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Abstract
Homologous recombination (HR) is a pathway to faithfully repair DNA double-strand breaks (DSBs). At the core of this 
pathway is a DNA recombinase, which, as a nucleoprotein filament on ssDNA, pairs with homologous DNA as a template 
to repair the damaged site. In eukaryotes Rad51 is the recombinase capable of carrying out essential steps including strand 
invasion, homology search on the sister chromatid and strand exchange. Importantly, a tightly regulated process involving 
many protein factors has evolved to ensure proper localisation of this DNA repair machinery and its correct timing within the 
cell cycle. Dysregulation of any of the proteins involved can result in unchecked DNA damage, leading to uncontrolled cell 
division and cancer. Indeed, many are tumour suppressors and are key targets in the development of new cancer therapies. 
Over the past 40 years, our structural and mechanistic understanding of homologous recombination has steadily increased 
with notable recent advancements due to the advances in single particle cryo electron microscopy. These have resulted in 
higher resolution structural models of the signalling proteins ATM (ataxia telangiectasia mutated), and ATR (ataxia telangi-
ectasia and Rad3-related protein), along with various structures of Rad51. However, structural information of the other major 
players involved, such as BRCA1 (breast cancer type 1 susceptibility protein) and BRCA2 (breast cancer type 2 susceptibility 
protein), has been limited to crystal structures of isolated domains and low-resolution electron microscopy reconstructions 
of the full-length proteins. Here we summarise the current structural understanding of homologous recombination, focusing 
on key proteins in recruitment and signalling events as well as the mediators for the Rad51 recombinase.
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Abbreviations
ADP	� Adenosine diphosphate
AMP-PNP	� Adenylyl-imidodiphosphate
ATM	� Ataxia telangiectasia mutated
ATP	� Adenosine triphosphate
ATR​	� Ataxia telangiectasia and Rad3-related 

protein
BARD1	� BRCA1-associated RING domain protein 1
BRCA1	� Breast cancer type 1 susceptibility protein
BRCA2	� Breast cancer type 2 susceptibility protein
BRCT​	� BRCA1 C-terminal domain
cryoEM	� Cryo electron microscopy
DDR	� DNA damage response

DSB	� Double-strand break
EJ	� End joining
MRE11	� Meiotic recombination 11 homolog 1
MRN	� MRE11 RAD50 NBS1
NBS1	� Nijmegen breakage syndrome protein 1
OB	� Oligonucleotide/oligosaccharide-binding
PALB2	� Partner and localiser of BRCA2
RPA	� Replication protein A

Introduction

In eukaryotic cells, there are two major processes that act 
to repair double-strand breaks (DSB): end-joining (EJ) and 
homologous recombination (HR). Processes that involve 
end-joining are template independent and can be subdivided 
further into non-homologous EJ and microhomology-medi-
ated EJ. End-joining (or more accurately ligation) without a 
template, or sister chromatid, can result in the loss of genetic 
material or chromosomal rearrangements when a large 

Cellular and Molecular Life Sciences

Yueru Sun, Thomas J. McCorvie and Luke A. Yates contributed 
equally to this work.

 *	 Xiaodong Zhang 
	 xiaodong.zhang@imperial.ac.uk

1	 Section of Structural Biology, Department of Infectious 
Diseases, Imperial College, London SW7 2AZ, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03365-1&domain=pdf


4	 Y. Sun et al.

1 3

number of DSBs occur [1]. Homologous recombination, on 
the other hand, requires a DNA template for the repair pro-
cess and is therefore considered more accurate as any miss-
ing genetic information lost in the DSB or during end pro-
cessing is recovered. Similarly to end-joining, recombination 
can also be subdivided into distinct pathways known broadly 
as Single-Stranded Annealing (SSA), synthesis-dependent 
strand annealing (SDSA), break-induced replication (BIR) 
and canonical DSB Repair. In this review we focus on cur-
rent structural insights into key proteins involved in canoni-
cal DSB repair via homologous recombination.

Overview of DNA damage response signal 
transduction

Eukaryotes have evolved sophisticated and highly organised 
processes in response to DNA damage. This coordinated 
effort is known as the DNA damage response (DDR) and 
operates to sense and signal genotoxic events, which are 
subsequently resolved by DNA repair machineries or cell 
death if DNA remains unrepaired. The DDR signal trans-
duction pathway is primarily mediated by Serine/Threo-
nine protein kinases belonging to the phosphatidylinositol 
3-kinase-like protein kinase (PIKK) family, which include 
ATM (Ataxia Telangiectasia Mutated), ATR (ATM-related) 
and DNA-PK (DNA-dependent protein kinase). ATM and 
DNA-PK are recruited to a DNA double-strand break [2], 
with the activation of each kinase directing distinct repair 
pathways. For instance, DNA-PK regulates proteins involved 
in DSB end joining (NHEJ), whereas ATM regulates hun-
dreds of substrates that ultimately bring about HR and cell 
cycle arrest. Whilst ATM responds to DSB, ATR, along with 
its partner ATRIP (ATR-interacting protein), is activated 
after its recruitment to replication protein A (RPA)-coated 
single-stranded DNA (ssDNA), generated at stalled replica-
tion forks or as intermediates during the processing of DSB 
[3] (Fig. 1). ATM and ATR phosphorylate serine/threonine 
residues of hundreds of substrate proteins at S/T-Q motifs 
and can elicit a second wave of phosphorylation events via 
their activation of other kinases such as Chk1 and Chk2, 
for example. DNA-PK catalytic subunit (DNA-PKcs) also 
shows preferences for phosphorylating serine/threonines 
residues at S/T-Q motifs. Additional residues in the vicinity 
of the S/T-Q motifs have been shown to be determinants 
of phosphorylation, such as hydrophobic or acidic amino 
acids promoting phosphorylation, whereas basic residues 
are negative determinants. Thus, the ATM, ATR and DNA-
PK kinases have overlapping targets and can be considered 
‘master transducers’ of the DDR [4].

