extreme 

scenario where the combination of the PS and the parental values explain the entire 

heritability of height (≈80%), there would still be ±5cm interval around any predicted gain 

due to environmental and stochastic factors. Based on either the current PS alone, or based 

on the parents alone, the interval would be as large as ±9-10cm. For IQ, the 95% prediction 

interval would be ±13-19 points in case the entire heritability is explained (assuming h2 ∈ 
[0.6,0.8]), or ±24-27 points based on the parents (Figure 4B). Thus, the unexplained 

variance yields a wide confidence interval around any predicted value for an offspring’s trait, 

and therefore a considerable uncertainty in the realized gain that any given couple can expect 

from embryo selection. This would need to be combined with the variability in the predicted 

gain itself, as depicted in Figure 3, thereby substantially attenuating any guarantees on the 

potential benefit.

To give another example, assume there is no variability in the gain, the entire heritability is 

explained by the combination of the score and the parental phenotypes, and the proportion of 

variance explained by the PS is 40% for height and 15% for IQ. Selecting out of 10 

embryos, a 95% prediction interval for the height of a male child (assuming average parents, 

176cm for the population average, and an SD of 6cm) would be approximately 180±5cm 

(i.e., 175-185cm). This is compared to 176±10cm (166-186cm) without selection (Methods 

S1, Section 6). For IQ (mean 100 and SD 15, assuming h2 = 0.6), the 95% prediction 

interval would be approximately 106±19 (88-125), compared to 100±27 (73-127) without 

selection. The future child has a non-negligible probability (≈0.25, assuming a normal 

distribution) to have an IQ below the population average.

To evaluate the utility of embryo selection in a real-world setting, we examined a unique 

cohort of 28 large families with up to 20 offspring each (range 3-20; mean=9.6), now grown 

to adulthood and phenotyped for height. While all these families were the result of 

traditional means of procreation, we treated the offspring data as if all offspring were 

simultaneously generated embryos available for selection based on their PSs. Figure 5A 

depicts the actual difference in height between the offspring with the highest PS, compared 
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to the average height of all the offspring in each family, i.e., the realized gain. (All heights 

were corrected for age and sex). While the observed values average around the mean gain 

predicted by the theory, there was substantial variability in the realized gain. Some families 

realized a gain of up to 10cm, while for 5 of the 28 families, choosing the embryo with the 

highest PS would have resulted in an offspring with height below the average (i.e., gain < 0).

The inherent uncertainty in PS-based selection is also demonstrated in Figure 5B, which 

displays the actual height for each family member. It is notable that the offspring with the 

highest PS (red squares) is the tallest actual offspring in only 7 of the 28 families. Moreover, 

when repeatedly downsampled to n = 7 children, the offspring with the highest PS was the 

tallest in ≈31.5% of the families, close to the theoretical prediction (≈33.4%; Methods S1, 

Section 7). Across all families, the tallest child was on average ≈3.0cm taller than the child 

with the tallest predicted height, again very close to the theoretical prediction (3.1cm; 

Methods S1, Section 7).

Finally, embryo selection could be desired or attempted on the basis of scores for multiple 
traits, some of which may be positively or negatively correlated. We extended our 

quantitative model to predict the outcome of this selection scheme (Methods S1, Section 8). 

Specifically, we assumed selection for a weighted average of the scores for T traits, with 

correlation ρps,ij between the scores of traits i and j. We defined the weight of trait i as λi/

σps,i, where σps,i = σz,irps,i is the standard deviation of the predicted trait (σz, i
2  is the variance 

of trait i and rps, i
2  is the proportion of variance in trait i explained by the PS). The mean gain 

in trait i (i.e., the predicted value of trait i of the embryo with the maximal combined score; 

denoted Gi), is

E Gi ∝σz, irps, i logn
λi + j = 1, j ≠ i

T λ jρps, i j

j = 1

T
λ j

2 +
j = 1
T

k = 1, k ≠ j
T λ jλkρps, jk

. (3)

We demonstrate the application of this formula when jointly selecting for height and BMI in 

the Longevity cohort (Figure S2).

