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Abstract

Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark 

states underpin some of the most celebrated advancements in super-resolution microscopy. While 

this stochastic behavior has been heavily exploited, full characterization of the underlying models 

can potentially drive forward further imaging methodologies. Under the assumption that 

fluorophores move between fluorescing and dark states as continuous time Markov processes, the 
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goal is to use a sequence of images to select a model and estimate the transition rates. We use a 

hidden Markov model to relate the observed discrete time signal to the hidden continuous time 

process. With imaging involving several repeat exposures of the fluorophore, we show the 

observed signal depends on both the current and past states of the hidden process, producing 

emission probabilities that depend on the transition rate parameters to be estimated. To tackle this 

unusual coupling of the transition and emission probabilities, we conceive transmission 

(transition-emission) matrices that capture all dependencies of the model. We provide a scheme of 

computing these matrices and adapt the forward-backward algorithm to compute a likelihood 

which is readily optimized to provide rate estimates. When confronted with several model 

proposals, combining this procedure with the Bayesian Information Criterion provides accurate 

model selection.

Keywords

Hidden Markov models; Markov processes; rate estimation; forward-backward algorithm; super-
resolution microscopy

1. Introduction.

Fluorescence microscopy is a collection of techniques that utilize the photon emitting 

properties of fluorescing molecules, called fluorophores, to perform optical imaging, 

particularly in cell biology and biomedical applications. Recent years have seen the advent 

of a number of super-resolution microscopy techniques that have bypassed the classical 

resolution limits of fluorescence microscopy (Huang, Bates and Zhuang (2009)). 

Specifically, single molecule localization microscopy (SMLM) approaches, such as 

photoactivated localization microscopy (PALM) (Betzig et al. (2006), Hess, Girirajan and 

Mason (2006)) and stochastic optical reconstruction microscopy (STORM) (Rust, Bates and 

Zhuang (2006), Heilemann et al. (2008)), rely on the ability exhibited by some fluorophores 

to photoswitch stochastically between a photon emitting On state and nonemitting dark 

states (Van de Linde and Sauer (2014), Ha and Tinnefeld (2012)). A specimen decorated 

with a spatially dense number of photon emitting fluorophores prevents accurate 

identification of individual fluorophores and resolution of structures smaller than the 

diffraction limit—see Figure 1(a). Using a fluorophore with stochastic photo-switching 

properties can provide an imaging environment where the majority of fluorophores are in a 

dark state, while a sparse number have stochastically switched into a transient photon 

emitting On state. This results in the visible fluorophores being sparse and well separated in 

space; with the use of a high-performance camera the individual fluorophores in the On state 

can be identified and localized with nanometer scale precision by fitting point spread 

functions (Ober et al. (2015), Sage et al. (2015))—see Figure 1(b). Through the acquisition 

across time of a large sequence of images (typically thousands)—see Figure 1(a)—many 

more photo-switching fluorophores can be isolated in time and precisely localized in space. 

When aggregated and plotted, these localizations provide an accurate and detailed map of 

fluorophore positions giving rise to a super-resolved image.
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Lateral resolutions of 10–30 nanometers (nm) are possible in biological samples using 

SMLM, however, the resolution and image quality is strongly dependent on the photo-

switching properties of the fluorophore used. While longer On states provide a greater 

number of photons being recorded by the camera, which in turn leads to greater precision in 

localizing spatially isolated fluorophores (Ober, Ram and Ward (2004), Ram, Ward and 

Ober (2013), Thompson, Larson and Webb (2002), Rieger and Stallinga (2014)), the 

increased random occurrence of fluorophores simultaneously occupying the On state within 

a diffraction limited spot can lead to significant imprecision, missed events and unwanted 

artifacts (Van de Linde et al. (2010), Nieuwenhuizen et al. (2015)). Thus, a careful choice of 

fluorophore and the environment used to promote photo-switching—controlled by the buffer 

solution and illumination intensity—must be made for the intended application. This is 

particularly important in live-cell applications when considerations must be made for 

temporal resolution and reduced laser intensities.

To inform the choice of fluorophore with its environment, and aid the development of novel 

fluorophores, accurate characterization of the photo-kinetic model of the fluorophore, 

together with estimation of photo-switching rates (the rate at which fluorophores transition 

between On and dark states) is required (Dempsey et al. (2011), Lehmann et al. (2016)). 

Further, accurate knowledge of the photoswitching characteristics could be employed to 

maximize resolutions achieved using advanced analytical methods, for example, 3B analysis 

(Cox et al. (2011)) and DeconSTORM (Mukamel, Babcock and Zhuang (2012)) and 

improve the performance of molecular counting techniques (Rollins et al. (2014), Lee et al. 

(2012)).

Several attempts have been made to model the kinetic schemes of fluorophore photo-

switching and estimate the corresponding photo-switching rates. These kinetic schemes, as 

is common across single molecule biophysics, are characterized by Markovian transitions 

between a finite set of discrete states and are therefore ideally suited to being modeled as 

continuous time Markov processes. In Figure 2 are four models for photo-switching 

fluorophores. The first, Figure 2(a), depicts a typical kinetic model, accompanied by the 

state-space diagram we will adopt in this paper. This model contains a photon emitting On 

state 1 (involving rapid transitions between excited state S1 and ground state S0 via the 

absorption and emission of a photon), two temporary dark states 0 and 01 (the triplet state, 

T1 and the redox states, F+ and F−) and an absorption 2 (BF/BT0/BS0) which in this 

application is known as the photobleached state. Then in Figures 2(b)–2(d) are three further 

common state space models. Figure 2(b) portrays a photo-switching model with a simple 

two state {On(1) Dark(0)} structure. Models of this type are suitable for super-resolution 

methods including point accumulation for imaging in nanoscale topography (PAINT) and 

DNA-PAINT (Jungmann et al. (2010), Sharonov and Hochstrasser (2006)). Figure 2(c) 

depicts a model that incorporates an absorbing state 2. This form of photo-switching 

followed by absorption describes a first approximation to the behavior that occurs 

spontaneously in a number of organic fluorophores and post-activation of photoactivatable 

proteins (Ha and Tinnefeld (2012), Van de Linde and Sauer (2014), Vogelsang et al. (2010)). 

Figure 2(d) considers a model in which three distinct dark states are hypothesized which in 

some cases is a necessary extension to model (c), for instance when very rapid imaging is 

used (Lin et al. (2015)).
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The challenge comes in selecting the correct model and estimating the transition rates of the 

continuous time Markov process {X (t) : t ∈ ℝ ≥ 0} from an observed discrete-time random 

process {Yn: n ∈ ℤ ≥ 0}. Here, ℝ ≥ 0 and ℤ ≥ 0 denote the non-negative reals and integers, 

respectively. Typically, {Yn} is derived from a sequence of images (frames) with Yn 

corresponding to the observed state of the molecule in the nth frame. This is formed by an 

exposure of the continuous time process {X (t)} over the time-interval [nΔ, (n + 1)Δ), where 

Δ is the frame length. Process {Yn} can either be a sequence of photon fluxes associated 

with that molecule for each frame (Figure 3(a)), or a simple sequence of 1’s and 0’s 

indicating if the molecule was detected in the frame or not (Figure 3(b)). In all cases, the 

observations are subject to the effects of noise and instrument limitations. Essential to the 

subsequent analysis, therefore, is the ability to account for missed state transition events due 

to noise and the temporal resolution of the data acquisition, as well as the detection 

threshold used to determine the state of the system (Figure 3(c)). Similar problems occur in 

other areas of biophysics where estimating transition rates of an underlying continuous time 

Markov process must be inferred from an observed discrete time signal. In particular, ion-

channels have formed the focus of much work (Colquhoun and Hawkes (1981), Qin and Li 

(2004), Rief et al. (2000)), including methods that attempt to account for missed events (Qin, 

Auerbach and Sachs (1996), Colquhoun, Hawkes and Srodzinski (1996), Hawkes, Jalali and 

Colquhoun (1990), Hawkes, Jalali and Colquhoun (1992), Epstein, Calderhead, Girolami 

and Sivilotti (2016)). However, the mechanism by which the observed signal is obtained and 

processed from the raw signal is fundamentally different to that of fluorescence microscopy 

imaging.

