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Abstract

To facilitate hand gesture recognition, we investigated the use of acoustic signals with an

accelerometer and gyroscope at the human wrist. As a proof-of-concept, the prototype con-

sisted of 10 microphone units in contact with the skin placed around the wrist along with an

inertial measurement unit (IMU). The gesture recognition performance was evaluated

through the identification of 13 gestures used in daily life. The optimal area for acoustic sen-

sor placement at the wrist was examined using the minimum redundancy and maximum rel-

evance feature selection algorithm. We recruited 10 subjects to perform over 10 trials for

each set of hand gestures. The accuracy was 75% for a general model with the top 25 fea-

tures selected, and the intra-subject average classification accuracy was over 80% with the

same features using one microphone unit at the mid-anterior wrist and an IMU. These

results indicate that acoustic signatures from the human wrist can aid IMU sensing for hand

gesture recognition, and the selection of a few common features for all subjects could help

with building a general model. The proposed multimodal framework helps address the single

IMU sensing bottleneck for hand gestures during arm movement and/or locomotion.

Introduction

Human fingers are one of the main means of interaction with the world and are an essential

body part in the study of gesture recognition technologies in the field of human–computer

interaction (HCI). Gesture recognition technology allows humans to interact with a remote

system without physical contact. Many types of sensors have been used in wireless systems for

gesture recognition including cameras, sensor gloves, and muscle-based gadgets [1]. The con-

ventional data glove records finger orientation by measuring flexion, vision-based devices

commonly use a camera with a depth-based sensor, and muscle activity-based apparatuses

record muscular contractions, known as surface electromyography (sEMG). The recordings of

these time-series measurements of hand gestures are linked to some instruction in a computer.

Despite the high accuracy (>90%) of each of these modalities, there are some limitations in

their long-term usage [2,3]. For instance, wearing the data glove for longer durations is
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inconvenient, and having a camera positioned throughout daily life to track fingers is imprac-

tical. Nonetheless, we anticipate a practical gesture recognition system could be integrated

with a smartwatch, the most widely used wearable wrist gadget. Finger movements are linked

with the physical operation of tendons, bones, and ligaments at the wrist [4–7]. Some studies

have shown that an optical sensor [4], accelerometer and gyroscope [5,6], an array of baromet-

ric sensors [8], and a combination of sEMG, accelerometer, and gyroscope [9] around the

wrist could be used for hand gesture recognition at the wrist. An inertial measurement unit

(IMU), containing an accelerometer and a gyroscope, is a lightweight tiny chip that can be eas-

ily placed over the wrist [6]. However, many studies have shown that an IMU sensor placed

over the wrist in skin contact could be insufficient as a sole modality for hand gesture recogni-

tion, especially during arm movements [9]. If the IMU is not placed in skin contact, it may not

detect information that could be recorded from the vibration over the skin while making a ges-

ture. Many researchers have used IMU with other modalities to increase the accuracy of ges-

ture recognition, e.g., IMU with sEMG [9].

In this study, we aimed to use pressure-based sensing with IMU at the wrist using pressure-

based sensing units. Pressure-based transducers are more suitable where body movement is

unavoidable [10]. Using microphones as pressure-based sensors, we proposed that relevant

data could be collected at the wrist for hand gestures using microphones in our previous study

[11]. This setup is also supported by another recent study [12]. The microphone signal, or

acoustic measurement, is related to the vibrations generated over the skin due to the lateral

movement of tissues inside the skin during any mechanical action. Microphones are used as

pressure-based sensors in monitoring muscular data, where skin displacement causes a pres-

sure change in the air chamber. Since the chamber is attached to the sound port of the micro-

phone, the pressure change displaces the diaphragm of the microphone, which generates an

electrical signal. This skin displacement is due to the low-frequency oscillations produced

from muscle contractions [10,13,14]. Acoustic measurements taken from the muscle belly

are commonly known as mechano-myography, sound myography, and acoustic myography

[15–17].

Our approach of using multimodal sensors (microphones and IMU) at the wrist does not

require specific muscle(s) for sensor placement, unlike sEMG [18]. However, specific area over

the wrist which would provide significant information to support the use of acoustic sensors

were yet to be explored. Therefore, a band of 10 acoustic sensors was created and spread

around the wrist with an IMU attached to the band to record limb movement, as shown in Fig

1. Unlike some of the previous studies, the forearm is not fixed; therefore, the IMU is allowed

to record every natural movement of the limb during gesture recording. Our main objective

was to investigate if a subset of microphone units out of 10 microphone units could be used

with an IMU to increase classification accuracy without confining natural limb movements.

