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Abstract: To investigate the role of toll like receptors (TLRs) 2 and 4 in rhabdomyolysis (RM)-related acute kidney 
injury (AKI). Wild-type (WT) mice and TLR2 knockout (TLR2-/-) or TLR4 knockout (TLR4-/-) mice were injected with 
either saline (sham) or glycerin (to induce RM-related AKI). Samples were collected for detection of 0 h 24 h (Cr) 
creatinine, urea nitrogen (BUN), creatine kinase (CK), and PAS staining of renal tissues. Serum Cr and BUN level 
was significantly increased in TLR2-/- and TLR4-/-AKI groups more than those in the control group and the WT mice in 
AKI group. TLR4-/-AKI group Cr, BUN level, and the pathological damage was lightest. The expression levels of signal 
transduction proteins in TLR2-/- and TLR4-/-AKI group were higher than in the control group, but was lower than that 
in the wild AKI group, with the TLR4-/-AKI group having the lowest levels. The expression level of inflammatory factor 
mRNA in TLR2-/- and TLR4-/-AKI groups was higher than that in control group, but was lower than that in wild AKI 
group, with TLR4-/-AKI group displaying lowest levels. Knockout of TLRs 2 and 4 decreased kidney inflammation and 
improved RM-related AKI.

Keywords: Toll like receptor 4, toll like receptor 2, acute kidney injury, rhabdomyolysis, inflammation

Introduction

Rhabdomyolysis (RM) is a life-threatening sy- 
ndrome resulting from the breakdown of stria- 
ted muscle cell membrane in cases of mus- 
cle trauma, ischemia, inflammation, metabolic 
abnormalities, and systemic poisoning [1, 2]. 
During RM, large quantities of muscular cell 
constituents, which can lead to persistent re- 
nal injury and intractable inflammatory condi-
tions, are released into the extracellular fluid 
and the circulation [3, 4]. Today, RM muscle cell 
leakage has been identified as one of the lea- 
ding causes of acute kidney injury (AKI) [5]. It  
is reported that 13-50% of the RM patients 
develop AKI [6]. In the United States, 7-10% of 
the AKI are caused by RM [7]. These RM-relat- 
ed AKI patients have a mortality of approxi-
mately 20% [8, 9]. According to Sever et al. 
(2006), after both natural disasters (e.g. earth-
quakes and hurricanes) and man-made catas-
trophes (e.g. wars and mining accidents), cru- 
sh syndrome-induced RM-related AKI, apart 

from direct trauma, is the most frequent cau- 
se of death [3]. Therefore, understanding the 
pathogenic mechanism of RM-related AKI is 
important for early intervention and appropri-
ate treatment.

In retrospect, the muscle leakage of myoglo- 
bin, an 18,800-Dalton oxygen carrier that can 
cause glomeruli obstruction and renal dysfunc-
tion, has been proposed as a major contribu- 
tor to the development of RM-related AKI [10, 
11]. Interestingly, in recent years, more and 
more evidence indicates that, apart from myo-
globin-induced renal injury, inflammation also 
plays a key role in the development and pro-
gression of RM-related AKI [12-14]. After RM, 
the released cell constituents activate pattern 
recognition receptor (e.g. TOLL like receptors, 
TLRs) and cause immediate and significant in- 
flammatory responses [2]. The inflammatory 
activation, which can cause endothelial injury, 
induce leukocyte entrapment and decrease 
microvascular blood flow. This causes damage 
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to both the medulla and the cortex of the ki- 
dney [15-18]. Since TLRs 2 and 4, which are 
constitutively expressed on renal epithelium, 
can recognize endogenous ligands during tis-
sue injury and trauma [19, 20], it would be 
interesting to investigate the roles of TLRs 2 
and 4 in the development of RM-related AKI. 
Indeed, studies have shown that TLRs are 
involved in the progress of ischemia-reperfu-
sion injury (IRI) in heart, lung, brain, and liver 
[21, 22]. Chen et al. [23] reported that the TL- 
Rs contribute to renal injury during ischemic-
induced AKI. 

In this study, the role of TLRs 2 and 4 in 
RM-related AKI was investigated using deve- 
loping RM-related AKI in wildtype mice as well 
as in mice with TLR2 or 4 knockout. 

Materials and methods

All of the procedures conducted in this study 
were approved by the Animal Ethical Commit- 
tee of Chinese PLA General Hospital (Beijing, 
China).