Up until now, methods for estimating photo-switching transition rates in fluorescence 

microscopy are limited. The method in Lin et al. (2015) involves defining {Yn} to be the 

sequence of 1’s and 0’s and extracting the dwell times, namely the durations when Yn is in 

the On state and when it is in its dark states. Assuming these dwell times to be exponentially 

distributed (or equal in distribution to a sum of exponentially distributed random variables in 

the case of multiple dark states), maximum likelihood estimates of the transition times are 

then computed. This method, termed here as exponential fitting and given a detailed 

discussion in Supplementary Materials Section S5 (Patel et al. (2019)), has two flaws. First, 

it does not correctly account for the effect of the imaging procedure on the stochastic 

structure of the discrete time process. Second, it does not allow for the absorbing 

(photobleached) state, which must be identified and accounted for by truncation of the data 

to the last observed On state. This is especially trouble-some as, to an observer, it is 

indistinguishable from a temporary dark state. This method therefore results in the absence 

of estimates for the absorption rate and can lead to significantly biased estimates of the 

transition rates between On and dark states.

Hidden Markov models (HMMs) are used widely across scientific and engineering 

disciplines to relate a sequence of observations, called emissions, to the states of an 

unobserved (hidden) Markov process, the target of inference. Their use is particularly 

prevalent in image processing where the observations are a sequence of images in time and it 

is commonly assumed that each image is dependent only on the state of the hidden process 

at the time at which it is observed. Such an approach has been proposed for this problem in 
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Greenfeld et al. (2015), where the hidden process is a discretized version of {X (t)}. Here, 

they let {Yn} be the sequence of photon-fluxes such that it is a standard (first-order) HMM 

with Poisson emissions. They then implement the Baum–Welch algorithm (Baum and Petrie 

(1966), Baum and Eagon (1967), Baum and Sell (1968), Baum et al. (1970)) to estimate the 

transition probabilities of the discretized process and use an approximation to obtain the 

transition rates of the continuous time process {X (t)}. In doing so, they acknowledge that 

missed events will heavily bias rate estimates. Furthermore, their model is also unable to 

deal with the absorbing state.

In this paper we provide two important contributions. First, in Section 2, by considering a 

general model for {X (t)} that includes multiple dark states and an absorbing state, we 

rigorously formulate the discrete time stochastic process {Yn} that indicates whether a 

molecule is detected in each frame. A crucial part of this formulation is recognizing that an 

image is not formed from an instantaneous sampling of the true state, as is usually assumed 

in image processing, but is instead formed by exposing a camera sensor over a time interval 

of length Δ. That is to say, Yn is not dependent on just X (nΔ), but instead on the integral 

(i.e., all values) of {X (t)} over the interval [nΔ, (n + 1)Δ). Taking consideration of noise and 

instrument sensitivity, we fully account for missed events and give important results on the 

stochastic structure of {Yn}, including showing it is non-Markovian.

The second contribution of this paper is to propose novel methodology for estimating the 

state transition rates of {X (t)} under this correct treatment of the imaging procedure. In 

Section 3, we develop an HMM for {Yn} where we first implement a time discretization 

scheme on the hidden Markov process {X (t)}. Crucially, as discussed above, correct 

understanding of the imaging procedure dictates two key properties. First, Yn depends on 

both the current (end of frame) and previous (beginning of frame) hidden states, X ((n 
+ 1)Δ) and X (nΔ), respectively. Second, this HMM possesses emission probabilities that are 

dependent on the static parameters of the hidden process state transitions that we ultimately 

wish to estimate. This coupled behavior renders traditional expectation maximization (EM)-

type methods (e.g., Baum et al. (1970)) of parameter estimation inappropriate. We therefore 

make the novel step of introducing what we call transmission (transition-emission) matrices 

that incorporate this coupling between transition and emission probabilities by capturing all 

the dependencies in the model. For a given photoswitching kinetic model, we provide both a 

scheme for computing these matrices and an adaptation of the forward-backward algorithm 

to compute the likelihood of observations. Through numerical optimization we are able to 

compute maximum likelihood estimates of the transition rate parameters for the continuous 

time process {X (t)} that we wish to draw inference on. A bootstrapping scheme is also 

presented for computing confidence intervals. In the case of an unknown kinetic model, we 

propose the use of the Bayesian information criterion (BIC) for selecting the best suited 

model from a set of proposals, thus also providing a powerful tool for chemists wishing to 

infer the number of quantum states a particular fluorophore can exist in.

In Section 4, we provide extensive empirical analysis of the proposed method. We begin this 

section with a simulation study that compares this new estimation scheme to the exponential 

fitting method on a range of photo-switching models, demonstrating significant 

improvements in both the bias and the variance of our rate estimates. We further show the 
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BIC performs accurate model selection when presented with a range of model proposals. We 

then proceed with a discussion on identifiability and consistency, providing empirical 

evidence that our model is identifiable and estimators consistent under normal experimental 

conditions. We further demonstrate that the bootstrapping scheme proposed in Section 3 for 

computing confidence intervals has approximately the correct coverage, and conclude with a 

discussion on length biased sampling. In Section 5, the estimation scheme presented in this 

paper is applied to the Alexa Fluor 647 data originally analyzed by the exponential fitting 

method in Lin et al. (2015), consistently selecting the hypothesized three temporary off-state 

model (Figure 2(d)) and revealing clear dependence between laser intensity and key 

transition rate parameters. In the accompanying Supplementary Materials, as well as key 

mathematical details, we include an extensive simulations section where we report a 

significant improvement on rate estimates across a range of models and relevant 

experimental conditions.

2. Modeling photo-switching behavior.

The true photo-switching behavior of the fluorophore is a continuous time stochastic 

phenomenon. However, an experimenter can only ever observe a discretized manifestation of 

this by imaging the fluorophore in a sequence of frames. These frames are regarded as a set 

of sequential exposures of the fluorophore and the observed discrete time signal indicates 

whether the fluorophore has been observed in a particular frame. It is the continuous time 

process on which we wish to draw inference based on the observed discrete-time process 

indicating whether the fluorophore was observed in a frame. In this section we first present 

the continuous time Markov model of the true (hidden) photo-switching behavior, and then 

derive the observed discrete time signal, together with key results on its statistical properties.

2.1. Continuous time.

We model the true photo-switching effect of the fluorophore as a continuous time Markov 

process, {X (t): t ∈ ℝ ≥ 0} with discrete state space 𝒮X.

In this paper we consider a general model for {X (t)} that can accommodate the numerous 

mechanisms of photo-switching utilized in standard SMLM approaches such as (F)PALM 

and (d)STORM. Specifically, this model consists of a photon emitting (On) state 1, m + 1 

non photon emitting (dark/temporary off) states 00, 01, … , 0m, where m ∈ ℤ ≥ 0, and a 

photobleached (absorbing/permanently off) state 2. We denote the state 00 ≡ 0 for the m = 0 

case of a single dark state. The model, illustrated in Figure 4, allows for transitions from 

state 1 to the multiple dark states (from a photochemical perspective, these can include 

triplet, redox and quenched states). These dark states are typically accessed via the first dark 

state 0 (reached as a result of inter-system crossing of the excited S1 electron to the triplet T1 

state; see Figure 2(a)). Further dark states 0i+1, i = 0, … , m − 1, are accessible by previous 

dark states 0i (by, e.g., the successive additions of electrons forming radical anions (Van de 

Linde et al. (2010))). We allow the On state 1 to be accessible by any dark state and we 

consider the most general model in which the absorption state 2 is accessible from any 

combination of other states (Ha and Tinnefeld (2012), Van de Linde and Sauer (2014), 

Vogelsang et al. (2010)).
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The state space of {X (t)} is 𝒮X = {0, 01, … , 0m, 1, 2} and is of cardinality m + 3. We denote 

λij to be the transition rate between states i and j and μi to be the absorbing rate from state i 
to 2, where i, j ∈ 𝒮‒ X ≔ 𝒮X \ {2}.