To gain more insight into Eq. (3), consider the case when all trait-trait correlations are equal 

to ρ, and all weights are equal to λ/σps,i. This corresponds to giving each trait an equal 

weight, after accounting for the different variance explained by each score. The mean gain 

per trait is

E Gi ∝σz, irps, i logn 1 + T − 1 ρ
T

. (4)

If ρ = 1, i.e., all scores are equal after normalization, the gain per trait is the same as the gain 

achieved when selecting for a single trait, as expected. When ρ = 0, i.e., when selecting for T 

independent traits, the mean gain per trait is 1 T smaller compared to selecting for a 

single trait. When all traits are maximally anti-correlated (ρ = −1/(T − 1)), the mean gain per 

trait completely vanishes. Thus, when selecting for multiple traits simultaneously, the gain 
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per trait can be much smaller compared to selection for a single trait, in particular if PSs of 

traits are anti-correlated.

Discussion

In this paper, we explored the expected gain in trait value due to selection of human embryos 

for height and IQ. We showed that the average gain, with current predictors and with five 

viable embryos, is around ≈2.5cm and ≈2.5 IQ points. We predicted and confirmed by 

simulations that the gain will increase proportionally to the square root of the variance 

explained by the predictor, but much more slowly with the number of embryos. Only two 

previous studies have addressed this question to date, both of which employed only 

mathematical modeling. One study has assumed the entire heritability can be explained by 

the genetic predictor, leading to larger effect sizes than possible with currently available 

scores (Shulman and Bostrom, 2014). The second study (a blog) used a model similar to 

ours, but focused on futuristic approaches to increasing the number of available embryos 

(Branwen, 2016).

In animal breeding, genomics-based selection is usually performed not by selecting embryos 

but by genotyping young males and using top-scoring animals as sires for the next 

generation. The recent success of genomic selection is mostly attributed to the shortening of 

the generation time (Garcia-Ruiz et al., 2016), as the genetic value of an animal can already 

be determined at birth (Meuwissen et al., 2016; van der Werf, 2013). Beyond generation 

time, genomic selection is expected to be more powerful than embryo selection, because 

first, the population variance is double the variance between siblings, increasing the gain by 

a factor of 2, and second, the number of individuals to select from (n) is not limited as in 

IVF cycles. Indeed, we have identified only one study in animal genetics that has suggested 

and empirically examined embryo selection (Mullaart and Wells, 2018).

Given that rps
2  holds the strongest effect on the potential gain from embryo selection, it is 

worthwhile to consider the potential for increasing rps
2  in the foreseeable future. Increasing 

sample sizes of discovery GWASs is the most straightforward means of increasing rps
2

(Chatterjee et al., 2013). For educational attainment, a trait strongly correlated with IQ (rg ≈ 
0.70; (Hagenaars et al., 2016)), increasing GWAS sample size from ≈300K (Okbay et al., 

2016) to ≈1.1M (Lee et al., 2018) resulted in an increase in out-of-sample variance 

explained from 3.2% to 11%. For height, the out-of-sample rps
2  increased more modestly, 

from 17% to 24.6% when GWAS sample size increased from ≈250k (Wood et al., 2014) to 

≈700k individuals (Yengo et al., 2018a). The variance explained by the predictor should 

approximately satisfy rps
2 = hsnp

2 1 + M

Nhsnp
2

−1
, where N is the (discovery) GWAS sample 

size, M is the effective number of markers, and hsnp
2  is the SNP-based heritability (Pasaniuc 

and Price, 2017; Wray et al., 2019). The dependence of the gain on N has an empirical S 

shape (Figure S3). For IQ, increasing GWAS sample sizes to N ≈ 107 is expected to double 

the gain, up to ≈7 IQ points (for n = 10 embryos). For height, we are closer to saturation, 
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and using N ≈ 107 will only increase the gain to ≈4.5cm. These limitations are to some 

extent due to the strict upper bound rps
2 ≤ hsnp

2 .