Mice model of RM-related AKI

Wildtype (WT, n = 10), TLR2 knockout (TLR2-/-,  
n = 10) and TLR4 knockout (TLR4-/-, n = 10) 
mice (all males, 8-week-old, with body wei- 
ghts of 20-25 g) were obtained from Nan- 
jing University Model Animal Research Center 
(Nanjing, China). Mice from each of these three 
groups were equally divided into two treat-
ments: sham and RM-related AKI. For sham 
mice, physiological saline was injected throu- 
gh thigh muscle (both side) at a dose of 8 ml/ 
kg body weight. For RM-related AKI develop-
ment, mice were injected with 50% glycerin 
solution (purchased from US Sigma-Aldrich 
Corporation, 8 ml/kg body weight) in the sa- 
me way as the sham group. All of the mice we- 
re raised in a SPF grade animal house under 
controlled temperature (22 ± 2°C) and light- 
ing (12:12-h light/dark) with free access to  
food and water during this study. Twenty-four 

eatinine (Cr), urea nitrogen (BUN) and creatine 
kinase (CK) levels] and kidney (fixed using 10% 
formalin for Schiff’s staining) samples. Twenty-
four hours after injection, 10 mice from each 
treatment were sampled for serum and kidney 
(stored at -80°C for Western Blot and RT-PCR 
analysis).

The evaluation of RM and AKI status

Serum levels of Cr, BUN and CK were deter-
mined by commercial ELISA kits according to 
manufacturer’s instructions. The mice were 
considered as RM when the serum CK level 
was increased to 5 times of the WT-sham tre- 
atment. The mice were considered as RM-re- 
lated AKI when the serum Cr level was increas- 
ed to 1.5 times of the WT-sham treatment.

Formalin fixed kidney samples were subjected 
to Schiff’s (periodic acid-Schiff PAS) staining. 
An optical microscope (Olympus Optical Com- 
pany, Japan) was used to examine the stained 
slides and results were expressed as photo-
graph objects. The kidney necrosis (ATN) score 
was determined as previously described [24].

Western blot

Western blot was conducted as previously 
described [25]. The primary rabbit anti-mouse 
TLR2, TLR4, myeloid differentiation factor 88 
(MYD88, lot number), tumor necrosis factor 
receptor-associated factor 3 (TRAF-3, please 
add lot number), interferon regulatory factor 
(IRF-3, please add lot number), TRAF-6 (plea- 
se add lot number), activating protein-1 (AP-1, 
please add lot number), nuclear factor kappa  
B (NF-KB, please add lot number) and β-ac- 
tin (please add lot number) antibodies were 
purchased from American Abcam company 
(Cambridge, MA, USA). Horseradish peroxida- 
se-labeled goat anti-rabbit secondary antibod-
ies (please add lot number) were purchased 
from Abcam company. The band density was 
quantified using Bandscan analysis software 
and then normalized to β-actin content, beca- 
use the levels of β-actin did not differ between 
experimental groups.

Table 1. Primer sequences for RT-PCR
Gene Forward Primers (5’-3’) Reverse Primer (3’-5’)
INF-β CGTGGGAGATGTCCTCAACT AGATCTCTGCTCGGACCACC
MIP-1α TGCCAAGTAGCCACATCGAG GAGATGGGGGTTGAGGAACG
IL-6 CAACGATGATGCACTTGCAGA CAACGATGATGCACTTGCAGA
TNF-α AGGCACTCCCCCAAAAGATG CCCTCACACTCACAAACCAC

hours after injection, 10 mice from 
each treatment were randomly sele- 
cted and carefully anesthetized (2% 
pentobarbital) and euthanized (pick 
eyeball blood after anesthesia) for 
serum isolation [blood collected via 
eye bleeding, centrifuged and stored 
at -80°C for the determination of cr- 
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Table 2. Serum levels of Cr, BUN and CK in different time points of mice with rhabdomyolysis
Mice Treatment Time Cr (μmol/L) BUN (mmol/L) CK (U/L)
WT N = 10 Sham 12.6 ± 0.73 8.23 ± 0.39 439.57 ± 102.74

AKI 24 H 212.95 ± 22.15* 68.7 ± 1.14* 2615.15 ± 292.25*

AKI 48 H 105.92 ± 20.01 54.27 ± 13.4 538.58 ± 127.55
TLR2-/- N = 10 Sham 13.87 ± 1.39 8.23 ± 1.61 468.3 ± 101.56

AKI 24 H 155.49 ± 30.42*,& 51.57 ± 8.64*,& 2637.49 ± 166.59*,&

AKI 48 H 28.96 ± 12.76 14.73 ± 9.24 869.44 ± 189.74
TLR4-/- N = 10 Sham 13.15 ± 1.25 8.10 ± 1.24 459.15 ± 154.35

AKI 24 H 63.76 ± 33.01*,&,$ 36.02 ± 8.54*,&,$ 2564.6 ± 203.53*,&

AKI 48 H 14.09 ± 2.66 8.27 ± 1.09 790.53 ± 141.93
Note: compare with WT sham, *P < 0.05; compare with WT AKI group 24 h, &P < 0.05 (Cr, BUN), &P > 0.05 (CK); compare with 
TLR2-/-AKI group, $P < 0.05.