The generator matrix for {X (t)} is therefore given as

G =

−σ0 λ001
0 0 0 0 … λ01 μ0

0 −σ01
λ0102

0 0 0 … λ011 μ01
0 0 −σ02

λ0203
0 0 … λ021 μ02

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 … −σ0m

λ0m1 μ0m

λ10 0 0 0 0 0 … −σ1 μ1
0 0 0 0 0 0 … 0 0

, (2.1)

where σ0m = λ0m1 + μ0m, σ1 = λ10 + μ1 and when m > 0, σ0i = λ0i0i+1 + λ0i1 + μ0i, for i = 

0, … , m − 1. For full characterization, we define its initial probability mass νX := (ν0 ν01 
… ν0m ν1 ν2)⊺ with ∑ j ∈ 𝒮X

ν j = 1. Typically, all fluorophores receive an initial excitation 

to the photon-emitting state, thus the most commonly occurring probability mass vector in 

practice has ν1 = 1. Moreover, although the case when 0 < ν2 < 1 may give rise to 

fluorophores that are never observed, for inference purposes, we discard all traces containing 

no observations (1’s) of fluorophores and set ν2 = 0.

In this paper, we will refer to specific models (from that shown in Figure 4) in the form MA
m. 

Here, m is the number of multiple dark states beyond the 00 state that is present in all 

models, and A ⊆ 𝒮‒ X denotes the set of states from which the absorption state 2 is accessible. 

For the three classical models presented in Figure 2: model (b) is M∅
0 : the m = 0 case where 

μ0 = μ1 = 0, model (c) is M{0, 1}
0 : the m = 0 case where μ0, μ1 > 0, and model (d) is 

M∅
2 : the m = 2 case where μ0 = μ01 = μ1 = 0.

2.2. Discrete time observation process.

Having presented the continuous time model for the true photo-switching behavior, we will 

now introduce the model for the observed discrete time process and show how the transition 

rates given in (2.1) are not amenable to direct estimation.

The imaging procedure requires taking a series of successive frames. Frame n is formed by 

an exposure over the time interval [nΔ, (n + 1) Δ), where n ∈ ℤ ≥ 0. The constant Δ 

corresponds to the exposure time for a single frame, also known as the frame length. We 

define the discrete time observed process {Yn : n ∈ ℤ ≥ 0}, with state space 𝒮Y = {0, 1}, as 

Yn = 1 if the fluorophore (characterized by {X (t)}) is observed in frame n and equal to 0 

otherwise. For the fluorophore to be observed in the time interval [nΔ, (n + 1) Δ) it must be 
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in the On state 1 for a minimum time of δ ∈ [0, Δ). The value of δ is unknown and is a result 

of background noise and the imaging system’s limited sensitivity. We note that if {X (t)} 

exhibits multiple jumps to state 1 within a frame, then a sufficient condition for observing 

the fluorophore is that the total time spent in the On state exceeds δ. The δ = 0 case is the 

idealistic scenario of a noiseless system and perfect sensitivity such that the fluorophore is 

detected if it enters the On state for any nonzero amount of time during the exposure time Δ.

We formally define the observed process as

Yn = 𝟙[δ, Δ) ∫
nΔ

(n + 1)Δ
𝟙{1}(X (t)) dt , (2.2)

where 𝟙A( ⋅ ) is the indicator function such that 𝟙A(x) = 1 if x ∈ A and is zero otherwise. 

Figure 5 illustrates the manifestation of the discrete time signal {Yn} from the continuous 

time signal {X (t)}.

2.3. The inference problem.

The inference problem is two-fold. First, for a given model, the aim is to estimate the (4m 
+ 8) unknown parameters

θ = λ001
… λ0m − 10m

λ01 … λ0m1 λ10 μ0 … μ0m
μ1 νX δ

⊺

from a finite length realization of {Yn}. Crucially, it is shown in Supplementary Materials 

Section S1 (Patel et al. (2019)) that {Yn} does not exhibit the Markov property (of any 

order) for any m ∈ ℤ ≥ 0, and for any Δ and δ such that Δ > δ ≥ 0. The non-Markovianity 

excludes classical inference methods and motivates the use of a Hidden Markov Model 

(HMM), with a likelihood based approach for estimating θ.

Beyond this, it may be the case that the true model (characterized by its number of dark 

states) is unknown and may need to be selected in addition to estimating the unknown 

parameters. We tackle both of these problems in the next section.

3. Characterizing photo-switching behavior.

Hidden Markov models, first presented in Baum and Petrie (1966), relate a sequence of 

observations to the states of an unobserved or hidden Markov chain. The aim of building a 

hidden Markov model (HMM) is to allow inference on the hidden process using these 

observations. In its simplest form, an HMM assumes the propagation of both state and 

observed sequences to be in discrete time, and a general first order HMM assumes that the 

observation process {Yn : n ∈ ℤ ≥ 0} is related to a hidden first order Markov Chain 

{Xn : n ∈ ℤ ≥ 0} via an emission probability distribution B ≔ (B)i, j = ℙ(Yn = j ∣ Xn = i), 

considered to be fully independent of the static parameters that characterize the probability 

distribution of state transitions P ≔ (P)i, j = ℙ(Xn = j ∣ Xn − 1 = i). In this setting we say B and 

P are decoupled. For a sequence y0, y1, … , yN of observations from this model, the Baum–
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Welch re-estimation algorithm (Baum and Petrie (1966), Baum and Eagon (1967), Baum 

and Sell (1968), Baum et al. (1970)) is an EM type method that utilizes the forward-

backward algorithm (see Levinson et al. (1983), for details) to optimize the likelihood 

function and compute maximum likelihood estimates of νX (the probability mass of X0), B 
and P. This in turn can be used to estimate parameters of the emission and state transition 

probabilities. When the hidden Markov process and/or the observation process are of higher 

order, the HMM can be transformed to a general first order process (Du Preez (1998), Lee 

and Lee (2006), Ching, Fung and Ng (2003)) and Baum–Welch can be applied in the usual 

way. Readers are directed to MacDonald and Zucchini (1997) for a comprehensive review.

While standard, first (or higher) order HMMs have been extensively studied and are most 

frequently used in applications, the rigid framework of being in discrete time with emission 

probabilities decoupled from state transition probabilities is not always suitable, as we will 

now show is the case for images formed by exposures over a time interval. We take time to 

carefully formulate the HMM suitable for this application, presenting what we call 

transmission (transmission-emission) matrices to capture the dependencies in the model. We 

then go on to provide a novel adaptation of the forward-backward algorithm to estimate θ, 

the unknown parameters of our HMM in the case of a known state-space 𝒮X of the hidden 

process. We will then show how the Bayesian information criterion (BIC) can be used for 

model selection and parameter estimation in the case of an unknown state-space.

3.1. Photo-switching hidden Markov model.

In this section we build an HMM for our observation process {Yn}, which we call the Photo-

switching hidden Markov model (PSHMM). The first immediate reason as to why the 

standard set-up outlined above is inappropriate for this application is because the hidden 

Markov process {X (t)} evolves in continuous time. To deal with this, we need to adopt a 

time-discretization scheme for the hidden process. Analogously to Liu et al. (2015), we state 

that {X (t)} propagates in Δ-separated discrete time steps according to the transition 

probability matrix PΔ = eGΔ, where G is given in (2.1). Our hidden process is therefore now 

represented by the discrete time Markov chain {X (nΔ): n ∈ ℤ ≥ 0}.

When Yn depends solely on X (nΔ) (see Figure 6(a)) and the corresponding emission matrix 

B is decoupled from P, a continuous time EM algorithm (Liu et al. (2015)) analogous to the 

Baum–Welch can be used to estimate νX, B and P. However, this will be inappropriate in 

our setting for two related reasons. First, we have shown in Section 2, specifically equation 

(2.2), that exposing images over a nonzero length of time means Yn depends on the full path 

of {X (t)} within the interval [nΔ, (n + 1) Δ). To correctly deal with this it is necessary to 

construct the HMM to consider dependence between Yn and both X (nΔ) and X((n + 1) Δ) 

(see Figure 6(b)). Second, this construction of {Yn} in (2.2) means the emission 

probabilities are clearly dependent on the static parameters θ of the hidden process and are 

therefore coupled with P. The EM procedures highlighted above require decoupled B and P 
so that at each step the quasi-likelihood can be optimized separately. To the best of our 

knowledge, methods for dealing with coupled systems have not been dealt with in the 

literature. While an EM algorithm could be used for a coupled system, analytic forms for the 

update steps would in general be intractable, leading to numerical maximization procedures 
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at each iteration, thereby increasing computational complexity. We will now formally 

characterize the PSHMM and provide a novel method for estimating the unknown static 

parameters in the case of a coupled system.