Further improvement is expected with the use of whole-genome sequencing (WGS), as it 

was recently shown that WGS data explains the entire heritability of height and BMI 

(Wainschtein et al., 2019). For cognitive ability, a recent family-based study (Hill et al., 

2018a) has demonstrated that more than half of the variation is attributable to rare variation 

not captured by current GWASs. However, as the effective number of markers in WGS is 

much larger compared to microarrays and the sample sizes much smaller, the current 

predictive power is very low (expected gain for height <1cm; Figure S3). Once sample sizes 

reach N = 107 − 108, the gain for height can reach ≈5.5cm, nearly double the current gain 

(Figure S3). To incorporate rare variation while overcoming the problem of small WGS 

sample sizes, imputation is a promising approach (Yang et al., 2015), and as reference panels 

grow in size and diversity, imputation is expected to accurately assess variants with 

frequencies down to 0.1% or even lower (Lencz et al., 2018; Taliun et al., 2019).

Finally, statistical approaches to calculating PSs from GWASs are becoming increasingly 

sophisticated (Khera et al., 2018; Prive et al., 2019a; Torkamani et al., 2018). Most notably, 

the application of penalized regression methods to the generation of PSs holds a potential for 

rapid gains in rps
2  without requiring any additional data collection in either GWAS datasets or 

imputation reference panels (Mak et al., 2017; Prive et al., 2019b). For example, initial 

evidence suggests that currently available datasets might be able to explain up to 40% of the 

variance in height by using LASSO (Lello et al., 2018). Additionally, the use of multiple 

related phenotypes has been demonstrated to enhance the predictive power of PS (Krapohl et 

al., 2017); for example, the combination of educational attainment and intelligence GWAS 

may permit a doubling of cognitive rps
2  (Allegrini et al., 2019). Finally, it has recently been 

suggested that enrichment of certain subcategories of functional variation (e.g., coding, 

conserved, regulatory, and LD-related genomic annotations) in GWAS results can be 

leveraged to further enhance prediction accuracy (Kichaev et al., 2019; Marquez-Luna et al., 

2018).

While it is likely that some combination of the above factors will increase the accuracy of 

PSs in the near future, substantial limitations to PSs must also be acknowledged (Loos and 

Janssens, 2017). First, PSs do not account for extremely rare Mendelian variants associated 

with extreme phenotypes such as short stature (Grunauer and Jorge, 2018) or intellectual 

disability (Vissers et al., 2016). More broadly, the lower end of the phenotypic distribution is 

less well predicted from common variant PS than the middle and upper percentiles (Chan et 

al., 2011); this fact limits the utility of PSs for “reverse” embryonic selection (i.e., to avoid 

extreme low values). Second, it is well known that PSs lose substantial power, or may even 

be invalid, when applied across different populations (Coram et al., 2017; Kim et al., 2018; 

Martin et al., 2017). Moreover, even within a single population, subtle ethnic and geographic 

stratification effects may result in inflated estimates of rps
2  (Barton et al., 2019; Haworth et 

al., 2019), and prediction accuracy may also vary by age and sex (Domingue and Fletcher, 

2019). Third, polygenic scores are correlated with parental genotypes and hence with the 
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environment induced by the parents, in particular for education. This leads to lower 

prediction accuracy within families (Cheesman et al., 2019; Domingue and Fletcher, 2019; 

Morris et al., 2019; Mostafavi et al., 2019; Selzam et al., 2019), which further limits the 

utility of embryo screening. Fourth, SNP effects may be environmentally sensitive, and may 

not be consistent across time and place (Keyes et al., 2015).

Beyond these limitations in PS power and accuracy, several additional constraints on the 

expected utility of embryo selection are notable. First, we did not explicitly model 

assortative mating, which likely exists to some extent for traits such as height and cognitive 

ability (Conley et al., 2016; Yengo et al., 2018b), and is expected to further reduce the 

potential available variance for embryo selection. While there was no detectable effect of 

assortative mating in our Longevity cohort, these subjects represented an older birth cohort, 

and assortative mating on phenotypic traits may be increasing. Second, the number of 

embryos per IVF cycle is usually less than 10 (Sunkara et al., 2011), and, as can be seen in 

Figure 2, in this regime the utility drops sharply with a decreasing number of embryos. 