In the HR pathway, the signalling of a DSB is initiated via 
the binding of the MRN complex (Mre11, Rad50 and Nbs1) 
to the broken DNA ends. The MRN complex plays a critical 

role in recruiting and activating ATM at DSB sites (Fig. 1). 
Once activated, ATM is able to phosphorylate a variety of 
proteins involved in the execution of the DDR, for example 
histone H2AX [5], where its phosphorylated form serves as 
a platform for further recruitment of additional DDR factors 
around the break site. DSBs also activate ATM yeast orthol-
ogy Tel1 kinase signalling [6], with both ATM and ATR 
being critical for DSB repair and checkpoint activation. ATR 
signalling is elicited whenever ssDNA is generated, and this 
is reflected in ATR’s roles in a broad range of DNA damage, 
particularly those that interfere with DNA replication. Thus 
ATM and ATR kinases have DNA damage specificities and 
non-redundant functions despite overlapping substrates [7].

Architecture of the MRN complex: 
the initiator of the DSB repair

The MRN complex initiates DSB repair by recognising and 
resecting the free DNA ends at damaged sites. The complex 
has a multitude of functions: (1) facilitating ATP-dependent 
endonucleolytic cleavage near the double stand break and 
short range 3′–5′ resection from the nick site towards the 
DNA end to generate a 3′ overhang, (2) promoting recruit-
ment of endonuclease ExoI or BLM complex to perform 
bulk 5′–3′ DNA resection, (3) loading of RPA on ssDNA 
overhang and activation of ATM (Fig. 1) [8–10]. A recent 
study suggests that MRN also acts as a processive factor 
for ExoI during long range resection [10]. In addition to its 
prominent roles in HR as the primary recruitment and acti-
vation factor for ATM, MRN can also stimulate NHEJ in an 
ATM-independent manner [11]. Furthermore, studies sug-
gest recruitment of Cdk2 phosphorylated CtIP and BRCA1 
at G2/S phase to MRN facilitates the removal of Ku70-Ku80 
(Ku) cap at DNA end and promotes the dephosphorylation 
of 53BP1 [12], which in turn simulates HR and inhibit NHEJ 
[13, 14].

Mre11 and Rad50 are evolutionarily conserved enzymes. 
Mre11-Rad50 complexes found in archaea and bacteria share 
the same enzymatic activities and morphologies as their 
human counterpart, whereas Nbs1 only shows homology in 
eukaryotes [15]. Early atomic force microscopy (AFM) and 
electron microscopy studies on human and Saccharomyces 
cerevisiae Mre11-Rad50 reveal a heterodimeric architecture 
comprising of two Mre11 and two Rad50 molecules. As a 
structural maintenance of chromosomes (SMC) family pro-
tein, Rad50 has a nucleotide-binding head domain and a 
long anti-parallel coiled-coil insertion (Fig. 2a). Two Rad50 
head domains are brought together by two long, 15–50 nm 
coiled-coils with Zn2+ hook domain dimerising at the middle 
hinge [16, 17] (Fig. 2a). Mre11 also dimerises and attaches 
to the globular domains of Rad50 through a helix-loop-helix 
(HLH) motif to form a globular head that binds DNA end 
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Fig. 1   Brief overview of DDR signalling. Canonical double-strand break (DSB) DNA damage response signalling pathway (see text for details)
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[18–20]. Mre11 is composed of two α/β domains, an N-ter-
minal Mn2+ bound nuclease domain and a C-terminal cap-
ping domain responsible for substrate recognition (Fig. 2b) 
[21, 22].

Nbs1 attaches to Mre11 through two binding motifs, 
a Mre11 binding (MB) motif and a highly conserved 
FKXXFXK motif, which binds across the Mre11 dimer to 
the eukaryotic specific insertion loops on both Mre11 mol-
ecules [23]. Although the stoichiometry of Nbs1 to Mre11 is 
2:2, only one FKXXFXK motif of the two Nbs1 is involved 
in Mre11 interface, sterically occluding the other Nbs1 
[23]. The N-terminal domain of Nbs1 extends away from 
the globular head of Mre11-Rad50 and consists of a canoni-
cal fork head associated domain (FHA) and tandem BRCT 
repeats that are able to accommodate diverse phosphorylated 
proteins (Fig. 2c). The crystal structure of S. pombe Nbs1 
shows that a 20° rotation of BRCT2 towards BRCT1-BRCT2 
interface is triggered by bound CHK-dependent phosphoryl-
ated Ctp1, an orthologue of human CtIP [24]. As a result, 

the N-terminal domain of Nbs1 shifts 10 Å closer towards 
the C-terminus and possibly, the Mre11-Rad50 core. These 
structural transitions are likely to influence Mre11 and 
Rad50 in a regulatory manner [23–26]. However, structural 
evidence of the interplay between Nbs1 and the core of the 
MR complex, to facilitate regulation, remains unclear.

Crystal structures of ATP analogue-bound Mre11-Rad50 
in complex with double-strand DNA (dsDNA) and recent 
cryoEM structure of the E. coli Mre11-Rad50 homolog in 
complex with DNA reveal an ATP-dependent clamp-like 
mechanism (Fig.  2d) [27–30]. Upon ATP binding, the 
two Rad50 head domains close up to facilitate the binding 
of DNA. Upon ATP hydrolyses, the Rad50 dimeric head 
domains dissociate, exposing the nuclease site of Mre11 to 
carry out DNA resection [28–32]. However, how the ATP-
dependent open-close transition is regulated upon DSB rec-
ognition, repair initiation and downstream signalling trans-
duction is still not well understood. A recent solution NMR 
study characterising fast timescale dynamics on side chain 