3.1.1. Formal characterization of the PSHMM.—Formally, we characterize our 

PSHMM with:

1. An initial probability vector νX = (ν0 ν01 … ν0m ν1 ν2)⊺ where νi ≔ ℙ(X (0) = i)

for i ∈ 𝒮X;

2. Transmission matrices

BΔ
(l) =

b00, Δ
(l) b001, Δ

(l) … b00m, Δ
(l) b01, Δ

(l) b02, Δ
(l)

b010, Δ
(l) b0101, Δ

(l) … b010m, Δ
(l) b011, Δ

(l) b012, Δ
(l)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
b0m, 0, Δ

(l) b0m01, Δ
(l) … b0m0m, Δ

(l) b0m1, Δ
(l) b0m2, Δ

(l)

b10, Δ
(l) b101, Δ

(l) … b10m, Δ
(l) b11, Δ

(l) b12, Δ
(l)

0 0 0 0 … b22, Δ
(l)

, (3.1)

where

bij, Δ
(l) ≔ ℙ(Yn = l, X ((n + 1)Δ) = j ∣ X (nΔ) = i)

= ℙ(Y0 = l, X (Δ) = j ∣ X (0) = i) i, j ∈ 𝒮X, l ∈ 𝒮Y ,

b22, Δ
(l) = 𝟙{0}(l) .

These transmission matrices combine the transition and emission probabilities, thereby 

allowing us to account for a coupled system. The full mathematical formulation for deriving 

their forms involves conditioning on the number of jumps from all m + 1 dark states within 

the interval [0, Δ). From this, we use Laplace transforms and the distributions of state 

holding times to iteratively compute matrices that converge to our set of transmission 

matrices. A more detailed explanation of this methodology, along with full derivations and 

expressions is presented in Supplementary Materials Section S2 (Patel et al. (2019)). 

Furthermore, an algorithm (Algorithm 1) detailing all computational steps to evaluate these 

matrices suitable for any m ∈ ℤ ≥ 0 (any number of multiple dark states) can be found in 

Supplementary Materials Section S3 (Patel et al. (2019)).

3.2. Estimating unknown parameters of the PSHMM.

We now provide an algorithm for estimating the unknown parameters θ of the PSHMM, 

which utilizes a suitable adaptation of the forward-backward dynamic programming 

algorithm (Rabiner (1989)), making use of the transmission matrices in (3.1).
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Let y = (y0 y1 … yNF−1)⊺ be the sequence of observations across NF frames for a single 

photo-switching fluorophore. We define the forward-backward probabilities as

αn, i = ℙ(Y0 = y0, … , Yn − 1 = yn − 1, X (nΔ) = i) n = 1, … , NF,

βn, i = ℙ(Yn = yn, … , YNF − 1 = yNF − 1 ∣ X (nΔ) = i) n = 0, … , NF − 1 .

For each such n, we define the forward-backward vectors as

αn = (αn, 0 … αn, 0m
αn, 1 αn, 2)⊺,

βn = (βn, 0 … βn, 0m
βn, 1 βn, 2)⊺ .

Using this notation, we can show that αn
⊺ = αn − 1

⊺ BΔ
(yn − 1)

 for n = 2, … , NF and α1
⊺ = νX

⊺ BΔ
(y0)

when n = 1. This yields the following recursion formula

α0 = νX, αn
⊺ = αn − 1

⊺ BΔ
(yn − 1)

n = 1, … , NF,

βNF
= 1m + 3, βn = BΔ

(yn)
βn + 1 n = 0, … , NF − 1,

(3.2)

where 1m+3 is the (m + 3) × 1 vector of ones. It now follows that the likelihood of 

observation vector y given parameter vector θ is L(y; θ) = αn
⊺βn for all n = 0, … , NF. In 

particular, we have L(y; θ) = αNF
⊺ 1m + 3, which can be readily computed using the 

transmission matrices together with recursive computation for αn
⊺ as indicated in (3.2). In the 

situation where we have NE ≥ 1 independent photo-switching fluorophores, the log-

likelihood is given by

ℓ(𝒴; θ) = ∑
k = 1

NE
log(αNF, k

⊺ 1m + 3), (3.3)

where 𝒴 = (y1y2 … y
NE) and αNF,k is the forward probability vector for emitter k = 1, … , 

NE. Maximizing (3.3) with respect to θ can be done either through numerically 

approximating derivatives or by using derivative-free optimization, for example with the 

Nelder–Mead algorithm. A discussion on multimodality and choosing a starting point for 

optimization can be found in Supplementary Materials Section S6 (Patel et al. (2019)).

3.2.1. Accounting for false positive observations.—Occasionally, random peaks 

in the background noise may exceed the threshold value used to determine a fluorophore in 

the On state, resulting in a false positive identification of the fluorophore. For experiments 

conducted over a large enough number of frames, this false positive rate may become 

significant in the observed process {Yn}.
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Specifically if ω ∈ [0, 1] denotes the probability of falsely observing a fluorophore, assumed 

independent of the general observation process, then we may use the updated transmission 

matrices

BΔ
∗ (0) = (1 − ω) BΔ

(0),

BΔ
∗ (1) = BΔ

(1) + ωBΔ
(0),

in the evaluation of the log-likelihood ℓ(𝒴; θ∗) in (3.3). This would thus involve estimating 

θ* = [θ⊺ ω]⊺ from the observations 𝒴.

3.3. Bootstrapping.

When only one experiment is conducted to produce an NF × NE dataset 𝒴, a single 

prediction θ is obtained. In this circumstance, a bootstrapping scheme can be used to gain 

approximate confidence intervals for each component of θ.

In the same manner as is presented in Efron and Tibshirani (1993), we generate R (typically 

large) bootstrap datasets 𝒴 ∗ 1, 𝒴 ∗ 2, … , 𝒴 ∗ R each consisting of re-sampled (with 

replacement) columns of 𝒴. From each dataset, we acquire bootstrap replicated parameter 

estimates θ ∗ 1, θ ∗ 2, … , θ ∗ R using the same PSHMM maximum likelihood procedure used 

to obtain θ. For 0.5 < p < 1, letting θ i, (p)
∗  and θ i, (1 − p)

∗  be the 100 · pth and 100 · (1 − p)th 

empirical percentiles of the ith component of θ obtained from θ i
∗ 1, θ1

∗ 2, … , θ i
∗ R, a 

percentile bootstrap interval of length 1 − 2p is given by (see Efron and Tibshirani (1993))

[θi, % lo, θi, % up] ≈ [θi, (p)
∗ , θi, (1 − p)

∗ ] .

3.4. Model selection.

To determine the unknown number of multiple m dark states, we have chosen to use the 

Bayesian information criterion (BIC) to determine the most likely model given data 𝒴. 

Although similar to the Akaike information criterion (AIC), the BIC offers greater 

protection against over-fitting when the number of data-points is large, as is the case in this 

setting.

The BIC is defined in our context as q log(NENF) − 2ℓ(𝒴; θ), where q denotes the number of 

unknown parameters estimated in θ and ℓ(𝒴; θ) denotes the maximized log-likelihood using 

the maximum likelihood estimates θ. This criterion can be computed among all suitable 

models, with the most preferred being chosen as that with the smallest BIC value.

4. Simulations and analysis.

Simulation studies have been conducted to assess and analyze the performance of the 

PSHMM method as detailed in Section 3. To make the results applicable, we restrict 

ourselves to realistic parameter values that typically occur in an experimental setting.
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4.1. Performance on images and comparison with exponential fitting.

To test the performance of parameter estimation against the exponential fitting method of 

Lin et al. (2015), synthetic imaging data of photo-switching fluorophores was simulated. We 

begin our focus on the model M{1}
0 , since for many practical applications the life-times of 

further dark (in particular the triplet (T1)) states is short relative to Δ. As such, this dark state 

has been considered as part of the meta-stable On state (Ha and Tinnefeld (2012), Vogelsang 

et al. (2010)). Since the predominant pathway to absorption is via the triplet state, a 

simplified model can be used in which the absorption state 2 is only accessible from state 1. 

Given the popularity of this model and its ease of analysis, we have derived the exact 

solution of the corresponding transmission matrices (see Supplementary Materials Section 

S2 (Patel et al. (2019))).

Details on the image simulation method and how the discretized state sequences were 

extracted can be found in Supplementary Materials Section S7 (Patel et al. (2019)). Global 

parameter values are also noted. The extracted state sequences were analyzed using an 

implementation of Algorithm 1 (see Supplementary Material Section S3 (Patel et al. 