Third, with the increasing age of childbearing, the proportion of aneuploid embryos 

increases. For example, the proportion of aneuploid embryos is 35% for women aged 35 and 

60% at age 40 (Franasiak et al., 2014). Relatedly, embryos with particularly high polygenic 

scores are not guaranteed to implant and lead to a live birth. While it is theoretically possible 

to perform multiple IVF cycles to generate more embryos, IVF is invasive, involves a 

substantial discomfort to the prospective mother, and requires significant financial means 

(Teoh and Maheshwari, 2014) (which would often also imply an older age of the prospective 

parents and fewer viable embryos per cycle). To the best of our knowledge, no upcoming 

technology is expected to significantly increase the number of oocytes extracted per IVF 

cycle (Casper et al., 2017; Lin et al., 2013). While it has been suggested that induced 

pluripotent stem cells may greatly increase the potential number of available embryos 

(Hikabe et al., 2016; Yamashiro et al., 2018), such technologies are not close to 

implementation for human reproduction. Either way, even with tens of viable embryos, our 

simulations show that the gain in trait value would be relatively small (Figure 2). Finally, 

once IVF and genotyping/sequencing have been performed, couples may attempt to select 

for multiple phenotypes, and as we have shown, this will lead to smaller gains per each 

individual trait.

Perhaps more importantly, we have also demonstrated that two sources of variability result 

in wide confidence intervals for the prediction of final observed phenotypic values: 1) 

random assortment of SNPs will result in variability of the predicted gain around its mean 

value; and 2) environmental variation will produce considerable additional uncertainty 

around the predicted gain. In our empirical dataset, the majority of offspring who were the 

tallest among their siblings were not those with the highest PS, and a substantial fraction of 

the top-scoring offspring had lower than average phenotypic values. Regardless of the future 

accuracy of rps
2  or the number of available embryos, these uncontrollable sources of 

variability will limit the appeal of selection for any individual couple.

A final reason for caution over the utility of embryo selection is the widespread pleiotropy 

across most traits (Bulik-Sullivan et al., 2015; Pickrell et al., 2016; Visscher et al., 2017). 
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For example, while IQ is negatively correlated with most psychiatric disorders (Zheng et al., 

2017), it is genetically positively correlated with autism and anorexia (Hill et al., 2018b; 

Savage et al., 2018). Therefore, selecting an embryo on the basis of higher predicted IQ will 

increase the risk for autism or anorexia in the offspring. In animal breeding, selection for 

production and growth traits has resulted in serious health issues in dairy cattle (Oltenacu 

and Algers, 2005), broiler chickens (Bessei, 2006), and other animals (Rauw et al., 1998; 

Rodenburg and Turner, 2012), and in plants, it was recently demonstrated that a flavor allele 

was lost due to human selection (Gao et al., 2019). Thus, negative effects on correlated 

health traits should be seriously considered.

In addition to practical limitations, there are major ethical and societal concerns with 

embryo screening, mostly due to associations with ideas of eugenics. Eugenics was 

originally developed by Galton, who envisioned breeding of humans for higher intelligence 

(Tabery, 2015). In short order, Galton’s concept was extended in some countries to the 

forced sterilization of those possessing mental traits deemed as ‘undesirable’ (Hoge and 

Appelbaum, 2012; Wikler, 1999). The specter of eugenics has accompanied the development 

of modern reproductive technologies since the development of IVF and preimplantation 

genetic diagnosis of monogenic diseases (Bonnicksen, 1992). At the same time, application 

of the term ‘eugenics’ to modern reproductive practices can lead to terminological and 

conceptual ambiguities that require careful delineation (Cavaliere, 2018). But even when 

completely removed from the context of state coercion, embryo selection raises ethical 

concerns of equity and justice in the availability of expensive reproductive technologies 

(President’s Council on Bioethics (US), 2003), as well as potential conflicts between 

individual benefits and societal costs (Anomaly et al., 2019). More broadly, embryo 

selection for non-disease traits raises the possibility of fundamentally altering “the meaning 

of childbearing” (President’s Council on Bioethics (US), 2003).