Fig. 2   Structures of the MRN complex. a Domain structure of 
human Rad50, along with crystal structure of Pyrococcus furiosus 
RAD50 ATPase dimer (left, PDB ID: 3QKR) and human RAD50 
coiled-coil domain (right, PDB ID: 5GOX) The N-terminal Walker 
A domain is shown in pink, C-terminal Walker B domain in orange, 
coiled-coil domain in green and Zn-hook in blue. Zn2+ is indicated 
as a red sphere. Bound Mre11 helix-loop-helix is shown in violet. b 
Domain structure of human Mre11 and crystal structure of human 
Mre11  N-terminal domain (PDB ID: 3T1I). Nuclease domain is 

shown in cyan, capping domain in red. Mn2+ is indicated as grey 
spheres. The latching loops that bind Nbs1 are disordered in this 
structure and are annotated as grey dash line. c Domain structure of 
human Nbs1 and crystal structure of Schizosaccharomyces pombe 
Nbs1 (PDB ID: 3HUF) with FHA domain shown in blue, BRCT 1 
shown in yellow and BRCT 2 in orange. d Surface representation of 
ATP-hydrolysis driven RAD50 dimerisation (PDB ID: 5F3 W for the 
close conformation and 4FBW for the open conformation). e Intramo-
lecular and intermolecular complex forms of MRN
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methyl groups of valines and isoleucines in Rad50 hinge 
helices adjacent to the Mre11-Rad50 interface reveals that 
ATP hydrolysis and Rad50 dimerisation are coupled through 
a dynamic allosteric network [27, 33]. Although only cause 
subtle structural changes, mutations disrupting the allos-
teric pathway increase the activity of ATP hydrolysis and 
the propensity for dimerization, altering the correlation of 
ATP hydrolysis and Mre11 nuclease activity [34].

Long coiled-coil structures are shown to extend from 
the Mre11-Rad50 core (Fig. 2a). A recent crystallographic 
study reveals two rod-like human Rad50 coiled-coil dimers 
in which Zn2+ hook is located at apex (Fig. 2a) [35]. Two 
different assemblies, intermolecular and intramolecular 
complexes, were observed as a result of Zn2+ hook dimeri-
zation (Fig. 2e) [35–37]. Crystallographic studies on Pyro-
coccus furiosus Rad50 show that an octamer formed by 
two MR complexes extends in opposite directions from the 
Zn2+ hook dimer at the centre of coiled-coils (Fig. 2e, right). 
This result is supported by a later atomic force microscopy 
observation of a DNA-induced parallel arrangement of yeast 
MR complex, which together suggest the coiled-coils could 
act as a tether to bridge sister chromatids together [36, 38]. 
The intramolecular complex involving the dimerization of 
the Zn2+ hook at the apex of the coiled coil has also been 
proposed (Fig. 2a, e left). This model is consistent with the 
results that mutations of conserved Zn2+ hook cysteines 
impaired Zn2+ binding and dimerisation, but not sister 
chromatid cohesion [27, 37, 39, 40]. The predominant state 
in solution and their functional significances thus remain 
unknown.

Despite the significance advance, there is still a lack of 
structural information of the C-terminal domain of eukary-
otic Mre11 which contains a glycine-arginine rich (GAR) 
domain, a region that a number of disease-associate variants 
are reported to be located [41, 42]. Furthermore, the struc-
tural information of the intact MRN, and how it recruits and 
regulates other DSB associated proteins, remains unknown.

Structures of the large kinases that signal 
DDR

ATM, ATR and DNA-PKcs are key regulators of the DDR 
and perhaps some of the first transducers of damage sig-
nals. ATM, ATR and DNA-PKcs share structural similarities 
and domain organisations with other PIKK family mem-
bers, such as mTOR (mammalian/mechanistic target of rapa-
mycin) [43]. All PIKK family members share a conserved 
C-terminal PI3K-like kinase domain sandwiched between 
a unique region, N-terminal to the kinase, known as FAT 
(FRAP [FKBP12-rapamycin-associated protein], ATR, 
TRAPP [transformation/transcription domain-associated 
protein]) and, on the C-terminal side of the kinase domain, 

a PIKK regulatory domain (PRD) and FAT C-terminal 
domain (FATC). This catalytic portion only constitutes less 
than half of the polypeptide chain with the other compris-
ing long stretches of HEAT (Huntington, elongation fac-
tor 3A, protein phosphatase 2A, TOR1) repeats. All PIKKs 
have between ~ 1400 and 3000 amino acid residues at the 
N-terminus that are arranged into these HEAT-repeat heli-
cal bundles described as a solenoid, that are likely impor-
tant for recruitment of other proteins [44, 45]. ATR requires 
an integral partner, ATRIP, another HEAT-repeat contain-
ing protein (Fig. 3a, b). Due to the large size and limited 
sample quantity, these DDR PIKKs have been recalcitrant 
to traditional structural biology techniques such as X-ray 
crystallography, with the exception of DNA-PKcs and the 
C-terminal portion of mTOR [43, 46, 47]. More recently, 
with the advance of single particle cryoEM, there is a rapid 
increase in the number of low resolution and now higher 
resolution structures of ATM [48–52], ATR-ATRIP [53, 54] 
DNA-PK [44, 55] and mTOR [45, 56], providing signifi-
cant insights into the precise domain organisation of these 
kinases. However, there is a clear lack of information on how 
these kinases are recruited and activated.

ATM and ATR Structures

Several higher resolution (~ 4 to 9 Å) cryoEM structures 
have now been determined for the human ATM [50] and 
ATR-ATRIP [53], alongside structures of the yeast ortho-
logues Tel1A™ [49] and Mec1ATR​-Ddc2ATRIP [54]. Overall, 
ATM and ATR-ATRIP adopt a similar “butterfly” architec-
ture, and dimeric state with the kinase domain and tetratrico-
peptide repeat domains (TPR-D) of the FAT region forming 
a major dimerization interface [50, 53]. Additional dimer 
interfaces are also present in ATM and ATR contributed 
by the PIKK regulatory domain (PRD) and specifically for 
ATR/Mec1 an extensive interface contributed by ATRIP/
Ddc2 dimerization along with the N-terminal region of the 
HEAT-repeats [53, 54] (Fig. 3c, d). DNA-PKcs differ in its 
quaternary structure as it exists as a monomer [47]. The 
kinase domain structure is highly conserved between the 
PIKKs, comprising a classical bi-lobed structure that binds 
ATP and magnesium ions in its cleft. The conserved activa-
tion loop, P-loop and catalytic loop are essential features 
for catalysis and are ordered in some of the high-resolution 
PIKK structures, which provides some insight into the regu-
lation of the PIKK activity. Dimerisation of PIKKs has been 
described as a major mechanism for regulating the proper 
activity of such enzymes. The activation of these dimeric 
PIKKs has been proposed to rely on a dimer-to-monomer 
transition thus relieving the auto-inhibited state, result-
ing in a more accessible active site. Biochemical evidence 
for such a phenomenon is most compelling for ATM, with 
auto-phosphorylation at Ser1981 the switch for its activation 
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[57]. ATR is also suggested to have an equivalent activation 
mechanism, with Thr1989 auto-phosphorylation the switch 
[58]. However, in both the ATM and ATR-ATRIP struc-
tures, the catalytic pockets of the kinase domain face away 
from each other. This outward facing arrangement, similar to 

mTOR, presents the active sites for substrate phosphoryla-
tion and does not explain how PIKK auto-inhibition and sub-
sequent auto-phosphorylation occur, which is required for 
the activation of ATM and ATR [49, 50, 53, 54]. However, 
all the structures so far are in the absence of recruitment and 