First, we recorded 10 acoustic channels and 6 channels of IMU data (10 microphones,

three-axis accelerometer, and three-axis gyroscope) from the wrists of 10 subjects. These sub-

jects performed 10 trials for each of the 13 daily life gestures: hand lift, hands up, thumbs up/

down, single/double tap, hand/finger swipe, okay sign, victory sign, and fist. Over 7000 fea-

tures were then extracted from each channel, and the features most relevant to gesture recogni-

tion were selected using a mutual information-based algorithm. The results support a

multimodal sensor approach using a single microphone unit placed at mid-anterior wrist

along with an IMU. Using only two sensors (an IMU and a microphone unit at the mid-ante-

rior wrist) with 25 features, the average accuracy for the general model was 75% for the given

gesture set, whereas the average intra-subject classification accuracy exceeded 80% using the

same features. These results can be achieved using either a support vector machine (SVM) or

linear discriminant analysis (LDA) classifier. Another analysis was also performed using the
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data from IMU only, which showed that using a microphone with an IMU increased accuracy

by around 5% compared with using IMU alone in the general model.

Data acquisition system setup

Fig 1 illustrates the design of our hardware prototype, including the placement of all 10 micro-

phone units. Each of these units had a bottom-ported microphone (f-3dB = 6 Hz; Model:

ICS40300, InvenSense, San Jose, CA, USA) that was soldered to a custom designed circuit

board (FR-4, 1.6 mm thickness). The cylindrical hole through the PCB acted as a hollow cham-

ber between the microphone diaphragm and the skin surface. This setup is shown in Fig 2A

and is similar to the one shown in Kim et al. [19]. An IMU (Model: LSM9DS0, STMicroelec-

tronics, Geneva, Switzerland) was placed over microphone unit #8, which was positioned over

the middle of exterior wrist, or, in other words, at the top of the entire sensor arrangement

over the wrist, as illustrated in Fig 1. Our prototype utilized only one IMU to record limb

movement and it was not in skin contact with the wrist. The procedure was adopted from

Repnik et al. [20]. In a preliminary study, we used a single band of five microphones to validate

the performance of hand gesture recognition from acoustic recordings [10]. In this study, we

examined the multimodal functioning of our custom designed microphone units with an

Fig 1. Illustration of hardware prototype. Sensor arrangement on the right hand’s anterior and posterior sides is shown at the left and the signal acquisition process is

shown at the right.

https://doi.org/10.1371/journal.pone.0227039.g001
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IMU. The distance between adjacent microphone units in a sensor band varies due to variation

in the circumference of wrist amongst subjects, whereas the placement distance of sensor band

from the hand over the wrist is discussed in detail in the next section.

As shown on the right side of Fig 1, the microphone units were connected to 10 pre-ampli-

fier (preamp) units in parallel. Each preamp had an op-amp (Model: OPA344, Dallas, TX,

USA) with a 67 dB gain arrangement and a lower cutoff frequency of 4 Hz. The pre-amplified

acoustic signals and the signals from the IMU were fed to the recording computer via a data

acquisition device (Model: Arduino DUE, Somerville, MA, USA). The sampling frequency of

each acoustic channel was set to 200 Hz, because previous studies reported that the most sig-

nificant bio-acoustic information occurs below 100 Hz [21]. The sampling rates for accelerom-

eter and gyroscope were 100 Hz and 50 Hz respectively. Arduino was programmed at 200 Hz

per channel sampling for recording every analog/digital signal. Since the sampling rates of

accelerometer and gyroscope were different, therefore, these IMU signals were down-sampled

in MATLAB to match their operating frequencies.

Experimental setup

Microphone unit placement

Before the start of the experiment in the first session, each subject was asked to form the small-

est possible angle between the wrist and the palm of their right arm by the hand as much as

possible. This practice enables a distance measurement from the distal bracelet line under

which we observed maximum skin displacement (wrinkles) at the wrist with naked eyes. We

call this area wrinkle zone as indicated in Fig 1, where the placement of microphone units is

avoided to reduce the sensor dislocation during hand motion. Table 1 provides wrinkle zone

measurements of the subjects.