The legal and regulatory framework for PGD remains unsettled, especially in the United 

States. While PGD is legal in most countries, its use is often restricted (European Society of 

Human Reproduction and Embryology (ESHRE), 2017; Jones and Cohen, 2007; Knoppers 

et al., 2006). Across much of Europe, PGD is legally allowed only when risk for a serious 

medical condition is high (Dondorp and de Wert, 2019). In this context, high risk generally 

refers to highly penetrant (dominant or recessive) alleles for clearly defined diseases; thus, 

polygenic scores for quantitative traits would fail to meet these requirements. In the UK, the 

set of permitted conditions is determined by a designated body, which issues explicit 

guidelines as to which diseases and genes are included, and which mandates genetic 

counseling in order to access these services (Bayefsky, 2016). In Israel, such decisions are 

made by institutional review boards, and PGD is not permitted for traits (Israel Ministry of 

Health, 2013). In China, PGD is regulated and social sex selection and selection for traits are 

not permitted (Cyranoski, 2017). In contrast, in the USA, the targeted use of PGD is not 

regulated, and hence, to the best of our knowledge, embryo selection for polygenic traits can 

be offered to consumers (Bayefsky, 2018, 2016). In such an environment, and given the 

concerns over pleiotropic effects and given the invasive nature of PGD, it may be desired to 

introduce oversight over at least the advertised outcomes.
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Beyond legal restrictions, an additional concern involves the principle of informed consent 

(Katz, 1994), which suggests that embryo screening should be offered in the context of 

appropriate genetic counseling. It is our hope that the present work provides an initial 

evidence base for professionals and regulators to consider the risks and benefits that are at 

the heart of the informed consent process.

Finally, in this paper we did not consider the prospects, nor the ethics, of “population-scale” 

embryo selection for IQ or other traits. While claims were made that population-scale 

selection could lead to a dramatic increase in trait values at the population level (e.g., the 

popular article (Hsu, 2016)), we leave a rigorous evaluation of this prediction to future 

studies.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Shai Carmi (shai.carmi@huji.ac.il). This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts for simulating offspring

Longevity: Our data included 208 individuals from 104 couples who were part of the 

LonGenity study of longevity and aging in Ashkenazi Jews (the “Longevity” cohort). 

Genotyping was performed using Illumina HumanOmniExpress array. Genotyping and QC 

were previously described (Chang et al., 2014; Eny et al., 2014; Roshandel et al., 2016; 

Sathyan et al., 2018). The number of SNPs was 704,759, with an average missing rate 0.2%. 

We removed duplicate variants and variants with missingness rate >1%. Height was 

available for all individuals except two who were discarded along with their spouses. Height 

was 177±6cm (mean±SD) in males (range 163-191) and 163±6cm in females (range 

147-175). BMI was available for 203 individuals. BMI was 26.5±3.9 (kg/m2) (mean±SD) in 

males (range 15.9-42.9) and 25.4±5.0 (kg/m2) in females (range 18.0-51.2).

ASPIS: The Athens Study of Psychosis Proneness and Incidence of Schizophrenia (Stefanis 

et al., 2004) (henceforth “ASPIS”) included 1066 randomly selected young male conscripts 

aged 18 to 24 years from the Greek Air Force in their first two weeks of admission. All 

participants were free of serious medical conditions. Cognitive measures included: Raven 

Progressive Matrices Test (Raven Matrices; raw score); Continuous Performance Task, 

Identical Pairs version (CPT-IP; d-prime score); Verbal N-Back working memory task 

(Verbal NBack; total accuracy); and Spatial N-Back working memory task (Spatial NBack; 

total accuracy). General cognitive ability scores (g) were generated using the first principal 

component. We transformed the scores to IQ points by scaling the mean to 100 and the 

standard deviation to 15 (range 47-140). We note that this measure of cognitive ability is 

only an estimate of the IQ as would have been obtained from standard tests (such as the 

Wechsler Adult Intelligence Scale), and hence the somewhat wide range. Genotyping was 

performed on Affymetrix 6.0 arrays (Hatzimanolis et al., 2015; Smyrnis et al., 2007; 
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Stefanis et al., 2007). The number of SNPs was 487,126, with an average missingness rate of 

0.3%. Out of the 1066 genotyped samples, 147 had their cognitive function scores missing 

and were discarded from the analysis, leaving 919 individuals.