(2019))). The resulting parameter estimates were compared to estimates derived from the 

exponential fitting method, which was extended in this study to allow the calculation of 

absorption rates (see Supplementary Materials Section S5 (Patel et al. (2019))).

Table 2 (see the Appendix) shows estimated parameter statistics over 16 image simulation 

studies with 100 replicates (datasets) per study. Rate parameters θ, were chosen to cover a 

range of observed behaviors of organic fluorophores and fluorescent proteins (Dempsey et 

al. (2011)) with NE = 100 fluorophores per study. The number of frames NF in each study 

was adjusted to standardize the average number of transitions predicted from θ. Scatterplots 

of these rate estimates are presented in Figure 7. It is evident that the PSHHM yields 

estimates with much lower bias and root mean squared errors (RMSE) when compared to 

the exponential fitting method, although they have a tendency to increase as transition and 

absorption rates are increased. The reported empirical (2.5, 97.5) percentile intervals contain 

the true parameter values across all studies for the PSHMM method and further highlight the 

bias in estimates obtained from exponential fitting.

For experimenters, the effect of imaging parameters on the performance of the estimators is 

of particular interest and importance. Further simulation studies carried out under model 

M{1}
0  highlight the consistency in both accuracy and precision of the PSHMM estimator 

across a range of different experimental conditions. Figure 8 compares the PSHMM with 

exponential fitting rate estimates when we vary the emission intensity of the fluorophores 

(measured in the mean number of photons each emits when in the On state for time Δ). 

Further investigation of other parameters, including the frame length (Δ), the number of 

frames (NF) and the detection threshold (proportional to δ) under this model, are provided in 

Supplementary Materials Section S7 (Patel et al. (2019)). Across the full range of relevant 

parameters tested, the PSHMM estimator performs significantly better than exponential 

fitting.
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To assess the accuracy of parameter estimates for the extended models m = 1 and m = 2 over 

fast, medium and slow switching scenarios, additional simulations were performed by 

directly sampling the continuous time processes {X (t)} and extracting the observation 

sequences 𝒴 as in (2.2), using fixed values of θ. Results from the analyses of these 

simulations are shown in Tables 3 and 4 in the Appendix. While it is evident that the 

estimates for λ0m0m+1 and λ0m+11 incur greater bias as m increases, the empirical (2.5, 

97.5) percentile intervals predominantly cover true parameter values, albeit over a larger area 

due to the increase in the RMSEs. As is seen when m = 0, the exponential fitting method 

performs less well, yielding much higher bias and RMSEs for particular parameter values.

4.2. Model selection.

Using these simulated datasets, the BIC was used in model selection from the set of 

proposals {M{1}
0 , M{1}

1 , M{1}
2 } (i.e., under the assumption that the absorption state was 

known to only be accessible by the On state). Applying model selection to the M{1}
0  dataset 

used to estimate parameters in Table 2 results in the true state model being chosen in all 

(100%) cases. 100 datasets, each for m = 0, 1, 2 were generated for studies 2, 17 and 20 with 

Δ = 1
50s and NE = 300. These results presented in Table 1 demonstrate the accuracy of 

selecting the correct model.

4.3. Identifiability and consistency.

We give a detailed discussion on the inter-related issues of identifiability and consistency in 

Supplementary Materials Section S4 (Patel et al. (2019)). Here, we summarize these results. 

The parameter values for “fast,” “medium” and “slow” transition rates can be found in Table 

S1, Supplementary Materials Section S4 (Patel et al. (2019)).

The formal definition of model identifiability is there exists a bijective mapping from the 

parameter space to the space of distributions for the data; or equivalently for any θ, there 

exists no other θ* in the parameter space such that ℓ(𝒴; θ) = ℓ(𝒴; θ∗) almost everywhere. 

Obtaining such a result for the PSHMM is highly nontrivial, if not intractable. We therefore 

explore the issue of identifiability through empirical studies. To do so, we begin by 

exploring local identifiability. Parameter vector θ is said to be locally identifiable if there 

exists a neighborhood around it such that there is no other θ* in that neighborhood for which 

ℓ(𝒴; θ) = ℓ(𝒴; θ∗) almost everywhere (Little, Heidenreich and Li (2010)). It can be shown 

that θ is locally identifiable if and only if the Fisher information matrix ℐ(θ) is nonsingular 

(Rothenberg (1971)), and this becomes our object of interest. Again, due to the complexity 

of the model, the Fisher information matrix can not be computed, however we can study 

local identifiability via the observed Fisher information matrix (the Hessian matrix of the 

log-likelihood function) 𝒥(θ) = − ∇ ∇⊺ℓ (𝒴; θ)
θ = θ

 evaluated at the maximum likelihood 

estimate θ of θ (Colquhoun, Hatton and Hawkes (2003)). This is averaged over several 

repeated simulations of data set 𝒴. In particular, if 𝒥(θ) is singular then ℓ(𝒴; θ) is not a 

unique (local) maximum, typically due to a flat ridge in one or more directions, and θ is 

unidentifiable.
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Summarizing the findings presented in Supplementary Materials Section S4 (Patel et al. 

(2019)), in the sets of parameters studied, the observed Fisher information matrix is shown 

to be nonsingular in almost all circumstances, providing strong empirical evidence of 

structural identifiability over the parameter values most likely encountered in practice. It is 

obvious that the form of the observed Fisher information matrix will be dependent on the 

relative values of the known and unknown parameters. Broadly speaking, we find that as δ/Δ 

→ 1, that is, the time a fluorophore needs to stay in the On state to be detected tends 

towards the frame rate, there appears to be a breakdown in identifiability. This is indicated 

by the observed correlation matrix, as derived from the observed covariance matrix 𝒥(θ)−1, 

showing strong correlation between δ  and λ01, and hence the existence of a ridge on the 

likelihood surface, albeit still with curvature. While still technically identifiable, the 

correlation between these two parameter estimators indicates they cannot be independently 

identified and pose difficulties to numerical optimization methods (Jacquez and Greif 

(1985)). This effect is more pronounced for faster transition rates due to an increased chance 

of transitions into the On state not being observed. This trend as δ/Δ increases is expected as 

the model will be completely unidentifiable when δ = Δ as no fluorophore will be observed 

in the On state. However, for low values of δ/Δ (<0.2) as is typically encountered in practice, 

correlation between all elements of the estimator θ is low, providing clear empirical evidence 

of locally identifiability for all parameter values studied.

We also see a breakdown in identifiability if the frame length is too large in comparison to 

the switching rates. For example, for a frame length of Δ = 1/30 s (30 frames per second), 

under slow and medium switching, the models appear to be identifiable, however under fast 

switching this breaks down. Increasing the frame rate to Δ−1 = 100 s−1 appears, from 

empirical evidence, to be sufficient for making the model identifiable. This intuitively seems 

correct as large frame lengths will fail to capture the nuanced photo-kinetic behavior of fast 

switching fluorophores.

To get a handle on global identifiability we assess whether the likelihood surface has a 

unique global maximum or if there are further modes the optimization method is 

determining to be the maximum. For the 3 state case (m = 0), an approximation scheme is 

used to find a suitable starting point for the Nelder–Mead simplex (see Supplementary 

Materials Section S6 (Patel et al. (2019))) and we ensure we locate the correct mode. In the 

4 and 5 state cases (m = 1 and m = 2, respectively), a stochastic search method is deployed 

that trials multiple starting points. Unimodal histograms for the parameter estimates would 

indicate a single global maximum, whereas a multi modal histogram would indicate further 

dominant modes being located instead. Analysis presented in Supplementary Materials 

Section S4 (Patel et al. (2019)) suggests a single global maximum in all cases with one 

exception; there appears to be two different modes being located for the λ0102 parameter in 

the m = 2 model, although this disappears as the number of frames NF increases.

Studies on consistency of the PSHMM maximum likelihood estimator corroborate our 

findings on identifiability. A break down in identifiability will result in the estimator 

becoming inconsistent. In Supplementary Materials S4 (Patel et al. (2019)), empirical 

evidence suggests that the mean squared error tends to zero (as the number of emitters NE 
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increases) when δ/Δ is within the normal range (<0.2). However, as δ/Δ increases towards 1, 

consistency of the estimator breaks down with it becoming more biased (although with a 

reduction in variance).