Fig. 3   Structure of ATM and ATR-ATRIP. a Domain structure of 
human ATM (HsATM) and the Saccharomyces cerevisiae orthologue 
Tel1ATM (ScTel1ATM) and b human ATR (HsATR) with its binding 
partner ATR-interacting protein (HsATRIP) with Saccharomyces 
cerevisiae Mec1ATR​ (ScMec1ATR​) and the ATRIP orthologue, Ddc2 
(ScDdc2). The N-terminal HEAT-repeats are shown in cyan, the 
FAT (FRAP, ATR, TRAPP) in purple, the kinase domain in yellow, 
the PRD (PIKK regulatory domain) in orange and the FATC (FAT 
C-terminal domain) in dark blue. ATRIP/Ddc2, the specific ATR-

interacting protein is also shown coloured green. Residue numbers 
are also labelled above. c The cryo-EM structure of human ATM and 
d the cryoEM structure of yeast Mec1ATR​-Ddc2ATRIP, which is the 
most complete among the yeast and human structures, both coloured 
as in the schematic above, showing the dimeric architecture of these 
kinases along with approximate dimensions. e, f Features important 
for activity (see text), including the active site loop, are shown in a 
close up view of the atomic model, 90° rotated with respect to c, d 
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activator factors, which might be required for a structural 
transition.

Recruitment and activation of ATM

ATM is recruited to DSBs via its binding to the C-terminus 
of Nbs1 [2] (Fig. 1). The MRN complex can stimulate the 
activity of ATM directly in vitro [59], suggesting that the 
MRN complex is responsible for recruitment and activation 
of ATM. However, the exact details of how ATM is acti-
vated by MRN remain to be uncovered. The ATM cryoEM 
structures shed some light on its activation with two different 
structures captured. Two distinct populations of ATM dimer 
exist in solution and possibly in a dynamic equilibrium; a 
closely packed ‘inactive’ dimer, and a more open accessi-
ble active conformation [50]. In the ATM structure of the 
closed ‘inactive’ conformation, the FATC, PRD and activa-
tion loop form a closely packed structural feature denoted as 
the FLAP (FATC, LBE, activation loop and PRD) that asso-
ciates with a helical hairpin from a TPR domain of the FAT 
region from the other monomer (denoted as the FLAP-bind-
ing element [FLAP-BE]) [50]. This intimate arrangement 
between the monomers reduces accessibility to the active 
site of either kinase domain due to a short region of the PRD 
being pushed into the active site pocket and the FLAP-BE 
occluding substrate binding [50]. In the ‘open’ dimer struc-
ture, determined from the same cryoEM dataset, the ATM 
dimer is asymmetric with one kinase domain rotated 24° 
with respect to the other, as compared to the “closed” dimer. 
This conformational difference reduces the extensive dimer 
interface and alleviates the restriction to the kinase active 
site by removing the interaction between the FLAP-BE of 
one monomer with the FLAP of another resulting in the 
PRD becoming disordered [50]. This equilibrium between a 
closed and an open ATM dimer would allow regulation from 
inactive to active by shifting the conformational equilibrium. 
This model is in agreement with earlier data showing that 
ATM is activated upon DNA damage by the acetylation of 
Lys3016 that sit close to one another and to the FLAP-BE in 
the closed dimer. Lysine acetylation, catalysed by the Tip60 
complex [60], could weaken the dimer interface thus favour-
ing an open active population. However, many questions 
remain, such as how ATM is activated by auto-phosphoryl-
ation, how is the equilibrium shifted by MRN and if a dimer 
to monomer transition occurs or is required for activation.

Recruitment and activation of ATR​

ATR has little basal activity and its activation is a multi-
step process. In contrast to ATM and DNA-PKcs, which 
are activated by the recruitment of MRN and Ku70/80 
complex to a DSB site, a range of genotoxic stresses elicit 
ATR signalling due to the fact that ATR, along with its 

obligatory binding partner ATRIP, is recruited to tracts of 
ssDNA that are coated with Replication Protein A (RPA) 
[61] (Fig. 1, see next section). These RPA-coated ssDNA 
recruitment platforms are typically generated as a result of 
stalled replication fork via the uncoupling of helicase and 
polymerase function, or the nucleolytic processing of DNA 
damage intermediates. It has also been observed that longer 
tracts of RPA-ssDNA serves as a more efficient platform 
for the recruitment of ATR-ATRIP [61]. The recruitment 
ATR-ATRIP (yeast Mec1-Ddc2) to RPA is mediated through 
interactions of an acidic patch (comprising Asp/Glu) of 
residues in the N-terminal domain of ATRIP/Ddc2 with a 
basic cleft of the N-terminal OB fold of the large subunit 
within RPA, RPA70 (and its yeast orthologue Rfa1) [61, 
62]. The crystal structure of the N-terminal domain of Ddc2 
(residues 1-109), which consists of the RPA binding domain 
(RBD) and coiled-coil domain (CCD), in complex with the 
Rfa1 N-terminal domain shows a mixture of hydrophobic 
and electrostatic interactions that drive the recruitment pro-
cess [62]. The structure also shows that Ddc2 dimerises via 
its elongated CCD domain while each RBD domain interacts 
with a single Rfa1 N domain, consistent with earlier bio-
chemical data of Ddc2 and ATRIP [3, 62, 63]. This crystal 
structure of the Ddc2 N-terminus is in stark contrast with the 
structural model proposed based on the 3.9 Å Mec1-Ddc2 
cryoEM reconstruction, where a helical bundle domain, 
not directly involved in the dimer interface, has been built 
[54]. The crystal structure of Ddc2 is a domain in isola-
tion whereas the cryoEM structure has limited resolution, 
thus the exact structures of Ddc2 and Mec1-Ddc2 complex 
require further investigation to reconcile these differences.