Nuclear families: We used 28 large nuclear Jewish families with an average of 9.6 adult 

offspring (full-siblings) per family who have completed their growth. The families were 

recruited in Israel and in the US after obtaining IRB approvals in both locations. Details on 

the cohort, measurements, and genotyping appear elsewhere (Zeevi et al., 2019). In short, 

participants signed a consent form and filled a medical questionnaire (to ensure there were 

no medical conditions that could have affected their growth), and their heights were 

measured with four technical repeats at an accuracy of ±0.1cm. All 308 consented 

participants were genotyped on the Affymetrix Axiom Biobank array (≈630,000 SNPs). One 

from each of six pairs of monozygotic twins was excluded. Heights were corrected for age 

and age2, then standardized to Z-scores in each sex separately, then reported as 173.0 

+ 5.6Zcm.

METHOD DETAILS

Phasing—We phased the Longevity and ASPIS cohorts (separately) using SHAPEIT2 

(O’Connell et al., 2014). Default parameters were used, except for using 200 states (to 

improve precision), and an effective population size of 12k, similar to the value suggested 

for Europeans. The genetic map used was from HapMap (International HapMap 3 

Consortium, 2010).

Polygenic score calculation

Longevity cohort: height and BMI: We used summary statistics from (Yengo et al., 

2018a), a meta-analysis based on (Wood et al., 2014) and the UK Biobank (Bycroft et al., 

2018). Effect sizes were available for 2,334,001 SNPs, of which 1,789,210 were missing 

from the Longevity panel. Another 241 variants had mismatching alleles, leaving a total of 

544,550 for downstream analyses. Scoring of individuals based on the summary statistics 

was performed in PLINK (Chang et al., 2015) with the no-mean-imputation flag.

Given a polygenic score (PS), we predicted height in a two-step approach. First, the heights 

of the Longevity individuals were regressed against age and sex. Second, the residuals from 

the first step were regressed against their PS (rps
2 ≈ 0.248, comparable to (Yengo et al., 

2018a); Figure S4). The regression line from the second step was used to predict the height 

of the simulated offspring.

To optimize the PS, we first determined whether imputation had an effect on prediction 

accuracy. We used IMPUTE2 (Howie et al., 2009) and The Ashkenazi Genome Consortium 

reference panel (Lencz et al., 2018). Imputed data was post-processed to include only single 

nucleotide variants present in the summary statistics and with IMPUTE2 INFO-score >0.9. 

The rps
2  for height prediction (using all SNPs) was 0.201, which was slightly lower than for 

the PS generated without imputation, consistent with previous reports (Ware et al., 2017). 
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Since imputation incurs a significant computational and storage burden, we proceeded with 

the genotyped SNPs only.

Next, we considered the effect of linkage-disequilibrium (LD) pruning and P-value 

thresholds. LD-clumping was performed in PLINK (Chang et al., 2015) with window size of 

250kb and r2 threshold of 0.1. LD was estimated based on 574 genomes from The 

Ashkenazi Genome Consortium (Lencz et al., 2018), reduced to the 657,179 SNPs 

intersecting with the Longevity study. The number of remaining SNPs after LD-clumping 

was 93,345. We considered P-value thresholds between 10−7 to 1 in multiples of 10. We then 

searched for the parameter combination giving the maximum rps
2  between predicted and 

actual phenotypes. Without LD-pruning, the maximal rps
2  was 0.207 (using a P-value cutoff 

of 0.1). With LD-pruning, the maximal rps
2  was 0.248, using a P-value cutoff of 0.001. Thus, 

our final score used LD-pruning and P<0.001, and included 15,752 SNPs.

We used the same GWAS (Yengo et al., 2018a) to obtain summary statistics for BMI. We 

regressed BMI on age and sex, and then we regressed the residuals on the PS. We used 

cross-validation to optimize the r2 threshold and the P-value threshold. The optimal 

parameters were r2 = 0.1 and P = 0.1. The score included 15,695 SNPs and explained 3.1% 

of the variance (Figure S4). This is less than previously reported (≈10% of the variance) but 

was significantly non-zero. Scores for BMI were only used for the analysis of selection for 

multiple traits.

Nuclear families: height: We used the set of 15,752 SNPs obtained for the Longevity 

cohort with the thresholds P<0.001 and LD r2 < 0.1. Of these, we used 15,124 SNPs that 

were present on the array or could be imputed from the AJ reference panel (Carmi et al., 

2014). We excluded SNPs homozygous in all participants. The weight of each SNP was its 

effect size (Yengo et al., 2018a), zero centered for the cohort. Scores were standardized into 

Z-scores and reported as for the actual heights.