Figure 1. Schiff’s staining and renal ATN score 24 h after injection. Com-
pared with WT AKI group, *P < 0.05; compared with TLR2-/-AKI group, &P 
< 0.05.

RT-PCR

The sequences of endogenous interferon-β 
(INF-β), macrophage inflammatory protein-1α 
(MIP-1α), interleukin 6 (IL-6), tumor necrosis 
factor-α (TNF-α) and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH, used as an in- 
ternal reference) were obtained from Gen- 
Bank. Primer premier 5 software was used to 

design primers for RT-PCR. Pr- 
imers (Table 1) were synthe-
sized by Huada Gene Company 
(Shenzhen, Guangdong, China). 
RT-PCR was performed using 
TaqMan probes (sample was 
analyzed in triplicate). The re- 
lative mRNA expression was 
calculated using the 2-ΔΔCT me- 
thod and the results were ex- 
pressed as fold-change rela-
tive to GAPDH.

Statistical analysis

Data were analyzed using SP- 
SS 16 software (IBM Corp., 
Chicago, IL). Data are shown as 
mean ± standard error of the 
mean (SEM). Two-tailed inde- 
pendent Student’s t-test was 
conducted to compare the di- 
fferences between two grou- 
ps. Significant differences we- 
re considered at P ≤ 0.05.

Results

Establishment of RM-related 
AKI

Our results found that at 24 h in the WT AKI 
group, TLR2-/-AKI group and TLR4-/-AKI group, 
serum creatinine, urea nitrogen and creatine 
kinase values were significantly higher than 
those in the control group. Meanwhile, rhab- 
domyolysis and acute kidney injury were ob- 
served in mice at after 24 h injection, suggest-
ing successful establishment of rhabdomyoly-
sis acute renal injury model mice. The levels of 
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serum creatinine and urea nitrogen in mice 
from TLR2-/-AKI group and TLR4-/-AKI group 
were significantly lower than those in group  
WT and group 24 h, indicating that the degr- 
ee of acute kidney injury in the TLR2-/-AKI gr- 
oup was lower than that in WT AKI group, wi- 
th the TLR4-/-AKI group displaying lower kid- 
ney injury compared with TLR2-/-AKI group at  
24 h. The level of serum creatinine and urea 
nitrogen in TLR4-/-AKI group was significantly 
lower than that in TLR2-/-AKI group, indicating 
that the degree of 24 h acute renal injury in 
TLR4-/-AKI group was the lightest among the- 
se groups. However, WT AKI group, TLR2-/-AKI 
group, and TLR4-/-AKI group mice in 24 h dis-
played no significant difference of serum cre-
atine kinase in the degree of injury to the th- 
ree groups of striated muscle, rhabdomyolysis, 

TRAF-3, and IRF-3

In the study of dependence on the MyD88 
channel, we found that compared with WT 
sham group, the TLR2-/-AKI group and TLR4-/-

AKI group presented significantly increased 
MyD88, TRAF-6, AP-1, NF-kappa B protein ex- 
pression, suggesting MyD88 dependent dow- 
nstream signal transduction protein expressi- 
on was increased. TLR2 and TLR4 are inflam-
matory signal transduction mediators through 
their MYD88 dependent pathways and might 
be involved in skeletal muscle during the dis-
solution of acute kidney injury. However, com-
pared with the WT AKI group, the TLR2-/-AKI  
and TLR4-/-AKI groups displayed significantly 
decreased MYD88, TRAF-6, AP-1, and NF-ka- 
ppa B protein levels, indicating that TLR2 and 

consistent with no different ef- 
fects on acute kidney injury in- 
duced by rhabdomyolysis de- 
gree (Table 2).