Unlike ATM with MRN, binding of ATR-ATRIP to 
RPA is insufficient to activate its kinase activity. Optimal 
ATR activation is achieved by the presence and interaction 
of additional activator proteins. The replication and DDR 
protein TopBP1 and its yeast orthologue Dpb11 are well 
characterised activators, which interact with ATRIP (Ddc2) 
and the PRD of ATR (Mec1) to stimulate the activation via 
its ATR-activation domain [64, 65], and can be recruited 
via its interaction with the damage clamp protein complex 
9-1-1 (RAD9-RAD1-HUS1) (Fig. 1). A second ATR acti-
vator, ETAA1, was more recently discovered and is directly 
recruited via its interaction with RPA bound to ssDNA 
[64–68]. In budding yeast, alongside Dpb11, both Dna2 and 
Ddc1 (RAD9 in human) of 9-1-1 are Mec1/ATR activators. 
RPA and the 9-1-1 clamp are sufficient to recruit and activate 
Mec1 signalling in G1 phase and are required throughout 
the whole cell cycle. Dpb11 is additionally required in G2 
phase whereas both Dpb11 and Dna2 are required in S phase 
[69]. Mec1 activation in yeast is mediated via two aromatic 
residues found in a long unstructured region of these activa-
tors [70]. Despite a wealth of biochemical and cellular work, 
the exact mechanism of ATR/Mec1 activation is still poorly 
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understood. The recent cryoEM structures of Mec1-Ddc2 
at 3.9 Å and the C-terminal catalytic core of ATR at 3.9 Å 
may partly explain the requirement of activators [53, 54].

In a similar fashion to ATM, the PRD plays an important 
role in ATR/Mec1 activation [64]. PRD is proposed to regu-
late dimerization and active site accessibility in both ATM 
and ATR/Mec1. The PRD of ATR/Mec1 forms an important 
dimer-interface of the global structure and this has impli-
cations on the conformation of the activation loop, P-loop 
and catalytic loop of the kinase domain. In the Mec1-Mec1 
dimer, the PRD and FATC seem to hold and enclose the acti-
vation and catalytic loops of the kinase domain preventing 
access to the active site to substrates [54]. A key hydropho-
bic interaction between Met2312 of the PRD and Phe2244 
of the conserved DFG motif in the activation loop has been 
shown to hold the kinase in an inactive state, with activators 
proposed to disrupt the PRD and alleviate the auto-inhibition 
[54, 64]. Intriguingly, the PRD is visible in the yeast Mec1 
complex structure [54], but not in the human ATR complex, 
despite being at a similar resolution [53]. The structural 
insights thus far provide a framework to explain the low 
basal activity of ATR/Mec1 and the necessary requirement 
of activators to stimulate its kinase activity and why the PRD 
represents an important regulatory feature although the pre-
cise activation mechanisms requires the studies of activator 
bound complexes.

RPA‑coated ssDNA

The signalling at a DSB by ATM-MRN and further sig-
nalling by ATR-ATRIP generate long stretches of single-
stranded DNA produced by DNA resection processes 
(dsDNA unwinding and nucleolytic digestion) mediated by 
Exo1, DNA2, and BLM-Sgs1 [71]. RPA plays significant 
roles both co-ordinating this process and simultaneously pre-
serving the integrity of the resultant ssDNA. RPA is a ubiq-
uitous heterotrimeric ssDNA binding protein that is essential 
to nearly all DNA processing events. Comprised of three 
protein subunits, RPA70, RPA32 and RPA14 (Rfa1, Rfa2 
and Rfa3 in yeast), RPA contains multiple oligonucleotide/
oligosaccharide (OB)-folds that interact with both ssDNA 
and proteins [72] (Fig. 4a). The large subunit, RPA70, con-
tains 4 OB-folds; an N-Terminal Domain, DNA-binding 
domain-A [DbdA], B [DbdB] and C [DbdC] connected by 
flexible linkers. RPA32 possesses a single DNA-binding 
OB-fold [DbdD] with a long flexible N-terminal hyper-
phosphorylation region and a C-terminal Winged-Helix 
(WH) domain [73]. The smallest subunit RPA14 has a sin-
gle OB-fold (DbdE). RPA associates with ssDNA with very 
high affinity via its core DNA binding domains DbdA, B, 
C from RPA70, and DbdD, from RPA32. The N-terminal 
domain of RPA70, as discussed earlier, and the winged-
helix (WH) domain of RPA32 mediate the majority of the 

protein–protein interactions [74, 75]. RPA binds nucleic 
acids in two conformational states with different affinities 
for ssDNA; a lower affinity mode (dissociation constant 
Kd ~ 50 nM) occludes a binding site length of ~ 8 to 10 
nucleotides [76–78] and involves DbdA and DbdB of RPA70 
[76, 78–80], whereas a higher-affinity mode (Kd in the low 
nM—pM range) occludes 30-nucleotides and engages all 
four DNA-binding domains [76, 81]. This switch is coupled 
to a conformational change that has been captured by X-ray 
crystallography of U. maydis RPA [76]. The compact struc-
ture provides some clues to the coupling of RPA-ssDNA 
binding and allosteric coupling with protein recruitment, 
particularly in replication [76] (Fig. 4a). However, RPA is 
flexible [78], associates with ssDNA in many numbers and 
is heavily modified by ubiquitylation and phosphorylation 
during DDR [75]. The way in which multiple RPAs asso-
ciate on ssDNA and coordinate its vast array of processes 
remains to be determined.