In the start of each experimental session, we marked the wrinkle zone length on the wrist.

We used this marking for placement of the sensor band at a consistent distance from the hand

during all the experiment sessions with each subject. Next, we placed the sensors as indicated in

Fig 1. Here, each microphone was placed equidistant from adjacent microphones in the band.

Data collection

Ten right-handed subjects, 5 men and 5 women, participated in the study. Participants pro-

vided their informed consent to the experimental procedure, which was approved by the ethics

Fig 2. Microphone sensor unit placed on skin surface with double-sided adhesive tape. (a) Schematic cross-sectional side-view; (b) real-life shots.

https://doi.org/10.1371/journal.pone.0227039.g002
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committee at the City University of Hong Kong. The hand gestures under investigation

included the 13 common gestures shown in Fig 3, and 1 additional gesture corresponding to

the relaxed stage, where the hand is relaxed during the recording, as shown in Fig 3N.

Each subject practiced the gesture before the start of gesture recordings. During the record-

ing session, the subjects were asked to rest their right forearm and elbow on a chair armrest.

The position of hand was maintained parallel to the armrest with the palm facing down. They

were allowed to make any natural movement of the forearm when they felt it was necessary for

the gesture, e.g., in case of thumbs down when there could be a natural twist at the elbow for

some of the subjects. Each trial started from the hand in a relaxed position with the palm down

and ended at the same resting position. Hence, every channel recording shows the waveform

in the action sequence of rest-activity-rest-activity-rest, where the first activity refers to the

transformation of hand from the relaxed state to the gesture state and the later activity is back

to the relaxed state at the natural pace of the subject.

Each subject performed 10 trials for each gesture. The experiments were conducted in two

to three sessions to avoid muscle fatigue, and the duration for each session was no longer than

30 minutes. After sensors placement, an average of 60 trials were recorded in each session. The

sensors band was dislodged from the limb at the end of every session and reattached in the

Table 1. Details of subjects.

Subject Sex Age Wrinkle Zone Length (cm) Forearm Length (cm)

1 Male 26 3.2 29

2 Female 22 1.8 25

3 Male 29 3.5 26

4 Male 26 3.0 25

5 Female 24 2.0 26

6 Female 23 2.1 27

7 Female 22 2.5 30

8 Male 24 3.3 29

9 Female 27 2.5 23

10 Male 30 2.3 28

https://doi.org/10.1371/journal.pone.0227039.t001

Fig 3. 14 hand gestures used in the experiment. (a) Hand lift, (b) hand up, (c) fist, (d) thumbs up, (e) thumbs down, (f) victory, (g) okay sign, (h) hand swipe left, (i)

hand swipe right, (j) index finger swipe left, (k) index finger swipe right, (l) index finger single tap, (m) index finger double tap, and (n) relaxed.

https://doi.org/10.1371/journal.pone.0227039.g003
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subsequent sessions. Therefore, all the 140 trials were recorded from each subject over 2–3

experiment sessions. The data collected allowed us to investigate the reliability of hand gesture

recognition across sessions using an acoustic modality.

Data analysis

Dataset

The dataset for each subject was a collection of 140 trials (14 gestures × 10 trials), where each

trial contained parallel acoustic recordings from 10 microphones, along with motion record-

ings from the IMU. Each trial spans over three seconds.

Feature extraction

Mi represents the microphone i = 1, 2,. . ., 10; and A and G represent the accelerometer and

gyroscope with independent values in each specific direction x, y, and z, respectively, for sub-

ject n. Each trial (tr) has 16 independent sensor readings at each time point. A total of 7873 fea-

tures were extracted using the highly comparative time-series analysis code toolbox in

MATLAB [22] from each of these sensor readings, as shown in Eq (1)

F ¼ ½f tr;1; f tr;2; � � � ; f tr;7873
�tr¼1;2;���;140

ð1Þ

where F is the feature matrix with 140 trials and 7873 calculations per trial of any time-series

signal. Using F for each of the sensors readings, we formed the following cascaded feature

matrix:

Sn ¼ ½FM1
; FM2

; � � � ; FM10
; FAx

; FAy
; FAz

; FGx
; FGy

; FGz
� ð2Þ

where Sn represents the feature matrix of a dimension of 140 × 125,968 (16 signals × 7873 fea-

tures) for subject n. After obtaining Sn, feature scaling was performed using standardization

(per feature, per channel) for each subject, so that every feature column of Sn had a zero mean

and unit variance. This can be demonstrated mathematically:

Sn
0 ¼

Sn � �Sn
σn

ð3Þ

where �Sn and σn are the mean and standard deviation, respectively, of individual features

across all sessions for the subject n.