As shown in Figure 1, under 
light microscope, the structu- 
re of glomerular and renal tu- 
bules in WT-sham mice was 
intact 24 hour after saline in- 
jection. However, in WT-AKI mi- 
ce, the renal tubular epithelial 
cells were edematous with va- 
cuolar and granular degenera-
tion, the brush border of the 
proximal renal tubule was de- 
tached, and the basement me- 
mbrane of renal tubules was 
exposed. Compared to WT-AKI 
mice, the TLR2-/--AKI and TL- 
R4-/--AKI mice had decreased 
epithelial cells edema, decre- 
ased vacuolar degeneration, 
and granular degeneration, as 
well as decreased basement 
membrane exposed. No ren- 
al ATN was scored in WT-sh- 
am mice. However, an average  
ATN score of 8 was observed  
in WT-AKI mice. The TLR2-/--AKI 
(lower) and TLR4-/--AKI (lowest) 
mice had decreased renal ATN 
scores compared with WT-AKI 
mice.

Renal protein expression of 
MYD88, TRAF-6, NF-kB, AP-1, 

Figure 2. Renal protein expression of MYD88, TRAF-6, NF-kB and AP-1. 
Compared with WT SHAM group, *P < 0.05; compared with WT AKI group, 
&P < 0.05; compared with TLR2-/-AKI group, $P < 0.05.
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Figure 3. Renal protein expression of TRAF-3 and IRF-3. Compared with WT 
SHAM group, *P < 0.05; compared with WT AKI group, &P < 0.05.

TLR4 might be involved in the signal transdu- 
ction pathway of MYD88 dependent inflam- 
mation. Interestingly, compared with the TL- 
R2-/-AKI group, expression of MYD88, TRAF-6,  
and AP-1 expression in TLR4-/-AKI group was 
significantly decreased (Figure 2).

In a study of IRF-3 dependent channels we 
found that, compared with the WT sham group, 
the WT AKI group and TLR2-/-AKI group show- 
ed significantly increased TRAF-3 and IRF-3 
protein expression. However, no expression of 
TRAF-3 and IRF-3 was observed in the TLR4-/-

AKI group, suggesting that TLR4 might trans-
duce inflammatory signals through IRF-3, while 
TLR2 does not depend on the IRF-3 signaling 

pathway. Compared with the 
WT AKI group, expression lev-
els of TRAF-3 and IRF-3 in 
TLR2-/-AKI group were decre- 
ased, indicating that the exp- 
ression level of proteins dow- 
nstream of IRF-3 signaling pa- 
thway are down-regulated af- 
ter knockdown of TLR2 (Figure 
3).

Renal mRNA expression of 
INF-β, MIP-1α, IL-6 and TNF-α

Analysis of the expression of 
inflammatory factors found th- 
at compared with WT sham 
group, the WT AKI group and 
TLR2-/-AKI group showed sig-
nificantly increased IL-6, infl- 
ammatory factor IFN-β MIP-1 
and TNF-alpha mRNA levels 
and the TLR4-/-AKI group dis-
played significantly increased 
IFN-β and IL-6 levels, indicating 
TLR2 and TLR4 are involv- 
ed in the injury mediated by 
rhabdomyolysis after. Compa- 
red with the WT AKI group,  
the TLR2-/-AKI and TLR4-/-AKI 
groups, presented significant- 
ly reduced IL-6, inflammatory 
factor IFN-β, MIP-1α and TNF- 
α mRNA expression levels, in- 
dicating knockdown of TLR2 or 
TLR4 could downregulate the 
secretions of inflammatory fa- 
ctors, reduced the degree of 

inflammation of kidney. Compared with TLR2-/-

AKI group, the expression levels of IFN-β, IL-6, 
MIP-1, TNF-α in TLR4-/- and AKI groups were  
significantly lower, indicating that TLR4 had a 
stronger effect on the inhibition of the expres-
sion of inflammatory cytokines than TLR2 
(Figure 4).

Discussion

In this study, RM-related AKI was successful- 
ly developed in WT, TLR2-/- and TLR4-/- mice 24 
hours after glycerin injection. However, while  
all the mice experienced the same level of RM 
(using serum CK level as an indicator), TLR2-/- 
and TLR4-/- mice had improved AKI status (us- 
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Figure 4. Renal mRNA expression of INF-β, IL-6, TNF-α and MIP-1α. Com-
pared with WT SHAM group, *P < 0.05; compared with WT AKI group, &P < 
0.05; compared with TLR2-/-AKI group, $P < 0.05.

ing serum Cr as an indicator) when compared 
to WT mice. Similarly, Schiff’s staining and re- 
nal ATN scores indicate that, at the same time 
(24 hours after glycerin injection), WT mice 
experienced more severe kidney injury com-
pared with TLR2-/- and TLR4-/- mice. These re- 
sults clearly demonstrate that TLR 2 and 4  
contribute to the development and progressi- 
on of glycerin-induced RM-related AKI. In rec- 
ent years, RM-induced inflammation response 
has been proposed as a major cause of AKI 
[10, 13]. Since TLR2 and TLR4 are key pattern 
recognition receptors for endogenous ligands 
recognition [15, 16], the current results were  
as expected. In a study conducted by Rusai  
et al. (2010), knockout of TLR2 or/and TLR4 
could protect mice from renal ischemia/reper-
fusion injury which was basically characterized 
as inflammation and cell death [26].