4.4. Length biased sampling.

Length biased sampling is an issue that could appear in practice. In our setting, this would 

occur if there are fluorophores whose traces we do not include when estimating the unknown 

parameters due to them never being observed. We note that for this to happen the 

fluorophore would have to never be in the On state for longer than δ in any frame. As soon 

as it is, we have observed it and can populate its trace up to that point with zeros. In the 3 

state (m = 0) case, even under the extreme situation of δ = 0.9 Δ, the probability of not 

observing any given fluorophore in all 10,000 frames is 1.3 × 10−2 for fast transition rates 

and 1.0 × 10−3 for slow transition rates. Under a more realistic setting of δ = 0.1 Δ, this 

reduces to 1.1 × 10−3 and 1.0 × 10−4 for fast and slow transition rates, respectively. 

Therefore, for a single experiment with 100 fluorophores, the probability all of them are 

observed is 0.90 when under fast switching, climbing to 0.99 for slow switching.

4.5. Bootstrap interval coverage.

Simulations were performed to verify the coverage of the bootstrapped confidence intervals 

presented in Section 3.3. As an example, for the 3 state (m = 0) model under slow switching 

(see parameter values in row 1 of Table S1 in Supplementary Materials Section S4 (Patel et 

al. (2019))), the coverage of the 95% bootstrapped confidence intervals are 92.8% (λ01), 

94.6% (λ10) and 94.6% (μ1). These results were obtained from 500 simulated bootstrap 

intervals with each interval being formed from 100 estimates.

5. Application to Alexa Fluor 647 data.

In this section we apply the method presented in this paper to the data analyzed with the 

exponential fitting method in Lin et al. (2015). The details, including experimental methods, 

can be found in this reference. In summary, antibodies labeled with Alexa Fluor 647 at a 

ratio of 0.13–0.3 dye molecules per antibody were sparsely absorbed to a cover slip and 

imaged by Total Internal Fluorescence microscopy to investigate the effect of eight different 

laser intensities on the photo-switching behavior of Alexa Fluor 647. The study contains 27 

experiments with differing combinations of laser intensity and frame rate. These values, 

together with the number of emitters detected and the number of frames over which they 

were imaged is summarized in Table 5 of the Appendix. For each photo-switchable molecule 

detected, the discrete observation trace indicating if the emitter was observed in each frame, 

was extracted (see Supplementary Materials Section S7 (Patel et al. (2019))). In all 

experiments, the true model and its associated parameters were unknown. Subsequently, we 

will show comparisons between estimates from both the PSHMM and modified exponential 

fitting methods.6

6We modified the exponential fitting algorithm used by Lin et al. (2015) to allow for the absorption parameter (see Supplementary 
Materials Section S5 (Patel et al. (2019)) for more details).
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Initially, the BIC model selection criterion as outlined in Section 3.4 was used to select the 

most suitable model for the data from the range of models M∅
0 , M{0}

0 , M{1}
0 , M∅

1 , M{0}
1 , 

M{01}
1 , M{1}

1 , M∅
2 , M{0}

2 , M{01}
2 , M{02}

2  and M{1}
2  with the model M{1}

2  being selected on all 

(100%) occasions. This supports Lin et al. (2015), who hypothesize this, with bleaching 

model and assume the M∅
2  (without bleaching) model for rate estimates gained from 

exponential fitting. PSHMM maximum likelihood estimates were then computed for the 

estimation of θ* = (λ001 λ01 λ0102 λ011 λ021 λ10 μ1 νX δ ω)⊺ for each of the 27 datasets. 

Associated with these, 95% bootstrapped intervals were computed using the method in 

Section 3.3 (R = 100 due to computational intensity). The results are shown in Figure 9. 

Comparisons with exponential fitting bootstrapped re-estimates (where νX, δ and ω are not 

estimable in this setting) are also shown.

The results indicate that the exponential fitting predicts a much slower switching scenario 

for the Alexa Fluor 647 antibodies, with many estimates shown to be several orders of 

magnitude below those predicted by the PSHMM. This resembles the conclusions reached 

from the results of the simulation studies as described in Section 4 and are thought to occur 

as a result of the exponential fitting method missing events within frames. Incidentally, the 

higher variance of predictions from both methods are shown to be reported at higher laser 

intensities, where faster switching of fluorophores is promoted. This is especially 

pronounced in some particularly large simulated confidence sets for the exponential fitting 

estimates of λ0102 and λ021 (see Figure 9).

6. Summary and discussion.

Accurate measurement of fluorophore photoswitching rates has the potential to enable 

tailored design of single molecule localization microscopy experiments to specific 

requirements. For example, one may wish to select a fluorophore and photo-switching 

environment to achieve the rapid photo-switching at low laser intensities required for live-

cell samples. Alternatively, one may wish to promote long off times required for densely 

packed samples. Furthermore, precise estimates of photo-switching rates has the potential to 

advance data processing methods used in single molecule localization microscopy imaging, 

enabling more accurate image reconstruction and aiding proper quantitative analysis. For 

this purpose, we have presented a method for characterizing the photo-switching kinetics of 

fluorophores from a sequence of images.

For the most general continuous time photo-switching model, we have carefully defined the 

observation process and linked it to the hidden continuous time photoswitching behavior that 

we wish to infer upon. From this, we have formulated a hidden Markov model to link the 

observations to the continuous time photo-switching model. Importantly, images being 

formed by exposing the camera over a nonzero time interval violates the traditional 

assumption placed on HMMs that the emission and transition probabilities are decoupled. To 

tackle this, we have introduced transmission matrices that capture all the dependencies 

present in the model and provided a detailed scheme for computing them for any continuous 

time photo-switching model. A modification of the forward-backward algorithm tailored for 
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these coupled HMMs has been presented and numerical maximization of the computed 

likelihood was performed to generate accurate estimates of the true photo-switching rates. 

Through a detailed simulation study, these were compared to estimates from an existing 

exponential fitting method. We found that our proposed method of parameter estimation is 

highly robust to a range of simulated experimental parameters including low signal-to-noise 

ratios and fast frame rates, frequently outperforming estimates from exponential fitting. We 

further found that by using the BIC, it is possible to perform accurate model selection from a 

range of model proposals, thus providing a powerful new tool for chemists wishing to infer 

the number of quantum states a particular fluorophore can exist in. Empirical analysis 

provided strong evidence that the PSHMM is identifiable and the estimators approximately 

consistent in the normal parameter range encountered in experiments. Although, 

experimenters should ensure fast switching fluorophores are imaged with greater frame rates 

to ensure model identifiability.

The model selection and estimation method presented in this paper was then applied to real 

data collected from the study of Lin et al. (2015). We provide strong evidence of a 

relationship between laser intensity and photo-switching rates and support the hypothesis 

that Alexa Fluor 647 has three off-states in addition to a photo-bleached state.

While this paper focuses on single molecule localization microscopy, the type of kinetic 

models discussed in this paper are unlikely to be unique to photo-switching fluorophores and 

super-resolution applications. Certainly, stochastic processes in which the observed signal 

depends on both the current and past states of a hidden process are likely to be a general 

feature of digital, discretized measurements of stochastic signals. This is particularly true in 

image processing where images are inevitably formed by exposing the camera’s sensor over 

a nonzero length time window. The coupling between the emission and transition 

probabilities of the HMM is a direct consequence of this exposure time, and therefore it is 

likely that the presented methodology for dealing with this will find use in imaging 

applications that are beyond the scope of this paper.