A crucial feature of RPA is that, whilst being able to 
bind nucleic acids with very high affinity, it must also be 
easily displaced to ‘hand-off’ ssDNA to other enzymes for 
further downstream processing. Single molecule work has 
shown that RPA can be displaced and exchanged with other 
ssDNA-binding proteins when there is sufficient concentra-
tion of unbound molecules [82]. This in vitro concentration-
dependent exchange, referred to as facilitated exchange [83], 
is thought to rely on submicroscopic dissociated intermedi-
ates, where one of the DNA-binding domains is not bound 
to ssDNA, exposing a small patch of nucleic acid for other 
proteins to bind [82, 83]. However, this poses significant 
issues in vivo when considering inappropriate exchange, and 
there exists a number of proteins that facilitate the exchange 
of RPA for other genomic factors, such as Rad51.

The Rad51 recombinase and its interactions 
with RPA

Structure of Rad51 and nucleoprotein filament 
formation

The catalyst of DNA strand exchange and ultimately DNA 
repair is Rad51 recombinase. First discovered in yeast, it 
was recognised to be an orthologue of bacterial recombi-
nase A (RecA) [84]. Recruited in an ATP-dependent man-
ner to RPA coated single-strand DNA, mediated by BRCA2 
in humans [85–87], this 43 kDa protein has been studied 
intensely since its discovery. Multiple crystal structures, EM 
reconstructions along with recent high resolution cryoEM 
structures have given much insight into its function. Rad51 
has a two-lobed architecture of a mostly α-helical N-terminal 
domain of ~ 84 residues joined by a small helical linker to a 
larger C-terminal ATPase domain of ~ 240 residues [88–90] 
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(Fig. 4b). Studies have described a DNA binding function 
to the N-terminal domain [91], possibly regulating the rec-
ognition of Rad51 for either ssDNA or dsDNA [92, 93]. 
The C-terminal domain contains a Walker A/B motif that is 
responsible for ATP binding and hydrolysis [94] (Fig. 4b). 
In the presence of ATP or ADP, Rad51 can readily form 
nucleoprotein filaments with DNA but the disassembly is 
dependent on the hydrolysis of ATP [95, 96]. Structures of 
the filamentous forms of the protein have shown that the 
ATP binding site is present at the interface between two 
Rad51 monomers [89, 90] (Fig. 4b). Residues Lys133 and 
Thr134 of human Rad51 from the Walker A motif bind to 
ATP where loop 315-323 from the adjacent monomer con-
tributes hydrophobic interactions with the adenosine moiety. 
This stabilises interactions between Arg130 with Tyr315 and 
Glu322 from the adjacent monomer (Fig. 4b) and in turn 
communicates to residues involved in the binding of DNA 
such as Arg130 [97, 98].

Crystal and EM structures have also revealed the dynamic 
flexibility of Rad51 nucleoprotein filaments [89, 90, 99–102] 
where they vary in their pitch from 76 to 128 Å as compact 
and open forms respectively. This variation depends on the 
presence of DNA along with the state of the bound nucleo-
tide. More specifically, filaments tend to be in more extended 
and dynamic state when ATP is bound versus when ADP 
is bound which might be an important feature in efficient 
homology searching [90, 100]. An example of this inherent 
flexibility is the recent crystal structure of human Rad51 fila-
ment in the presence of ATP where two different alternating 
dimer conformations were apparent which are due to small 
rotations around the ATP binding site [90]. Similarly the 
crystal structure of yeast Rad51 showed the presence of two 
different alternating dimer conformations around the ATP 
binding site which was due to a slight rotation between the 
N and C terminal domains [89].

Fig. 4   Known structures of RPA and Rad51. a Structure and domain 
organisation of RPA. RPA consist of three subunits: RPA70, RPA32, 
and RPA14. The structure shown is RPA from of U. maydis (PDB 
ID: 4GNX) showing secondary structure elements of the major OB 
folds involved in ssDNA binding. b Structure of human Rad51 in 
the presence of ATP showing secondary structure elements and the 
right-handed helical formation (PDB ID: 5NWL). Rad51 consists of 
a N-terminal DNA binding domain (residues 1–84), a small linker 
domain (residues 85–97), and a C-terminal ATPase domain (resi-

dues 98–339). Important residues involved in ATP binding are high-
lighted and are located at the dimer interface of two Rad51 monomers 
within the filamentous crystal structure. c CryoEM structure of the 
presynaptic Rad51 filament in the presence of AMP-PNP bound to 
ssDNA (EMDB ID: 9566, PDB ID: 5H1B). Due to the intercalation 
of Arg235 and Val273, the Rad51 filament engages DNA as triplet 
clusters extending the DNA length by nearly 1.5 times in comparison 
to B-DNA. This mode of binding may help in the formation of the 
synaptic filament during the search for homologous regions
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Furthermore, high resolution cryoEM structures of the 
presynaptic (in the presence of ssDNA which represents the 
invading strand) and postsynaptic structures (in the presence 
of dsDNA, which represents the invading strand bound to a 
complementary strand) in the presence of AMP-PNP have 
shed light into the mechanism of DNA binding [101]. These 
structures show that Rad51 interacts with DNA through 
its phosphate backbone and very little structural changes 
occur when bound to ssDNA over dsDNA (Fig. 4c). In the 
presynaptic complex, each Rad51 monomer engages DNA 
in triplet clusters by the intercalation of Arg235 and Val273 
(Fig. 4c). This mode is further stabilised by Arg235 inter-
acting with the phosphate backbone of the complementary 
strand while having an electrostatic interaction with Asp274 
when dsDNA is present. Hence this mode of DNA binding 
may be important in homology searching [101]. Though this 
study obtained a low resolution (~ 12 Å) structure of the 
synaptic complex and tentatively confirmed a second DNA 
binding site, much is still not known of how Rad51 binds 
dsDNA during strand invasion [101].

Interactions with RPA and effects on Rad51 filament

During HR, Rad51 must somehow replace RPA on ssDNA 
(Fig. 1). This is predominately catalysed and stabilised by 
various mediator proteins that directly interact with both or 
either of these proteins (see next section) as RPA inhibits 
the loading of Rad51 on DNA [103]. Nevertheless the pres-
ence of RPA is important in stimulating strand exchange 
by Rad51 [104, 105]. As such it is interesting to note that 
Rad51 physically interacts with RPA, specifically between 
its N-terminal domain and the RPA70 subunit between resi-
dues 168-327, which contains DbdA (Fig. 4a) [106, 107]. 
This interaction is insufficient to fully displace RPA [107]. 
Recent single-molecule imaging experiments showed that 
the facilitated exchange of RPA allows the exchange with 
Rad51. However, free RPA in solution can inhibit Rad51 
filament nucleation but has less effects on filaments elonga-
tion [83]. The dynamic exchange of RPA therefore facilitates 
Rad51 nucleation, but when sufficient amount of free RPA 
exists in solution, resulting from Rad51 nucleation/elonga-
tion, RPA then inhibits further nucleation. RPA therefore 
has a role in both facilitating and regulating Rad51 nucleo-
protein filament formation.