Of particular interest in this study, is that with- 
in the TLR knockout AKI groups, TLR4-/--AKI 
mice had improved AKI status (indicated by 
serum Cr level, epithelial cell edema, vacuolar 
and granular degeneration, tubular basement 

membrane explosion, and kid-
ney ATN score) compared with 
TLR2-/--AKI mice. These results 
suggest that TLR2 and TLR4 
play different roles in RM-in- 
duced inflammatory response. 
Basically, TLR signaling path-
way can be divided into two 
sub-pathways: MYD88-depen- 
dent (both TLR2 and TLR4)  
and MYD88-independent (TL- 
R4 but not TLR2). In the MY- 
D88-dependent pathway, TL- 
Rs-induced MyD88 dimeriza-
tion and interleukin-1 recep- 
tor-associated kinase (IRAK) 
activation initiates recruitme- 
nt of TRAF-6 and TRAF-3 [27]. 
TRAF-6 activates transcription 
factors like NF-kB and AP-1. 
TRAF-3 is instrumental for the 
recruitment of TRAF family me- 
mber-associated-binding kina- 
se 1 (TBK-1) and the produc-
tion of type I IFNs and IL-10. In 
the MYD88-independent path-
way, TLR 3 and 4 can activate 
transcription factor IRF-3 and 
thereafter induce the produc-

tion of IFN-β [28]. In this study, glycerin injec-
tion increased the renal expression of prote- 
ins (MYD88, TRAF-6, NF-kB, and AP-1) in the 
MYD88-dependent pathway in WT, TLR2-/- and 
TLR4-/- mice. These results suggest significant 
inflammatory responses were triggered in the 
kidney after the development of RM. Intere- 
stingly, compared with WT-AKI mice, renal ex- 
pression of MYD88-dependent pathway pro-
teins were decreased in both TLR2-/--AKI and 
TLR4-/--AKI mice. Thus, it would be safe to hy- 
pothesize that knockout of TLR 2 and 4 redu- 
ce RM-induced renal inflammatory response 
and therefore alleviate RM-related AKI. In ad- 
dition, TLR4-/--AKI mice had lower levels of 
MYD88 pathway protein (MYD88, TRAF-6 and 
AP-1) expression compared with TLR2-/--AKI 
mice, suggesting TLR4 plays major roles in the 
RM-induced MYD88-dependent kidney infla- 
mmation. As expected, glycerin-induced RM- 
related AKI also increased the renal expres-
sions of TRAF-3 and IRF-3 in WT and TLR2-/- but 
not TLR4-/- mice. These results are consistent 
with the current understanding that TLR4 pl- 
ays key roles in the recruitment and/or activa-
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tion of TRAF-3 and IRF-3 [28]. Interestingly, 
TLR2-/--AKI mice had decreased renal TRAF-3 
and IRF-3 expression compared with WT-AKI 
mice, indicating that TLR2 also participates  
in the development of RM-related AKI throu- 
gh MYD88-independent pathway. In the lite- 
rature, the MYD88-independent pathway (or 
the IRF-3 pathway) has been proposed as un- 
ique to TLR 3 and 4 [28]. However, similar to 
our results, Shigeoka et al. (2007) reported 
that TLR2 participated in ischemic renal injury 
through both MyD88-dependent and -indep- 
endent pathways [29]. Future investigation is 
required to confirm the roles of TLR2 in the 
MYD88-independent pathway. 

Glycerin injection up-regulated mRNAs expre- 
ssion of INF-β, IL-6, TNF-α and MIP-1α in the 
kidney of both WT and TLR2-/--mice. However,  
in TLR4-/--mice, glycerin induced increased 
INF-β and IL-6 expression and decreased TNF- 
α and MIP-1α expression.

In summary, TLR 4 and 2 involve in the renal 
inflammatory response in the development of 
glycerin-induced RM-related AKI through MY- 
D88-dependent and -independent pathways. 
Targeting TLR4 and TLR2 may provide novel 
therapies for the treatment of RM-related AKI.
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