Further theoretical discussions and a comprehensive simulations and methods section, can 

be found in the Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: RATE ESTIMATES

See Tables 2–5.
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Table 2

Simulation results showing mean, bias, root mean squared error (RMSE) and the 2.5 and 

97.5 empirical percentiles of the estimates of θ = (λ01 λ10 μ1)⊺ under model M{1}
0  for both 

the PSHMM and exponential fitting (Exp) methods across 100 repeat experiments. Δ = 1
30 s, 

δ, ω > 0 (unknown), the number of emitters NE = 100. NF indicates the number of frames 
simulated. For both methods, log − log scatterplots of λ01 and λ10 are shown in Figure 7

Study NF θ
PSHMM 

Mean
PSHMM 

Bias

PSHMM 
RMSE 
(× 10−2)

PSHMM 
(2.5%, 
97.5%) 

percentiles
Exp 

Mean
Exp 
Bias

Exp 
RMSE 

(× 
10−2)

Exp 
(2.5%, 
97.5%) 

percentiles

1 16,800 0.32 0.32 0.00 0.97 (0.30, 
0.34)

0.29 −0.029 3.29 (0.26, 
0.32)

0.32 0.32 −0.001 0.76 (0.30, 
0.33)

0.31 −0.007 0.89 (0.30, 
0.32)

0.01 0.01 0.001 0.21 (0.01, 
0.02)

0.01 0.001 0.11 (0.01, 
0.01)

2 11,151 0.32 0.32 −0.001 0.66 (0.30, 
0.33)

0.30 −0.012 1.47 (0.29, 
0.32)

1 1.00 0.003 1.91 (0.96, 
1.04)

0.95 −0.053 5.95 (0.89, 
0.99)

0.03 0.03 0.001 0.35 (0.03, 
0.04)

0.03 0.001 0.33 (0.03, 
0.04)

3 9364 0.32 0.31 −0.004 0.68 (0.30, 
0.32)

0.30 −0.017 1.90 (0.28, 
0.32)

3.16 3.16 0.002 6.56 (3.05, 
3.28)

2.45 −0.712 77.85 (1.78, 
3.92)

0.11 0.11 0.001 1.02 (0.09, 
0.13)

0.09 −0.017 2.12 (0.06, 
0.12)

4 8799 0.32 0.30 −0.013 1.40 (0.29, 
0.31)

0.28 −0.032 3.35 (0.27, 
0.30)

10 9.96 −0.042 23.03 (9.52, 
10.42)

3.19 −6.809 690.87 (1.52, 
5.91)

0.33 0.35 0.014 3.79 (0.29, 
0.42)

0.12 −0.210 21.49 (0.06, 
0.25)

5 10,962 1 1.00 −0.002 1.86 (0.96, 
1.04)

0.90 −0.104 12.43 (0.74, 
1.01)

0.32 0.32 0.000 0.72 (0.30, 
0.33)

0.30 −0.013 1.47 (0.29, 
0.32)

0.01 0.01 0.000 0.10 (0.01, 
0.01)

0.01 0.001 0.11 (0.01, 
0.01)

6 5312 1 1.00 −0.004 1.81 (0.96, 
1.03)

0.95 −0.054 6.44 (0.87, 
1.01)

1 1.00 0.001 1.76 (0.96, 
1.04)

0.93 −0.066 6.88 (0.89, 
0.97)

0.03 0.03 0.001 0.29 (0.03, 
0.04)

0.03 0.001 0.28 (0.03, 
0.04)

7 3526 1 0.99 −0.015 2.32 (0.95, 
1.02)

0.95 −0.053 5.78 (0.91, 
0.99)

3.16 3.17 0.003 7.33 (3.01, 
3.30)

2.71 −0.451 46.16 (2.50, 
3.89)

0.11 0.11 0.001 1.06 (0.08, 
0.13)

0.10 −0.004 0.99 (0.08, 
0.12)
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Study NF θ
PSHMM 

Mean
PSHMM 

Bias

PSHMM 
RMSE 
(× 10−2)

PSHMM 
(2.5%, 
97.5%) 

percentiles
Exp 

Mean
Exp 
Bias

Exp 
RMSE 

(× 
10−2)

Exp 
(2.5%, 
97.5%) 

percentiles

8 2961 1 0.97 −0.033 3.91 (0.93, 
1.00)

0.91 −0.095 9.75 (0.85, 
0.95)

10 9.94 0.003 27.21 (9.46, 
10.47)

5.02 0.003 504.34 (3.66, 
6.52)

0.33 0.35 0.017 3.94 (0.28, 
0.42)

0.20 −0.133 13.77 (0.14, 
0.27)

9 9116 3.16 3.15 −0.008 6.88 (3.04, 
3.29)

2.31 −0.855 95.19 (1.64, 
3.04)

0.32 0.31 −0.002 1.53 (0.28, 
0.34)

0.28 −0.037 3.74 (0.27, 
0.29)

0.01 0.01 0.000 0.11 (0.01, 
0.01)

0.01 0.001 0.13 (0.01, 
0.01)

10 3466 3.16 3.13 −0.035 7.47 (3.01, 
3.28)

2.83 −0.335 37.76 (2.49, 
3.06)

1 1.00 0.004 4.04 (0.90, 
1.07)

0.87 −0.129 13.00 (0.84, 
0.90)

0.03 0.03 0.001 0.37 (0.03, 
0.04)

0.04 0.002 0.36 (0.03, 
0.04)

11 1680 3.16 3.11 −0.052 9.49 (2.98, 
3.31)

2.92 −0.245 25.63 (2.75, 
3.08)

3.16 3.18 0.015 9.12 (2.99, 
3.37)

2.60 −0.567 56.96 (2.48, 
3.70)

0.11 0.11 0.002 1.21 (0.09, 
0.13)

0.11 −0.000 0.98 (0.09, 
0.13)

12 1115 3.16 3.03 −0.135 14.73 (2.92, 
3.15)

2.79 −0.377 38.19 (2.66, 
3.92)

10 9.99 −0.008 24.86 (9.54, 
10.48)

6.35 −3.648 365.97 (5.72, 
6.93)

0.33 0.35 0.015 3.92 (0.29, 
0.44)

0.27 −0.061 6.79 (0.22, 
0.33)

13 8532 10 9.93 −0.069 25.64 (9.47, 
10.47)

5.33 −4.666 506.70 (1.98, 
8.60)

0.32 0.32 0.000 4.42 (0.24, 
0.37)

0.22 −0.099 9.95 (0.21, 
0.23)

0.01 0.01 0.000 0.09 (0.01, 
0.01)

0.01 0.001 0.10 (0.01, 
0.01)

14 2882 10 9.86 −0.142 29.52 (9.44, 
10.39)

7.75 −2.246 241.85 (5.53, 
8.71)

1 1.03 0.026 10.53 (0.78, 
1.16)

0.68 −0.323 32.37 (0.64, 
0.71)

0.03 0.03 0.001 0.36 (0.03, 
0.04)

0.04 0.001 0.37 (0.03, 
0.04)

15 1096 10 9.73 −0.266 38.40 (9.22, 
10.34)

8.19 −1.814 184.84 (7.38, 
8.66)

3.16 3.21 0.049 20.73 (2.45, 
3.47)

2.05 −1.108 110.97 (1.97, 
3.16)

0.11 0.11 0.004 1.22 (0.09, 
0.13)

0.11 0.004 1.04 (0.09, 
0.13)

16 531 10 9.50 −0.501 55.72 (9.10, 
9.96)

7.93 −2.072 207.90 (7.55, 
8.22)
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Study NF θ
PSHMM 

Mean
PSHMM 

Bias

PSHMM 
RMSE 
(× 10−2)

PSHMM 
(2.5%, 
97.5%) 

percentiles
Exp 

Mean
Exp 
Bias

Exp 
RMSE 

(× 
10−2)

Exp 
(2.5%, 
97.5%) 

percentiles

10 9.91 −0.095 54.47 (9.02, 
10.88)

5.63 −4.368 436.96 (5.40, 
5.89)

0.33 0.34 0.007 4.51 (0.26, 
0.43)

0.30 −0.029 4.06 (0.26, 
0.36)

Table 3

Simulation results showing mean, bias, root mean squared error (RMSE) and the 2.5 and 

97.5 empirical percentiles of the estimates of θ = (λ001 λ01 λ011 λ10 μ1)⊺ under model M{1}
1

for both the PSHMM and exponential fitting (Exp) methods across 100 repeat experiments. 