Feature selection and classification

For the proof-of-concept of the use of multimodal sensors, we employed a generic approach

using widely-used feature selection and classification algorithms [23]. Minimum redundancy

maximum relevance (mRMR), was applied to the standardized feature matrix obtained from

Eq (3). This method ranks the relevance of each feature for classification tasks in large multi-

channel, multi-featured datasets. The procedure was adopted from Estevez et al. [24].

After extraction and selection of relevant features, two classifiers were used for classifica-

tion; a multiclass SVM classifier (using Gaussian kernel) with 10-fold cross-validation, and an

LDA classifier with Monte-Carlo cross-validation using 50 runs. In the latter, each run con-

sisted of 112 random training trials (8 trials/gesture) with the remaining 28 trials (2 trials/ges-

ture) acting as the testing set.

Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist
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Results

The overall analysis was conducted in two parts after feature extraction, which is illustrated in

Fig 4. First, we created a general model that includes cascaded standardized feature matrices

Sn0 from all subjects, n = 1, 2, . . ., 10. Next, a mutual information-based feature selection algo-

rithm mRMR was applied for feature selection over the cascaded feature set. The top 25 fea-

tures that resulted from mRMR were noted, which are defined in S1 Appendix, whereas the

rankings and locations of the independent signal sources along with feature names are listed in

Table 2. The x, y, and z directions of the accelerometer and placement of microphone sensor

unit #3 are depicted in in Fig 1. The x, y, and z directions associated with gyroscope represent

the angular velocity around the respective directions. Each feature rank corresponds to a fea-

ture computation associated with 1 of the 16 independent sources (10 microphones, 3 acceler-

ometers, and 3 gyroscopes). The two features in Table 2, ranked #9 and #23, were selected

from the microphone sensor unit at position #3, whereas the rest of the features were selected

from IMU data as the result of mRMR. The microphone sensor unit in position #3 indicates

the mid-anterior wrist. Later, SVM and LDA classification methods were applied using the 25

selected features in the cascaded feature matrix, and the results are plotted in Fig 5. This

resulted in a 75% accuracy of the general model, notably using acoustic information from the

mid-anterior wrist and the data from the IMU chip. The same mRMR feature selection analy-

sis with LDA and SVM was also conducted using the data from the IMU only, and the results

are also plotted in Fig 5. The comparison shows an improvement of almost 7% using IMU and

microphone #3 compared with IMU-only sensing in the general model with basic feature

modeling.

The second part of the analysis was based on using the selected 25 features from the general

model for the individual subjects employing the same classification techniques. The results

obtained from this analysis are presented in Fig 6, which demonstrates that the features

obtained from the general model worked satisfactorily by yielding average accuracy results

higher than 80% using the two sensors: the IMU and the microphone placed at position #3.

Next, the confusion matrix was formed using the selected features with SVM classification

from the individual subjects and averaged across all the subjects, which is shown in Fig 7C. A

similar approach was used for the microphones-only and IMU-only cases, whose confusion

Fig 4. Procedure for data analysis. The first step is feature extraction from individual subjects, then consolidating extracted feature sets from all subjects and applying

mRMR to obtain a general model with M features. Then, we applied the same features from the general model on individual subjects to obtain intra-subject

classification accuracy.

https://doi.org/10.1371/journal.pone.0227039.g004
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matrices for comparison are shown in Fig 7A and Fig 7B, respectively. These confusion matri-

ces indicate prominent confusion in some of the gestures that are apparently similar. For

example, gestures #2, #6, and #7, which are hand stop, victory, and okay sign, respectively,

involve a similar major twist at the wrist. Likewise, no major wrist movement occurs when

forming the click/tap and double click/tap gestures i.e., gestures #11 and #12, respectively. Fig

7 indicates that microphones could also enhance hand gesture classification accuracy.