The Rad51 mediators

The loading of RAD51 on 3′-overhanged ssDNA at DSB and 
formation of nucleoprotein filaments are highly regulated 
events, not just by RPA itself as discussed in the previous 
section, but by a number of dedicated mediators. The main 
mediator protein to load Rad51 on ssDNA is the BRCA2, a 
3,418 residue protein. In cells, BRCA2 is recruited to DSB 

sites by Partner and Localizer of BRCA2 (PALB2) and 
BRCA1 and binds to ssDNA through its C-terminal DNA 
binding domain that contains several OB-domains (Fig. 5a). 
Only limited structural information of BRCA2 is available 
due to its large size, low natural abundance in cells and con-
taining a large amount of intrinsically unstructured regions. 
Three crystal structures of various isolated domains and 
regions of BRCA2 have been reported: a BRC4 motif in 
complex with Rad51, a short N-terminal peptide in complex 
with the WD40 domain of PALB2, and a C-terminal helical 
domain followed by three OB-folds in complex with ssDNA 
and/or a small acidic protein DSS1 [88, 108, 109].

The C-terminal domain is the most conserved region of 
BRCA2. The crystal structures of ~ 800 amino acid C-ter-
minal domain of mouse BRCA2 (BRCA2DBD) in complex 
with DSS1 and ssDNA determined more than 15 years ago 
[109], reveal an α-helical domain followed by three OB 
domains, forming a linear and elongated structure. The OB 
domains, both structurally and functionally, are similar to 
the OB domains in RPA as the BRCA2 OB domains can 
be replaced by RPA70 [110]. Both OB2 and OB3 have a 
canonical DNA binding groove accommodating the bound 
ssDNA. A long insertion in OB2 forms an α-helical coil 
which extends above and makes up the tower domain. The 
70-amino acid DSS1 binds to BRCA2DBD in two sections 
with a disordered loop in the middle: the N-terminal por-
tion of DSS1 tunnels through the helical domain and crosses 
the interface of OB1-helical domain whereas the C-terminal 
portion wraps around OB1 and ends up at OB1-OB2 inter-
face. DSS1 is proposed as a ssDNA mimic that regulates 
both BRCA2-ssDNA and RPA-ssDNA associations. The lat-
ter is supported by biochemical studies demonstrating that 
DSS1 weakens the affinity of RPA toward ssDNA [111] and 
that BRCA2DBD-DSS1 complex simulates the displace-
ment of RPA by Rad51 [111].

More recently, negative strain EM reconstructions of 
full length human BRCA2 and in complex with Rad51 
have been reported [112]. In the reconstructions, BRCA2 
dimerises to form an elliptical kidney-bean shape with 
C-terminal domains arching at both vertexes of the ellipse 
(Fig. 5a). Two sets of BRC repeats with bound Rad51 line 
up in the middle part. The dimeric BRCA2 is shown to bind 
to ~ 70nt ssDNA. It promotes RAD51 nucleation, but not 
filament growth. The structure provides insights into the 
overall architecture of intact BRCA2 as well as mechanism 
of Rad51 filament growth although the limited resolution 
precludes a precise assignment of structural domains [112].

In vivo studies suggest PALB2 recruits BRCA2 to 
nuclear foci and forms a complex with BRCA1 and BRCA2 
[113–115]. However, apart from a C-terminal WD40 motif, 
a predicted chromatin binding motif and an N-terminal 
coiled-coil, which interacts with BRCA1, there is little struc-
tural information [113]. The structure of the WD40 domain 
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in complex with the N terminal 18 amino-acid-peptide of 
BRCA2 shows that the BRCA2 peptide is accommodated at 
the outside of the β-propeller structure of the WD40 domain 
through polar interactions (Fig. 5b) [108]. The PALB2 bind-
ing motif on BRCA2 shows sequence conservation across 
species, suggesting the importance of the interactions in HR.

BRCA1 is a E3 ubiquitin ligase also involved in a diverse 
range of biological processes including HR [116–118], 
cell cycle checkpoint [119, 120] and transcriptional regu-
lation [121, 122]. BRCA1 contains two major functional 
domains, the RING domain and tandem BRCT repeats at 
the N- and C-termini respectively (Fig. 5c) [123–125]. The 
RING domain at the N-terminus contains seven conserved 
Cys-His-Cys motifs with two bound Zn2+. Biochemical 

and NMR studies suggest it forms a tight heterodimer with 
BARD1, required for maintaining BRCA1 stability, E3 ubiq-
uitin ligase activity and interaction with DNA [126–130], 
although its biological role and substrate in vivo are unclear 
[131, 132]. The C-terminal BRCT repeats incorporate two 
BRCT domains containing ~ 90 to 100 amino acids arranged 
in a linear fashion. The BRCT domains in BRCA1 play 
regulatory roles through the recognition of phosphorylated 
peptides with a pSXF motif on effectors such as 53BP1, 
BACH1, Abraxas, p53 and CtIP [123, 133–138]. The pSXF 
motif is recognised by a hydrophobic patch with a conserved 
lysine nearby. Similar features of BRCT domains have been 
observed in wide array of other DNA repair proteins, which 
bind to their respective physiological partner [139–141]. 