Δ = 1
30 s, δ = 0.01, ω = 0 (unknown), the number of emitters NE = 100. NF indicates the 

number of frames simulated

Study NF θ
PSHMM 

Mean
PSHMM 

Bias

PSHMM 
RMSE 
(× 10−2)

PSHMM 
(2.5%, 
97.5%) 

percentiles
Exp 

Mean
Exp 
Bias

Exp 
RMSE 
(×10−2)

Exp 
(2.5%, 
97.5%) 

percentiles

17 11,151 0.15 0.15 0.002 1.69 (0.12, 
0.19)

0.15 −0.004 1.66 (0.11, 
0.19)

0.3 0.30 0.001 0.85 (0.28, 
0.32)

0.30 −0.002 0.84 (0.28, 
0.31)

0.1 0.10 0.000 0.43 (0.09, 
0.11)

0.10 0.002 0.45 (0.10, 
0.11)

0.80 0.80 −0.001 1.28 (0.78, 
0.82)

0.76 −0.039 4.12 (0.74, 
0.79)

0.01 0.01 0.000 0.15 (0.01, 
0.01)

0.02 0.010 0.97 (0.02, 
0.02)

18 9364 0.35 0.36 0.005 5.44 (0.24, 
0.43)

0.33 −0.022 5.32 (0.24, 
0.43)

1 1.00 0.003 3.68 (0.94, 
1.07)

0.95 −0.049 5.83 (0.90, 
1.01)

0.3 0.30 −0.002 2.01 (0.26, 
0.34)

0.29 −0.008 2.12 (0.25, 
0.33)

2.30 2.30 −0.003 5.01 (2.21, 
2.39)

2.04 −0.262 26.48 (1.95, 
2.11)

0.10 0.10 0.002 0.98 (0.09, 
0.12)

0.10 −0.005 1.03 (0.08, 
0.11)

19 7000 2 2.03 0.033 18.14 (1.75, 
2.45)

2.16 0.156 21.25 (1.89, 
3.50)

10 9.78 −0.218 54.49 (8.55, 
10.53)

6.94 −3.061 306.69 (6.59, 
7.34)

0.7 0.71 0.011 4.88 (0.64, 
0.83)

0.67 −0.031 4.85 (0.60, 
0.76)

10 10.00 0.002 63.62 (9.22, 
11.65)

4.97 −5.030 503.14 (4.75, 
5.17)

0.33 0.34 0.005 7.29 (0.20, 
0.56)

0.27 −0.068 7.30 (0.22, 
0.32)
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Table 4

Simulation results showing mean, bias, root mean squared error (RMSE) and the 2.5 and 
97.5 empirical percentiles of the estimates of θ = (λ001 λ01 λ0102 λ011 λ021 λ10 μ1)⊺ under 

model M{1}
2  for both the PSHMM and exponential fitting (Exp) methods across 100 repeat 

experiments. Δ = 1
30 s, δ = 0.01, ω = 0 (unknown), the number of emitters NE = 100. NF 

indicates the number of frames simulated

Study NF θ
PSHMM 

Mean
PSHMM 

Bias

PSHMM 
RMSE 
(× 10−2)

PSHMM 
(2.5%, 
97.5%) 

percentiles
Exp 

Mean
Exp 
Bias

Exp 
RMSE 
(×10−2)

Exp 
(2.5%, 
97.5%) 

percentiles

20 7000 2 2.03 0.032 3.14 (1.75, 
2.37)

2.05 0.054 2.12 (1.79, 
3.31)

10 9.85 −0.153 13.42 (9.20, 
10.49)

7.04 −2.958 878.82 (6.68, 
7.48)

0.2 0.21 0.009 0.10 (0.16, 
0.27)

0.18 −0.024 0.11 (0.13, 
0.21)

0.7 0.69 −0.012 0.37 (0.59, 
0.83)

0.66 −0.037 0.35 (0.57, 
0.75)

0.01 0.01 −0.001 0.00 (0.01, 
0.01)

0.01 0.005 0.02 (0.01, 
0.02)

10 9.63 −0.368 35.57 (8.73, 
10.53)

4.91 −5.087 2588.85 (4.67, 
5.16)

0.33 0.32 −0.009 0.32 (0.24, 
0.45)

0.32 −0.013 0.12 (0.26, 
0.38)

Table 5

A description of the Alexa Fluor 647 datasets with reference to the laser intensities in 
kW/cm2 and frames sampled per second (or Δ−1) measured in s−1 used to characterize each 
of the 27 experiments. The NF × NE size of each dataset is also included

Dataset Laser 
intensity Δ−1 NE NF Dataset Laser 

intensity Δ−1 NE NF Dataset Laser 
intensity Δ−1 NE NF

1 1.0 200 275 49,796 10 16 200 292 39,703 19 62 800 443 29,107

2 1.9 200 259 49,533 11 16 800 305 29,074 20 62 800 425 29,551

3 3.9 200 335 49,815 12 16 800 290 29,145 21 62 800 425 29,426

4 3.9 200 393 39,758 13 31 800 617 29,059 22 62 800 398 28,989

5 7.8 200 340 39,721 14 31 800 534 29,778 23 97 800 454 29,191

6 7.8 800 244 29,418 15 31 800 515 29,179 24 97 800 440 29,198

7 7.8 800 230 29,257 16 31 800 493 29,400 25 97 800 436 29,270

8 7.8 800 230 29,438 17 31 800 456 29,071 26 97 800 422 29,295

9 16 800 437 29,467 18 62 800 554 29,327 27 97 800 414 29,218
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Fig. 1. 
(a) Illustration of the SMLM imaging process. When all fluorophores simultaneously stay in 
a photon emitting On state, diffraction renders structures unresolvable. Stochastically photo-
switching fluorophores imaged over time across several frames give rise to a sequence of 
sparsely populated images where each fluorophore can be isolated and localized with high 
precision. Aggregating these frames gives rise to a super-resolved image. Data from Sage et 

al. (2015). (b) Isolated fluorophores are localized by fitting the point spread function (PSF) 
to the diffraction limited spot.
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Fig. 2. 
Common models used to describe the continuous time photo-switching dynamics of a 

fluorophore with homogeneous transition rates. See text for details.

Patel et al. Page 27

Ann Appl Stat. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(a) A simulated intensity signal of a fluorophore across time. Each measurement 
corresponds to the intensity in a frame. 7500 frames were recorded over 250 seconds at a 
rate of 30 frames per second. (b) Close up of the signal over the time window of 35 s to 55 s. 

In red is the observed signal {Yn} indicating if the fluorophore was detected in a particular 
frame. (c) A further close up of the signal showing intensity read-outs for independent 
frames. The true, hidden photon emitting On state of the molecule is also indicated, 
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demonstrating how sub-frame length photon emitting events can be missed due to noise or 
the temporal resolution of the data acquisition.
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Fig. 4. 
General m + 3 state (m ∈ ℤ ≥ 0) model of a fluorophore.
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Fig. 5. 
Illustration of how the states for Yn derive from the process X (t).
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Fig. 6. 
Illustration of the HMM setup. (a) Traditional HMM where observed state is dependent on 
current hidden. (b) Our HMM where observed state depends on both the current and past 
hidden states.
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Fig. 7. 

Estimates of log10(λ01) and log10(λ10) simulated from model M{1}
0  using both exponential 

fitting (a) and PSHMM fitting (b) are plotted in dark yellow and pink respectively. True rates 
are plotted as black crosses. Estimates for the absorption rate μ1, along with means, RMSEs 
and 2.5 and 97.5 empirical percentiles are given in Table 2 (see the Appendix).
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Fig. 8. 
Top Left: Examples of single simulated frames at the indicated number of photons per frame 
(Supplementary Materials Section S7 (Patel et al. (2019))). Box-plots showing quantiles 
from estimates of λ01, λ10 and μ1 from both exponential fitting (black) and PSHMM fitting 
(gray) are plotted against increasing photons per frame. NF = 9872 for all simulations. True 
rates given by the blue line.
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Fig. 9. 
Rate predictions and associated 95% bootstrap confidence sets are shown for λ01, λ10, μ1, 

λ011, λ0102, λ011 and λ021, for eight different values of laser intensity (see Table 5 in the 
Appendix for exact experimental parameters). Intervals in black correspond to those from 
exponential fitting and those in gray correspond to those gained from the PSHMM. Point 
estimates from each of the 27 datasets are given by the diamond (PSHMM) or square 
(exponential). While in some cases PSHMM produces much wider intervals, it also yields 
less biased estimates than the exponential fitting method; see text for discussion.
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Table 1

Confusion table showing the empirical percentage of models predicted from three candidates: M{1}
0 , and M{1}

1

and M{1}
2  under simulation studies 16, 19 and 20 (see Tables 2, 3 and 4 in the Appendix), with NE = 300, 

δ = 1
100  and Δ = 1

50s. 100 datasets from each study were generated and the BIC used to select the best fitted 

model

Predicted →
True ↓ M{1}

0 M{1}
1 M{1}

2

M{1}
0

100 0 0

M{1}
1

0 98 2

M{1}
2

0 1 99
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