ASPIS: general cognitive ability: We used summary statistics from (Savage et al., 2018), 

based on a meta-analysis of intelligence (excluding the ASPIS cohort). Out of total of 

9,145,263 SNPs, 468,809 intersected with the ASPIS panel. Following the results from 

height, we did not consider imputation. The optimal LD-clumping threshold and P-value 

threshold were r2 = 0.3 and 1, respectively, leaving 130,199 SNPs and reaching rps
2 = 0.043

(Figure S4). For improving the accuracy of LD estimation, we considered the entire 1066 

genotyped individuals, including those without phenotypes.

We note that other approaches for genetic prediction may have slightly higher predictive 

power. However, an extensive benchmarking of methods and thresholds for trait prediction is 

beyond the scope of this paper. Our quantitative model would allow to approximate the 

utility of any score, based on its proportion of variance explained.

Simulating embryos—The Longevity cohort included actual couples, and these were 

used to simulate offspring (“actual matching”). For both the Longevity and the ASPIS 
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cohorts, we also matched parents randomly (“random matching”). Given a pair of parents, 

we simulated offspring (embryos) by specifying the locations of crossovers in each parent. 

Recombination was modeled as a Poisson process, with distances measured in cM using the 

HapMap genetic map (International HapMap 3 Consortium, 2010). For each parent, we 

drew the number of crossovers in each chromosome from a Poisson distribution with mean 

equal to the chromosome length in Morgans. Random positions along the chromosome (in 

Morgans) represented the locations of the crossovers. We mixed the phased paternal and 

maternal chromosomes of the parent according to the crossovers’ locations, and randomly 

chose one of the resulting sequences as the chromosome transmitted from that parent. Note 

that due to phase switch errors, the paternal and maternal chromosomes are each a mixture 

of both. Nevertheless, phasing is expected to be accurate over short distances (switch error 

rate around 1%) (Choi et al., 2018), thus correctly representing LD blocks.

We repeated the process to generate either 10 or 50 embryos per couple (whether a true 

couple or randomly matched). The number of couples for random matches was such that the 

total number of embryos was 5000 (Table 1). For a number of embryos other than 10 or 50, 

we downsampled embryos from the n = 50 simulations.

To calculate the polygenic scores for the synthetic embryos, we used the same summary 

statistics as for the parents. To predict the phenotypes of the embryos, we used the 

regression model that we have generated for the parents. The predicted phenotype is thus in 

its natural units (cm, kg/m2, or IQ points). Adding sex- or age-specific means was 

unnecessary, as we considered only the differences between embryos attributed to their 

polygenic scores.

Multiple traits—We used the Longevity cohort, which had data on both height and BMI. 

We used the same sets of simulated embryos as for height. For each embryo, we computed 

the scores for height and BMI, and normalized the scores by the standard deviations of the 

predicted phenotypes (2.89cm for height and 0.78kg/m2 for BMI). The combined score per 

embryo was the normalized height score minus the normalized BMI score (to simulate 

selection for lower BMI). The gain for height was the predicted height for the embryo with 

the highest combined score, and similarly for BMI. The correlation between the scores of 

height and BMI was −0.16, which we used in the equations for the gain ((3) and (4)).

QUANTIFICATION AND STATISTICAL ANALYSIS

Polygenic scores calculations were performed with PLINK (Chang et al., 2015). Other data 

analyses were performed using custom Python and R scripts.

In Figures 1, 2, S1, and S2, 95% confidence intervals are based on ±1.96 the standard error 

of the mean (SEM) over the simulated families. Regressions (as in Figure S4) were 

performed using statsmodels (Seabold and Perktold, 2010). For regression of the trait on PS, 

The proportion of variance explained was the squared correlation coefficient, and the P-

value for a non-zero correlation coefficient was computed with scipy.stats.pearsonr. The 

mean and 95% confidence bands in Figure S4 were generated by bootstrapping by 

seaborn.lmplot.
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The quantitative genetic model—We modeled the vector of polygenic scores for a set 

of embryos as a multivariate normal variable with zero means, and derived its covariance 

matrix. The model implies that the score of each embryo can be represented as a sum of two 

normal variables, one shared across embryos and one independent, both with variance equal 

to half the variance in the trait explained by the PS. The maximal score, and thereby the 

gain, could be written using the maximum of n independent normal variables. We derived 

formulas for the mean and variance of the gain, and then: the mean gain conditional on the 

parental scores and phenotypes, a prediction interval for the phenotype, the difference 

between the maximal-predicted and the actual maximal trait value, and the gain when 

selecting for multiple traits. Full details are available in Methods S1.