Fig. 5   Known structures of the main Rad51 mediators BRCA2, 
BRCA1, and PALB2. a Domain structure of BRCA2. BRC4 motif 
is colored in orange in the BRC4-Rad51 complex (upper left, 
PDB ID: 1N0  W). Helical domain in BRCA2 C-terminal Domain 
(BRCA2DBD) complex with DSS1 and ssDNA (upper right, PDB 
ID: 1MJE) is colored in sky blue, three OB folds in cyan and tower 
domain in pink. Magentas coil near helical and OB1 represents 
DSS1. ssDNA is shown in orange. EM map of full length BRCA2 
(bottom, EMDB ID: 2779) is colored in yellow with its orthogo-

nal view. b Domain structure of PALB2 and crystal structure of its 
WD40 domain (PDB ID: 3EU7) bound to BRCA2 N-terminal motif 
is colored (ruby). c Domain structure of BRCA1. NMR structure of 
RING heterodimer of BRCA1 and BARD1, BRCA1 is colored in red 
and BARD1 in light blue, bound Zn2+ ions are shown in sphere repre-
sentation (PDB ID: 1JM7). Crystal structure of tandem BRCT repeats 
(purple and blue, PDB ID: 1T29). EM map of BRCA1-BARD1 is 
shown in violet (EMDB ID: 8833)
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Although no high resolution structures of full-length BRCA1 
are available, a low resolution negative stain EM structure of 
the BRCA1-BARD1 complex has been reported, in which it 
adopts a clamp-like architecture (Fig. 5c) [142].The RING 
domain and BRCT domain are mapped into the two opposite 
ends of the map. The presence of additional density near the 
RING domain is interpreted as ubiquitin in BRCA1 mutants.

Interactions of mediators with Rad51

The main mediator for Rad51 loading on ssDNA is BRCA2 
[85]. It interacts with Rad51 via its eight BRC repeats along 
with a small 36 amino-acid sequence at its C-terminus 
(Fig. 5a). The first four BRC repeats bind to Rad51 mono-
mers with higher affinity and the binding inhibits Rad51 
ATPase activity, thus indirectly enhancing Rad51 binding 
to ssDNA [143, 144]. The 5th–8th BRC repeats of BRCA2 
preferentially bind to and stabilise Rad51 filament [86, 
111, 143, 144]. Investigations of the various isolated BRC 
repeats along with a construct of all eight BRC repeats and 
the full-length protein have shown that they directly pro-
mote the binding of Rad51 onto ssDNA over dsDNA by 
both preventing ATP hydrolysis of Rad51, thus enhancing 
Rad51 binding to DNA and through the ssDNA binding of 
BRCA2 [143–146]. Furthermore, studies show that BRCA2 
promotes Rad51 nucleation, thus a mediator role for BRCA2 
has been proposed [112]. Besides the BRC repeats, another 
Rad51 binding site was reported at the C-terminal domain 
between 3265 and 3330 amino acid of BRCA2 (Fig. 5a) 
[147]. The interaction is regulated by CDK dependent phos-
phorylation on S3291. Loss of phosphorylation results in HR 
defect phenotype, speculating a regulatory mechanism of 
cell cycle check point on homologous recombination.

Structurally the BRC motif consists of ~ 30 amino acids 
that bind to the C-terminal ATPase domain of RAD51 
(Fig. 5a). A β -hairpin structure is formed at N-terminus, 
leading to an amphipathic α-helix segment followed by a 310 
helix at the C-terminus. The hairpin extends the β -sheet on 
RAD51, mimicking the monomer–monomer contacts in a 
RAD51 filament [99]. BRC4 thus inhibits RAD51 oligomer-
isation. The ATPase active site is also inhibited allosterically 
through a BRC4 induced conformational closure to preclude 
ATP binding. The conformational change would also expose 
the BRC binding sites on adjacent promoters in a Rad51 
filament/oligomer (Fig. 5a) [88, 148, 149].

It is also of note that the BRCA2 interacting proteins of 
PALB2 and the BRCA1-BARD1 complex have also been 
reported to bind RAD51, however no evidence of BRC 
repeats are present in their sequences [150–152]. PALB2 
has been shown to bind Rad51 at both its N and C termini 
(residues 1–200 and residues 853–1186). On the other hand, 
Rad51 has been shown to bind to the centre of BRCA1 
(residues 758–1064) and near the N-terminus of BARD1. 

Both PALB2 and the BRCA1-BARD1 complex have been 
reported to stabilise Rad51 nucleoprotein filaments during 
recombination and promote strand exchange [150–152]. As 
PALB2 is the bridging protein to form a complex between 
BRCA1 (possibly BARD1) and BRCA2 [113, 153], these 
findings imply that it is possible that all components of the 
resulting complex are involved in the loading and stabilisa-
tion of Rad51 on ssDNA (Fig. 1). However, further informa-
tion is required on the exact roles of these proteins and more 
importantly, on the mechanisms of their actions.

A number of other complexes have also been reported to 
promote and stabilise the Rad51 filament during homology 
searching and strand invasion (Fig. 1) [154]. Two such com-
plexes are Rad51 paralogues complexes, BCDX2 (Rad51B-
Rad51C-Rad51D-XRCC2) and CX3 (Rad51C-XRCC3), 
though they have other roles earlier in the process of homol-
ogous recombination [155–157]. These paralogues have 
20–30% sequence homology with RAD51, share a similar 
domain structure, [155], interact with Rad51 [158], bind to 
DNA [159], and are essential for homologous recombination 
[160]. Another complex involved in maintaining the Rad51 
filament is the Shu complex in yeast consisting of Shu1, 
Shu2, Psy3, and Csm2 [161, 162]. A recent crystal struc-
ture of the complex revealed a V-shaped architecture and 
showed that Shu1, Psy3, and Csm2 are Rad51 paralogues, 
whereas Shu2 formed a novel fold with a zinc-finger domain 
[163]. In humans SWS1 and SWSAP1 have been identified 
as homologues of the Shu complex and are likely to have a 
similar role [163–165].

Future perspectives

Although structural and biochemical studies have revealed 
a plethora of information on the various roles of major play-
ers within the homologous recombination pathway, it is still 
unclear how their activities are regulated and coordinated. 
Due to the large size and difficultly in obtaining these pro-
teins recombinantly and in assembling stable and homog-
enous functional complexes [85–87], structural insights have 
been elusive, especially for larger complexes with multiple 
components. However, with the recent advance in cryoEM 
[166] and the ability to produce recombinant complexes 
[167], we envisage that structural insights of these important 
complexes should be attainable in the near future.
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