Discussion

In this study, we explored the feasibility of using a device with an acoustic sensor with an IMU

for multimodal hand gesture recognition. Ten microphone sensor units were placed in skin

contact around the wrist in the shape of a band. One IMU was attached to the band for record-

ing limb movement during hand gesture. Ten subjects were recruited, and each performed 13

daily life hand gestures (10 trials/gesture) and a relaxed gesture. A total of 7873 features were

used to build a feature vector for each recorded trial from 16 independent sources. To create a

general model, the top 25 features were selected using a mutual information algorithm

(mRMR) by cascading all individual feature matrices from every subject. Next, these selected

feature sets from the general model were used for classification in individual subjects. The

intra-subject average accuracy was almost 80%. The confusion matrices indicate difficult in

distinguishing similar gestures.

Table 2. Feature rankings with the independent signal source.

Feature Rank Feature Signal Source

Accelerometer Gyroscope Microphone

1 Shannon Entropy . y .

2 The separation between the maxima of normal distribution and empirical distribution . x .

3 Minimum Bayesian information criterion . y .

4 Mean of autocorrelation of signal segments . y .

5 Standard deviation based stationarity y . .

6 The maximum mean to mean variance by splitting the signal into x segments . y .

7 Kurtosis z . .

8 Shannon Entropy x . .

9 The separation between the maxima of normal distribution and empirical distribution . . 3

10 Pearson Skewness . x .

11 Approximate entropy . y .

12 Minimum Bayesian information criterion x . .

13 Mean of autocorrelation of signal segments z . .

14 Permutation Entropy . y .

15 The highlowmu statistic . x .

16 Burstiness . y .

17 The second-order moment . z .

18 The highlowmu statistic x . .

19 The maximum mean to mean variance by splitting the signal into x segments z . .

20 Mean and Standard deviation based stationarity . y .

21 Proportion of data points within ρ standard deviations of the mean . x .

22 Interquartile range . y .

23 Permutation Entropy . . 3

24 Mean of 25% (highest and lowest) trimmed signal x . .

25 Kurtosis y . .

https://doi.org/10.1371/journal.pone.0227039.t002
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From these 25 features, two features were chosen from the recordings of the micro-

phone sensor unit at the mid-anterior wrist, notably at ranks #9 and #23, whereas the rest

of the features were selected from the IMU that was attached to the band at the mid-poste-

rior wrist. These results showed that an extra acoustic sensor(s) positioned at mid-anterior

wrist could improve hand gesture recognition accuracy of common wrist wearables with

an IMU. The information from microphone units could resolve the signal corruption issue

faced by IMU during limb movements because pressure-based sensing only records the

data when it records the vibrations over the skin due to hand movement at the wrist; there-

fore, the microphones are virtually free from the major impacts of limb movement. Future

improvements in the design of the microphone sensing units could improve sensing and

increase the capability of pressure-based sensors in multimodal systems to recognize

gestures.

Subjects were tested on the current gesture set for benchmarking purposes, and more hand

gestures will be included in future studies. Our current analysis builds a framework for using

IMU with acoustic sensing. Currently, the main constraint with using microphones is the

Fig 5. Feature selection with an increasing feature set using concatenated data from all subjects.

https://doi.org/10.1371/journal.pone.0227039.g005
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inconvenient coupling mechanism with the wrist that uses double-sided adhesive tape to dem-

onstrate how vibrations measured at wrist during finger movements could facilitate hand ges-

ture recognition. Future work will involve the implementation of a neural network to

maximize the accuracy obtained with the dual sensors and better coupling mechanism of

acoustic sensors at wrist. We also envision these new findings could facilitate the development

of electronic tattoo for human-computer interface [25,26]. This will enable the development of

a low-cost wrist band with an IMU and an acoustic sensor(s) that can accurately recognize

hand gestures in daily life.

Fig 6. Feature selection with an increasing feature set for each subject separately using the feature set obtained from the global model. (a) classification using LDA

and (b) classification using SVM.

https://doi.org/10.1371/journal.pone.0227039.g006

Fig 7. Average confusion matrices using the top 25 feature set obtained from the general model and used for each subject separately with SVM classifier.

(a) microphones only; (b) IMU only; (c) all sensors or, more specifically, IMU and Microphone at position #3.

https://doi.org/10.1371/journal.pone.0227039.g007
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