DATA AND CODE AVAILABILITY

Python code implementing the analyses described in this paper is available at https://

bitbucket.org/ehudk/embryo-pgs-selection.

R code that implements some of the calculations of the gain under the quantitative genetic 

model can be found at https://github.com/orzuk/EmbryoSelectionCalculator.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• IVF embryos could be profiled with polygenic scores for traits such as height 

or IQ

• The top-scoring embryo is expected to be ≈2.5cm or ≈2.5 IQ points above the 

average

• The adult trait value of the top-scoring embryo would remain widely 

distributed

• Multiple ethical and other factors impose practical limits on the actual gain
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Figure 1. The mean gain vs the proportion of the variance explained by the PS.
Blue dots and the 95% confidence intervals (light blue bands) represent simulations with 10 

embryos per couple. To generate scores with increasing proportions of variance explained, 

we gradually added chromosomes 1 to 22 to the computed PS. The orange line corresponds 

to the theoretical model derived in Methods S1 and described in Eq. (1). For each value of 

rps
2 , dots are averages and 95% confidence intervals are based on ±1.96 the standard error of 

the mean over the simulated families. (A) Gain in height for random couples: 500 simulated 

pairings drawn from the Longevity cohort. (B) Gain in height for actual couples: 102 

couples from the Longevity cohort. (C) Gain in IQ for random couples: 500 simulated 

pairings drawn from the ASPIS cohort. See also Figure S3.
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Figure 2. The mean gain vs the number of embryos.
Blue dots are from simulations, and orange lines are for the theoretical prediction (Eq. (1)). 

All details are as in Figure 1. See also Figures S1 and S2.
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Figure 3. The distribution of the predicted gain from embryo selection with 10 embryos per 
couple.
(A) The gain in height by simulating 500 random couples from the Longevity cohort. (B) 
Same as (A), but with actual spouses (n = 102). (C) The gain in IQ by simulating 500 

random couples from the ASPIS cohort. Lines are estimated densities.
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Figure 4. The prediction interval width as a function of the proportion of variance explained by 
the combination of parental phenotypes and the PS of the child.
If the proportion of variance explained is p, the half-interval width is 1.96σz 1 − p. (A) The 

prediction interval for height, assuming σz = 6cm. The proportion p is unknown, but cannot 

exceed the heritability, which we assume to be h2 ≈ 0.8, and cannot fall under h4/2 ≈ 0.32, 

which is the theoretical variance explained by the mid-parental height. (B) The prediction 

interval for IQ, with σz = 15 points. We assume the heritability is in the range [0.6,0.8], with 

a minimal variance explained of 0.62/2 = 0.18.
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Figure 5. An analysis of selection for height in 28 real families with up to 20 adult offspring each.
(A) The realized gain in each family, defined as the difference between the actual (age- and 

sex-corrected) height of the offspring with the highest PS and the average height of all 

offspring in the family. The theoretical prediction is based on Eq. (1). (B) The actual height 

(age- and sex-corrected) of all members of all families. The figure demonstrates the effect of 

the current low-accuracy prediction models, as the tallest-predicted sibling (red squares) is 

usually not the actual-tallest sibling (only 7/28 times). Siblings are depicted as grey dots, 

and the parents of each family as blue triangles. In some families only one parent was 

available.
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Table 1.

The sets of simulated embryos.

Cohort Phenotype Matching Number of matches Number of offspring per couple

Longevity Height/BMI Random 500 10

Longevity Height/BMI Random 100 50

Longevity Height Actual 102 10

Longevity Height Actual 102 50

ASPIS Cognitive ability Random 500 10

ASPIS Cognitive ability Random 100 50
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